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Chapter 1

Introduction

Non-self-adjoint operators is an }gBSOphisticated and highly developed sub-
ject. See for instance Carleman he%rfor an early result on Weyl type asymp-
totics for the real parts of the large eigenvalues of operator Lhat are close
to self-adjoint ones, with later results by Markus, Matseev %[QZI, 93] in the
same direction. The abstract theory with %lgﬁﬁg%achinery of s-numbers can
be found in the book of Gohberg anf Krein [49]. Other quite classical results
concern upper bounds on the number of eigenvalues in various regions of the
complex plane and questions about co teness of the set of all generalized
eigenvectors. See for instance Agmon ﬁ%ﬁ]—

In my own work I have often encountered non-self-adjoint operators. Thus
for instance problems about analytic regularity for PDE’s with point-wise
degeneracy or in domains with conic singularities turned out to boil down
to problems about non-self-adjoint ope%“ators;. estimates on th%g Sriefé),lvggst%7
and completeness of the set of generalized eigenvectors. See [/, B]." Non-
self-adjoint quadratic operators turned up naturally in the %y %f _?Ertain
classes of hypoelliptic operators with double characteristics, 125, 22] and in
a number of recent works, ‘ﬂg;%gtaheﬂll%rlb 3 lﬁgg%’lc%en up again and is now
quite an active field see e.g. [32, [70; [/4]. The study of resonances (scattering
poles) and later operators of Kramers-Fokker-Planck have been very beautiful
domains, where non-self-adjointness is an important ingredient.

A major difficulty in the non-self-adjoint theory, is that the norm of the
resolvent may be very large even when the spectral parameter is far from the
spectrum. This causes the spectrum (and in this book we will only consider
the discrete spectrum) to be unstable under small perturbations of the oper-
ator and this can be a source of numerical errors. Starting in the 90’ies the
perspectives have changehcl]r%gm r]l_} tsthanks to works by numerical analysts,
like L.N. Trefethen (see [147], F‘E[S who emphasized that the pseudospec-
trum — roughly the zone in the complex plane where the resolvent norm is




large — can be of independent interest, for instance to understand the onset of
turbulence from the (non-self-adjoint) linearizations of s iign a}fgglé)ws. This
spurred neyy ]Oqterfsg agous aoglalysts like E.B. Davies [[31 132, M. Zworski
and others [150; 157, B9

Given the spectral instability it has been natural to study the effect on
the eigenvalues of small rand esrturbatlons a%ﬂ &e u&L)ful ﬂugégrlcal results
can be found for instance in E{J‘%ﬁ‘ln her thesis ]' 53, 57[]_M_Hager made
a mathemtical study of the spectrum of the sum of the simple operator hD,+
g(z) on S! and a small random term. The spectrum of the unperturbated
operator is Just an arlthmetic progression of eigenvalues on the line 3z =
(Sg) = fo x)dx and the effect of the random perturbation is to
spread out the elgenvalues in the band {z € C; inf ¢ < Jz < supSQg} =
p(T*S'), where p(z, &) = £+ g(x) is the semi-classical principal symbol. The
main result was that if 2 is a fixed bounded domain with smooth boundary
in the interior of the band, then with probability very close to 1, the number
of eigenvalues N(2) of the perturbed operator in € is given by

N(Q) = (27)  (volpeg1 (p™1(Q)) + 0(1)), (1.0.1)

in the semi-classical limit, h — 0, with an explicit estimate on the remain-
der 0(1).[| We here recognize the natural non-self-adjoint version of Weyl
asymptotics in the semi-classical limit, well established for large eigenvalues
of self-adjoint differential operators since more than a century and later in
the semi-classical self-adjoint case.

This came as a big surprise since in the cases known to me, one has to as-
sume analyticity to get eigenvalue asymptotics via complex Bohr-Sommerfeld
conditions. In one dimengion such eigenvalues typically sit on curves which
is incompatible with iﬂﬁb . (We here discuss genuinly non-self-adjoint op-
erators with complex valued principal symbol.)

Thus with hindsight one can say that the random perturbation will typi-
cally destroy (uniform) analyticity and hence destroy all possible asymptotic
formulas in terms of complex phase space (like complex Bohr-Sommerfeld
conditions). Among the possible remaining formulas in terms of real phase
space, the Weyl asymptotics seems to be the only posszble one. a06b

After this first resulﬁ BQ%O LP%V(isbeen seveﬁﬁd pons O&h EXO% La],
W. Bordeaux Montrieux [I5]; [I0], [I7] as well as \[bb[, T3] ]J'ﬂiat
treated more general situations and obtained more precise results. During
this process the methods were improved and the main purpose of this book
is to give a unified account, leaving out many other recent devolopments for

LAt first, the formula appeared more complicated, depending on the method of proof,
and the simpler form was pointed out to me by E. Amar-Servat.
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non-self-adjoi t gperators. We also leave out some related results for res-
onances (see [[I38] and references given there). A related, very promising
approach for studying directly the expected ei%ﬁ a&ble dens%y z}lndvc%gel%wo 14
tions can be found in T. Christiansen—Zworski [30], M. Vogel [149] TI50; [140]
Since this approach is currently less developed for Spectral problems, we will

not treat it here.

Quite naturally, the classical theory of non-self-adjoint operators ( ﬁ;z[gkﬁ‘
a fundamental ingredient of the methods. We will also use some results of
complex analysis, in particular a result on counting the zeros of holomorphic
functions with exponential growth. Microlocal analysis in its classical C*
version will be important also.

We will assume that the reader has so éaélilh 1%}7 \glth standard mi-
crolocal analysis, roughly corresponding to [HT and Z[U ut we think that
even without formal prerequisites in that area, most of the book should re-
main accessible. Applications have not been our main motivation, but rather
to present a coherent piece of mathematical analysis where Weyl asymptotic
appeared first as a surprise.

The text is split into three parts.

e Part I is devoted to some functional analysis and to spectral theory in
dimension 1.

— In Chapter @Ewe review some notions i l%hng spectrum r%_;he
pseudospectrum in the spirit of Davies 33]'and Trefethenj?m

— In Chapter ﬁd%ve discuss the original result of Hager on Weyl
asymptotics for random perturbations of the model operator hD+
g, where many ideas appear in a non-technical context.

— In Chapter @T%de use a classical WKB-construction to construct

imodes for differential operators, generalizing a result of Davies

BT]'for the non-self-adjoint Schrodinger oper tors (The construc-

tion in any di eébsm dsogiven in Chapter a@!%nd goes back to
L. Hormander (78] %7

— Chapter ﬁlTs devoted to Weyl asymptotics for mOIFF gggeral differ-

ential operators in 1 dimension, in spirit close to [[H4:

tid 3

— In Chapter % we establish a result of Bordeaux Montrieux HBTOT]T
about the norm of the resolvent near the boundary of the range of
the symbol. What is remarkable is that we get not only a precise

upper b un(gétbgt even the asymptotics of the norm. Later, in
Chapter ii fl we review upper bounds in any dimension.



kb
— In Chapter i; we explain the complex WKB method for ordinary
differential equations

on
— In Chapter@ We review alﬁ:stﬁ o theory of non-self-adjoint opera-

tors, following essentially [49

e Part II deals with various general facts.

— In Chapter i@ wES %gnerﬁcljlg&thﬁego?s&ucmon of quasimodes to any
dimension, cf. [78 79;39]

tgd
— In Chapter IIE) wo give resolvent bounds near the boundary of the
range of the symb ]i 581“ semi-classical operators in any dimension.
We follow closely %‘SZI

— In Chapter ﬁ we discuss some abstract questions around the
Gearhardt—Priiss-Hwang-Greiner theorem getting estimates on
semi-groups from estimates on resolvents. iggis mainly joint
WoRilé yith B. Helffer, originally published in 133] and later also
in [[59

ntz
— In Chapter @JWT give a result about the number of zeros of a
holomorphic function with exponential growth. A simpler ver-
of this result was originally proved by Hager, see Proposition
. The improvements here are essential for the more precise
and general results in Chapter @ and in Part IIL.

— In Chapter @ we study the distribution of eigenvalues of small
random perturbations of large Jordan blocks. We show that with
probability close to 1, the eigenvalues concentrate to a certain cir-
cle and have an approximately uniform angular distributi 1.there.
In the last section, which is joint work with M. Vogel [140] we
study the expected density of eigenvalues inside that circle.

e Part III. This part deals with spectral asymptotics for differential
operators in arbitrary dimension

— In Chapter ﬁgwe review a result of Markus and Matseev about
Weyl distribution of the real parts of the eigenfrequen&égs of the
damped wave equation. We choose to use Chapter

i
— In the chapters ﬁ%ﬁresent and prove a general result on
Weyl asymptotics for semi-classical (pseudo-)differential operators
on a. 6:ggrnpact manifold which basically impr ?&815_}}631 %]bn result
f [I32]. The proof follows the strategy of [I31, [I32] with the

K . ntz
difference that we can now use the improved results of Chapter il%




— Chapter ﬁgives almost sure Weyl asymptotics for the large eigen-
values of differential operator oélooglonger in the semi-classical
limit. We here basically follow [I§].

— In Chapter @%e apply the results to PT symmetric operators.
Such operators are generally non-self-adjoint but with an addi-
tional symmetry that forces the spectrum to be symmetric around
the real axis. They have been proposed by physicists as building
blocks in new versions of quantum mechanics and the realjty .of
the spectrum is then important. We first show (following [I37])
that most PT-symmetric operators have most of their eigenvalues
away from R in the semi-classical case as well as in that of large
eigenvaﬂFo A 1§Fhen we describe without detailed proofs some re-
sults of 23%_about the reality of eigenvalues for semi-classical PT-
symmetric analytic Schrodinger oper oL Vgétl}ﬁ simple potential
well in dimension 1 and a result of [T00] about the non-reality
of the eigenvalues for semi-classical Schrodinger operators with a
double well potential.

Acknowledgements. Discussions with colleagues and sometimes cowork-
ers have been a very important basis for this work. In particular, I am grate-
ful to W. Bordeaux Montrieux, M. Hager, M. Hitrik, B. Helffer, K. Pravda
Starov, J. Viola, M. Vogel, X.P. Wang, M. Zworski, ...
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Basic notions, differential
operators in one dimension
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Chapter 2

Spectrum and pseudo-spectrum

2.1 Operators in Hilbert spaces, a quick re-
view

In this book all Hilbert spaces will be assumed to separable for simplicity.
[I{Iéli G%I}i%esggci%rlll\]\éve review some basic definitions and properties and refer to
86, I12, TI13] Tor much more substantial presentations.

Let H be a complex Hilbert space and denote by || - ||, (-] --) the norm and
the scalar product respectively. A non-bounded (or rather not necessarily
bounded) operator S : H — H is given by a linear subspace D(S) C H, the
domain of S and a linear operator S : D(S) — H. We say that S is bounded

if D(S) = H and
IS = sup 122

0#zeH HxH

< 0. (2.1.1)

Let L(H,H) denote the corresponding normed space of bounded operators.

These definitions and many of the facts below have straight forward exten-

sions to the case of operators S : H; — Ho, where H; are two Hilbert spaces.
If S:H — H is an unbounded operator, we introduce its graph

graph (S) = {(x, Sz); x € D(5)}, (2.1.2)

which is a linear subspace of H x H. We say that S is closed if graph () is
closed. Every bounded operator S € L(H,H) is closed and conversely the
closed graph theorem tells us that if S : H — H is closed and D(S) = H,
then S is bounded; S € L(#H,H). In the next proposition, we introduce the
adjoint S* of a densely defined operator:

Proposition 2.1.1 Let S : H — H be an unbounded operator whose domain
D(S) is dense in H. Then there exists an unbounded operator S* : H — H

11



characterized by:

D(S*) = {v € H; IC(v) €0, +00], |(Sulv)| < Cw)||ul, Yu e D(S()2},1 ;
(Sulv) = (u|S™v): Yu € D(S), v € D(S"). (2.1.4)

Proof. @g is just a definition and the space D(S*) so defined is linear.
For v € D(S*), the map H > u +— (Sulv) is a bounded linear functional, so
there is a unique element w € H such that (Su|v) = (u|w) for all u € H. By
definition S*v = w and it is straight forward to see that S*v depends linearly
on v. ]

We have the following easily verfied properties:

e S* is closed.

e Let S denote the closure of S, so that in general S is the relation H — H

whose graph is the closure of the graph of S; graph (S) = graph(S5).
We say that S is closable if S is an operator.

If D(S*) is dense, then S** = S. In particular, S is closable.

Definition 2.1.2 Let A, B : H — H be unbounded operators. We say that
A C B if graph (A) C graph (B) or equivalently if D(A) C D(B) and Az =
Bz for all x € D(A).

If D(A) is dense and A C B, then B* C A*.

Definition 2.1.3 A densely defined operator A : H — H is symmetric if
A C A* and self-adjoint if A = A*.

Notice that the densely defined operator A : H — H is symmetric iff
(Asly) = (x|Ay), Va,y € D(A).

An important general problem is to determine when a symmetric operator
A H — H has a self-adjoint extension A : H — H (in the sense that
A C }[) Notice that a self-adjoint operator is always closed so every self-
adjoint extension Aofa symmetric operator A has to contain the closure A.
The “best” case is when A is essentially self-adjoint in the sense that A has
a unique self-adjoint extension. It can be showed that when the symmetric
operator A is essentially self-adjoint, then the unique self-adjoint extension of
A is the closure A. Equivalently, the symmetric operator A is essentially self-
adjoint precisely when A is self-adjoint. Recall that many of these statements
are easy to understand if we make the observation that the orthogonal space
for the “symplectic” sesquilinear form o((x,&), (y,n)) = (&ly) — (z|n) of
graph(A) is equal to the graph of A*. 266
We have the following theorem of von Neumann, see H{S'G]', page 275:

12
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Theorem 2.1.4 Let T : H — H be closed and densely defined. Then the
operator T*T with its natural domain D(T*T) = {x € D(T); Tx € D(T*) is
self-adjoint. Moreover D(T*T) is a core for T in the sense that {(u, Tu); u €
D(T*T)} is dense in D(T).

Definition 2.1.5 A closed densely defined operator T : H — H is normal
if T*T = TT* (where the second operator TT* is equipped with its natural
domain).

We notice that every self-adjoint operator is normal. Many properties of
self-adjoint operators extend to normal ones.

Spectrum, resolvent Let T : H — H be closed and densely defined. It is
often practical to equip D(T') with then norm ||u|lpir) = (J|ul|* + | Tu||?)2 =
||(w, Tu)||3x%. We say that zp € C belongs to the resolvent set p(T") of T
if T — 2y : D(T) — H is bijective and the inverse (2o — T)™' : H — H is
bounded. Here we write (T' — zo)u = Tu — zyu. (Notice that (7' — z9)~! is
bounded H — H precisely when it is bounded H — D(T') and that the closed
graph theorem tells us that it is indeed bounded, once it is well defined.)

When zy € p(T) we define the resolvent R(zg) = (20 — T)~!. For z € C,
we have

(z —=T)R(z) =1+ (2 — 2z0)R(20), (2.1.5)
where “1” denotes the identity operator. Here
1(z = 20) R(20)|| < |z — 20l | R(=0)

is < 1 when z belongs to the open disc D(z,1/||R(20)||) and the operator
1+ (2 — 2z0) R(20) then has the bounded inverse given by the Neumann series

(14 (2 —20)R(20)) ' =1~ (2 — 20)R(20) + ((z — 20) R(20))* — ...

We also see that

1

0+ = el S o= e

(2.1.6)

(Here Jve use that the normed linear space L(#H,H) is complete.) From
it now follows that z — T : D(T') — H has the right inverse

R(z) = R(20)(1 + (2 — 29) R(20)) " (2.1.7)

with norm

[1R(=0)l

IR < 1= 12— 2o[[|R(z0)

13



Since 1+ (z — 2z0) R(20) maps D(T') into itself, we see that the inverse has
the same property. Using also that

R(z0)(z —=T) =1+ (2 — 20)R(20), (2.1.8)

~ 7
we see that R(z), defined in m is also a left inverse, so z belongs to the
resolvent set and R(z) = R(z).

Proposition 2.1.6 Let zg € p(T), z € D(z9,1/||R(20)||). Then z € p(T)

and
1RGO
|z — zol|| R(20) |

R <
IBE) <
It follows in particular that the resolvent set p(7T) is open.

Definition 2.1.7 Let T : H — H be a closed densely defined operator. The
spectrum o(T') is the closed subset of C, defined by

o(T) = C\ p(T). (2.1.9)

From Proposition %We see that

| R(2)]l z € p(T), (2.1.10)

= dist (z.0(T))’

where dist (z,0(T)) = infyeqs(r) |2 — w| denotes the distance from z to the
set o(T'). From the spectral resolution theorem for self-adjoint operators, we
have

Theorem 2.1.8 Let T : H — H be self-adjoint. Then o(T) C R and

1

IR = s o)

z e p(T). (2.1.11)

2.2 Pseudospectrum

Let P : H — H be closed and densely defined.

Definition 2.2.1 Let ¢ > 0. We define the e-pseudospectrum to be the set

0(P) = o(P)U{z € p(P); (= = P)""|| > %}- (2.2.1)

14



Some authors put “>” rather than “>” in this deﬁniffjr .05We follow the
choice in the book of L.N Trefethen and M. Embree lzl'ﬁSjTand with this
choice o.(P) be gmes an open subset of C.

From it follows that

o(P)+ D(0,¢) C a.(P). (2.2.2)

It i aQ:standard fact for non-self-adjoint operators, that the second set in

may be much larger than the first one. For self-adjoint operators we
have equality by (2.T.11). Thus for general non-self-adjoint operators, the
existence of quasi-modes for P — z does not necessarily imply that z is close
to the spectrum of P. The following proposition shows though that there is
a close link between the eistence of quasi-modes and the e—gseudospectrum.

(The notion of “quasi-mode” is implicitly defined in @ below.)

Proposition 2.2.2 Let ¢ > 0, z € C. The following two statements are
equivalent:

1) z € o (P).
2) z € o(P), or

Ju € D(P), such that |ul]] =1 and ||(P — 2)ul| < e. (2.2.3)

Proof. It suffices to show that for z € p(P) the statement

z € o.(P) (2.2.4)

3 3
is equivalent to @’ Now @’ is equivalent to:

30 # v € H, such that ||v]| > ¢, ||[(z — P) ' =1,

4
which in turn is equivalent to @’ with the choice u = (z — P)~tv. O

In the above situation we call © a quasi-mode and z the corresponding
quasi-eigenvalue. The e-pseudospectrum is a set of spectral instability: a
small perturbation of P may change the spectrum a lot. That is formalized
in the the following easy result:

Theorem 2.2.3 We have for every e > 0,

o(P)= |J o(P+A). (2.2.5)

AEL(H,H)
[[All<e

15



5 ~

Proof. Denote the right hand side of @’ by 7.(P). Clearly o.(P) contains
o(P), so we only have to identify o.(P) \ o(P) and 7 .(P) \ o(P).

Let 2z € 0.(P) \g(P) so that (z — P)~! exists and i of norm > 1/e. Then
by Proposition @, there exist a vector u as in . Let v = (P — 2)u,
so that [Jv]| < e. Now we can find A € L(H,H) with ||A| < €, Au = v.
For instance, we can define A by Ax = (z|u)v. Then (P + A — 2)u = 0, so
z € 0(P+ A) and hence z € 5. (P) \ o(P).

Now, let z € C\ o.(P), so that |[(P —2)7 || < 1/e. Let A € L(H,H),
|A|| < e. Then

(P+A—2)(P—2)"=14+AP—2)", AP -2 <1

Thus 1+A(P—z)~! : H — H has a bounded inverse and we see that P+A—z :

D(P) — H has the bounded right inverse (P — z)~!'(1 + A(P — 2)~ 1)~
Similarly, (P — 2) "' (P+ A—2) =1+ (P — 2z)"'A is bijective H — H

and D(P) — D(P) and P + A — z has the bounded left inverse

(1+ (P —2)"*A)~Y(P - 2)~'. We conclude that z & o(P + A) and varying

A it follows that z & o (P). O

Subharmonicity This property helps to use the maximum principle in
order to establish some general prope 1%% of pseudospectra, and we start be
recalling some general properties, see

Definition 2.2.4 Let Q C C be open and let u : Q — [—o0,+00]. We say
that uw is subharmonic if

(a) u is upper semi-continuous, i.e. u~([—o0, s|) is open for every s € R,

(b) If K C Q is compact, h € C(K;R) is harmonic on the interior of K
(in the sense that Ah = 0 there) and h > u everywhere on 0K, then
h>uin K.

In this definition we o§an restrict K to set of closed discs contained 1
(Theorem 1.6.3 inﬁ '76].) Another important property (Theorem 1.6.2 in %7'6]%
18

Theorem 2.2.5 Let u,, a € A be family of subharmonic functions such
that u 1= SUp, e 4 Ua 15 pointwise < 4+oo and upper semi-coninuous. Then u
s subharmonic.

As the name indicates, every harmonic function is subharmonic.
We recall the characterization of s ) rmonic functions as those for which
Awu > 0 in the sense of distributions ([70], Theorem 1.6.9-1.6.11).
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Theorem 2.2.6 Let Q be open and connected.

(a) If w is a subharmonic function on 2, not identically —oo, then u €
L () and Au is a positive distribution:

loc
/uAvL(dz) >0, for all0 <ve C3 Q). (2.2.6)

(b) Conversely, if u € L, (Q) and (%holds, then there exists a unique
subharmonic function U on ) which is equal to u almost everywhere.

We now return to our general closed and densely defined operator P :
H—H.

Proposition 2.2.7 The function z — ||(z — P)™!|| is subharmonic on p(P).

Proof. We use the variational formula

lull = sup R(ulv), u e,
€H

foli=1
to see that for z € p(P),

I(z—P) M| = sup R((z — P) lulv).
Il vl <1

Here p(P) 3 z — R((z — P)"'u|v) is harmonic for every fixed (u,v) € H x H.
Moreover, p(F) 3 z +— [|(z — P)7!|| is continuous and pointwise finite, so
Theorem [2.2.5[ gives the desired conclusion. O

Applying the maximum principle, we get

Theorem 2.2.8 FEvery bounded connected component of o.(P) contains some
point of o(P).

Proof. We first remark that is zg is a point in the spectrum of P but not in
the interior of that set, then [|(z — P)7!|| — 400, p(P) > z — 2.

Let V' C C be a bounded connected component of o.(P). We notice that
|(z — P)7Y| = 1/e everywhere on the boundary of V.

If V' does not intersect the spectrum of P, then the function f(z) :=
|(z — P)7Y is continuous and subharmonic in a small open neighborhood
Q of V. Thus by the maximum principle for subharmonic functions (apply
Propositionwith K =V, h=1]/e) implies that f(z) < 1/ein V which
is in contradiction with the fact that ||(z — P)7'|| > 1/e in V. O
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2.3 Numerical range

Another set which has interesting connections with the spectrum and the
pseudospectrum is the numerical range. As above, let P : H — H be a
closed densely defined operator.

Definition 2.3.1 We define the numerical range W(P) C C of P by

W (P) = {<P“|“>. 0#£ue D(P)} . (2.3.1)

lull

Notice that we get the same set if we restrict u to the set of all u € D(P)
E%IEhSQUH = 1. The following theorem is due to Hausdorff and Toeplitz (see

Theorem 2.3.2 W(P) is convex.

Proof. Let zp,z1 € W(P) be two distinct points, so that z; = (Pejle;),
e; € D(P), |lej|| = 1. Then ey, e; are linearly independent and it suffices
to show that {(Pu|u)/||u|?* u € 3} is convex, where 3 := Cey & Ce;. For
u € X, we have (Pu|u) = (IlgPulu), where Ily : H — 3 is the orthogonal
projection onto X. Thus we may replace P by Iy P : ¥ — X and we have
reduced the proof of the theorem to the case when H is a 2-dimensional
Hilbert space. After choosing some orthonormal basis in H we may identify
P with a square matrix and H with C2.

Write P = RP 4 i3 P, where RP = (P + P*)/2 and SP = (P — P*)/(21)
are Hermitian matrices. After conjugation by a unitary matrix, we may

assume that \
_ (M0
RP — ( ; A2)

where \; and )y are real. Thus for u = (uy,uy) € C?\ 0, we have

(Pulu) _ Aplug |2+ Agug|? "y (SPu|u) (23.2)
|2 ur |2 + |uz|? |y |? + |ug | o

Now the Hermitian matrix &P takes the form

SP = (‘il a), [, 2 € R,
K2

a

so finally

(Pulu) _ (A1 +ip) w2 + (Ag + ipo)|uo|? N Z,2§R(—aulﬂg)
[ Jua[? + uaf? Jua[? + [uz]?

(2.3.3)
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When investigating the set of these values, we may assume that [|ul|* = 1,

so that
P =11, lup)? =t 0<t<1. (2.3.4)

2R(—auuz)| < 2|al\/t(1 —t).
More precisely, for every 6 € [—2[al\/t(1 —t),2|al/t(1 — )] there exists a u

satisfying (2:3.4]] such that 2R(au,Us) = ¢ and we conclude that the set of
values in (2.32]] is equal to

{(1=t) (N1 +ipg) +t(Xg +ipg) +1i0; 0] < 2]al/t(1 —1), 0 <t <1} (2.3.5)
5
The function /t(1 —t) is concave, so the set @ is convex. More pre-

cisely, it is an ellipsoid. O

Then

If A € C is an eigenvalue of P, so that Pu = Au for some 0 # u € D(P),
then it is immediate that A € W(P). We have

Theorem 2.3.3 Let 2 C be a connected component of the open set C '\
W (P), so that Q is open. If Q contains a point zy which is not in o(P), then
QNo(P) =10 and moreover,

1

|(z—P)7Y| < T zeq. (2.3.6)

For the proof we will use the following proposition of independent interest:

sp.c5| Proposition 2.3.4 For every z € C, we have

dist (z, W(P))|lul| < (P — 2)ul|, u € D(P). (2.3.7)

Proof. For every non-vanishing u € D(P), we have

(2 = P)ulu)| = [2]|u]]* = (Pulu)| = [z — w||ul|*

where w = (Pulu)/||ul|* belongs to W(P). Thus by the Cauchy-Schwartz
inequality,

dist (2, W)[ul® < [z —wlllul® < [(P = 2)ulu)| < [[(P = z)ul[[ull.

oL . 7
After qwmon with the norm of u we get @’ for non-zero u. When u = 0,
holds trivially. O
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4
Proof of Theorem E?? Let 29 € @\ o(P) and let, z; € Q. Knowing that
the resolvent (zo — P)~! exists, we can apply @’ to see that

1

I(z0 = P)7"| < dist (2, W (P))

and hence that D(z, dist (20, W(P))) C p(P). Now let v be a C' curve in
) that connects zy to z;, then we can find finitely many points wg, wy,
oy wy with wyg = 2y, wy = 21 in (the image of) ~ such that wyy; €
D(wy, dist (w, W(P))). Iteratively, we see that D(wy,dist (wx, W(P))) C
p(P) for E =_1,2,..., N and in particular for k = N we get 21 € p(P) and
again by that holds when z = 2z;. Now z; is an arbitrary point
in 2 and the theorem follows. O

2.4 A simple example of a large matrix

Consider a Jordan block Ay : CV — C¥ that we identify with its matrix

0100 ..0

010 ..0

Ay = 0001 ..0 . (2.4.1)
0000 .. 1
0000 ..0

e}

It was observed by M. Zworski ﬁ']g%] that the open unit disc is a region of
spectral instability for Ag so we expect the eigenvalues to move in a vicinty
of that disc when we add a small perturbation to Ag. Here we shall just look
at the simple case of

0100 ..0

=)
—
)
ja=)

AY = 00010 ,0>0 (2.4.2)
0000 .1
§ 000 .0

and we will study more general random perturbations in Chapter @ If we
identify CV with ¢2({1,2,..., N}) in the natural way, then A%u(j) = u(j+1),
j=1,...,N —1, AQu(N) = su(1).

Since Ag is a Jordan block, we already know that the spectrum of Ag is
reduced to the eigenvalue A = 0 which has the algebraic multiplicity N.
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We look for the eigenvalues of AY, § > 0. A € C is such an eigenvalue iff
there exists 0 # u € £2({1, ..., N} such that

w(i+1) =), 1<j<N-1
du(l) = Au(N).

The spectrum of AY consists of the N distinct simple eigenvalues

2mik

)\k—(SNeN s k= ,...,N—l

which are equidistributed on the circle of radius §'/V. If § > 0 is fixed and
N — 400, then “the spectrum converges to S'”.

We next look at the e-pseudospectrum of Ag: Using that A) = 0, we find
for z # 0:

1 1 1
(z—Ay) ™t = ;(1 - ;AO) (1 + AO + .. + AN Y,

which has the matrix

i1 1 1 1
z 22 23 4 N
0 i1 1 1
. z12 213 Zle T
00 2 = N2
0O 0 0 O L
7
00 0 0 1

Applying this to the u with u(j) =0for 1 <j < N —1, u(N) = 1, we see

that
1

-1

Moreover,
1 A AP
1 1 1 (24.4)
= — + — F
2| 2] |2V

_ 1
1(z — Ag) 7| < Est 2| > 1. (2.4.5)



3 5
Combining @ and @’ we see that for 0 < e < 1:
D(0,en) C 0.(Ag) C D(0,1+ ). (2.4.6) [sp.d.6]

Let us next study the numerical range of A9. Notice that AY describes
translation by —1 on (?(Z/NZ) with the natural identification Z/NZ =
{1,...,N}, so A? is unitary and hence normal. It has the eigenvalues \, =
e?™k/IN 0 <k < N-—1 (already computed) and the eigenvectors e, given by
er(j) = N~1/2e27k/N Since AY is normal we can use the spectral resolution
theorem, to see that

W(AY) = ch {F;0< k< N -1} (2.4.7)

which is contained in the unit disc and contains a disc D(0,1 — O(1/N?)).
We have similar estimates for W(A%), 0 < § < 1:

1) W(AY) c D(0, ||AY||) = D(0,1) (except in the trivial case N = 1).

2) (Agek]ek) = )\k — ((A(l) — Ag)€k|€k) = )\k -+ (1 — 5)6&]\[, where ’€k,N| =
lex(L)ex(N)| < 1/N, so W(AY) contains the polygon with the set of
vertices contained in {A\; + (1 —0)exn; K =0,1,..., N — 1}.

We conclude that

D (0, 1-0 (%)) c W(AY) c D(0,1). (2.4.8)

We shall return to Ay and its perturbations in Chapter @ and as a prepa-
ration we establish some slightly more refined bounds 0N the resolvents.

When |z] > 1 we can estimate the sum in %’ by that of the corre-
sponding infinite series. When |z| < 1 we can write it as |z|™V Z;.V:_Ol 2|7
and estimate the sum by that of the corresponding infinite series. However,
(which is of interest when |z| — 1 = O(1/N)) the finite sums can also be
estimated by N and we get:

(== A) Ml < F(I=), F(R) = {ing Chel @19

A straight forward calculation gives the more explicit expression:

(1
—————, R<AH
RN(1-R) ~ = N7

F(R) = { N/RY, P <R<L (2.4.10)
N/R, 1<R< 5,
\1/(R_1)7 R> %
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We see that this is a continuous strictly decreasing function on |0, 4+-o00[ with
range |0, +00|.
Consider the perturbation

As = Ao+ 00, (2.4.11)
where () is a general complex N x N-matrix, so that
z—As = (22— Ag)(1 — (2 — Ay)"16Q).
If
F(lz])d]|Qll < 1, (2.4.12)

(having in mind also the case |z| < 1 below) we can expand the last factor
in a Neumann series and get

1

2 —As) 7Y < F(|z . 2.4.13
When |z| > 1, we have F(|z|) < 1/(]z] — 1) and (@ gives
1 1 1
—A)7Y < = . A.

|21-1

The spectrum of Aj is confined to the disc D(0, R), if 0||Q|| F'(|z]) < 1 for
every z outside that disc. Since F' is strictly decreasing, we conclude that
o(As) € D(0, R) if

1

F(R) = ——. (2.4.15)
. gie]
In view of m, this equation splits into four different cases,
1 14+ 0(+
RN(1-R)=46|Q|, f R<1— N o equivalently 0/|Q|| < (—N(N)’
e
RN 1 1+0(%) 1
— = if] - — < R< i - N < < —
N 5@, if 1 v < R <1 or equivalently <|Q| < N
N 1 1
R=No||Q|, if 1< R< N1 equivalently N <@ < N1
N
R=1+6]Q|, if R > N7 O equivalently 1 < 4|Q|l-
(2.4.16)
In the four cases we get respectively,
@BlRN'™ < R < (3NN,
_ 1/N n71/N
R=(3lIQI) N, a1
R = Né[|IQ],
R =1+4[Q]|-
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2.5 The non-self-adjoint harmonic oscillator

We consider the non-self-adjoint harmonic oscillator on R:

P.=D?+cx*: L*(R) — L*(R). (2.5.1)

P. is a closed operator with the dense domain B* C L?(R), where we define
for general k € N:

B* = {u e L*(R); 2"D"u € L?, v+ pu <k} (2.5.2)
(For 0 > k € Z, we define B¥ C S'(R) to be the dual space of B7*.) Here
we use the notation D = D, = 1L and we assume bt c € C\] — 00,0].
We will use the following facts, see for example [[IZ5]:
1) B* are Hilbert spaces when equipped with the natural norms and we
have the compact inclusion maps: B* < B7 when k > j.

2) P.—z: B? — L? are Fredholm operators of index 0, depending holo-
morphically on z € C. (Here the assumption that ¢ ¢] — oo, 0] guaran-
tees a basic ellipticity property.)

3) The spectrum of P, : [* — L? is discrete:

— It is a discrete subset o(P,) of C.

— Each element )¢ of o(P,) is an eigenvalue of finite algebraic mul-
tiplicity in the sense that the spectral projection

1
I, = — —P)'d
7 omi 8D()\0,e)(z ) dz

is of finite rank. Here € > 0 is small enough so that o(FP.) N
D(/\O,E) = {)\0}

4) When ¢ = 1 we get a self-adjoint operator with spectrum {\;, =
2k+1; k=0,1,2,...} and a corresponding orthonormal basis of eigen-
functions is given by

k
1 222 d
ey = e e =C v —— eg) for k> 1,
0 Jon k k I (eo) z
where x — % is the creation operator and C}; > 0 are normalization
constants.

ex = pr(z)e™ /2 (2.5.3)

are the Hermite functions and pj are the Hermite polynomials. Notice
that p, is of order k of the form pkykq:k —|—pk,k,gxk_2 + ..., prr > 0 and
that py is even/odd when k is even/odd respectively.
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Calculation of the spectrum of P.. When ¢ > 0 this is easy by means
of a dilation: Put z = ¢~ Y4y, so that D, = ¢"/D,. Then we get

P. = 01/2<D§ + y?), (2.5.4) |sp.e.5

and we conclude that the eigenvalues and eigenfunctions of P, are given by

Ak, c) = 2\, = c%(Qk: +1), ere(x) = c%ek(cix). (2.5.5)

Here c'/® is the normalization constant, assuring that {ej.}ren is an or-
thonormal basis in L?.
A more formal proof of this is to introduce the unitary operator

1

Uu(x) = cgu(ciz) (2.5.6) |sp.e.7

and to check that

PU =c:UP, P,=c2UPU". (2.5.7) [sp.e.8

In the ggneral case when c is no longer real, We can no longer define Uu
as in for general L? functions u, but @’ still makes sense because
er is an entire function. When defining the fractional powers of ¢ we here
use the convention that arge €] — 7, 7[, so that the argument of ¢/ is in
[—m/4,7/4]. We still have that ej,. € B* and

(P. — Mk, ¢))eg,. =0, (2.5.8)

. ISi74, Bo74. Da99%a
so A(k,c) are eigenvalues of P.. We shall prove (cf [125] 22 132])

Proposition 2.5.1

o(P.) = {\(k,c); k € N}.

Proof. It remains to prove that there are no other eigenvalues. (The fact
3) above tells us that every element of o(FP,) is an eigenvalue.) For that,
we shall use the (formal) adjoint of P. which is given by P! = P and more

precisely that
(Pulv) = (u|Pw), Yu,v € B2 (2.5.9)

We have

Lemma 2.5.2 {eyz; k € N} spans a dense subspace of L*(R).
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Proof. Let L C L*(R) be the space of all finite linear combinations of the
ere, k € N. Then u belongs to the orthogonal space L+ iff

(ulexz) =0, Yk € N, (2.5.10)

1
and it suffices to show that this fact implies that u = 0. Rewrite @7 as

0:/u(:p)e_cl/gx2/2pk7c(w)dw, (2.5.11)

where we used that e,z = ey ..

It is easy to see that the Fourier transform o(€) of the function via:i =
isp—e—12
(2:5.11)

u(x)e_cl/2“*’2/2 can be extended to all of C; as an entire function and

means that
Pr,e(—De)v(0) = 0, VE. (2.5.12)

Now, every polynomi Jcan be expressed as a finite linear combination of
the pi ¢, E € N, so means that

(DE5)(0), Yo € N. (2.5.13)

In other words, the power series expansion of the entire function () vanishes
identically, hence v = 0, hence v = 0 and finally u = 0. O

Now we can finish the proof of the proposition: Let A € o(P.)\{\(k,¢); k €

N} so that
(P.— Nu =0, (2.5.14)

for some 0 # u € B?. Then, for every k € N:

1 — 1
i) =—— P—Neps) = ————((P.— A\ z) =0,
(vleke) = o= (4P = Dewe) = 37 =5 (7 = Delew) = 0
so Lemma %Shows that u = 0. O

Remark 2.5.3 The arguments in the proof can be pushed further to show
that the generalized eigenspaces (i.e. the ranges of the spectral projections)
corresponding to A(k, ¢) are one dimensional:

Let A\g = A(ko, c) € o(P.) and let u be a corresponding eigenfunction, so
that (P.— X\o)u = 0. As in the proof above, we see that (u|exz) = 0, Yk # k.
By unique holomorphic extension with respect to ¢ from |0, +o00[, we have

also that
(exalers) = 0, if ¢ # k,
RATEET TN i e = k.
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Hence we can find d € C such that (v — deg, c|exz) = 0 for all £ € N and as
above we get the conclusion that u — dey, . = 0.

Furthermore there can be no Jordan blocks: If (P. — A\g)?*u = 0 for some
u € B? with P.u € B?, then

1
(A(K, ¢) = Ao)

(ulexz) = 5 (Ul (Pe = Xo)’erg) = 0,

for k # ko and as above we see that u = dey, .

A different way to reach the same conclusion would be to choose a con-
tinuous deformation [0,1] 3¢ +— ¢, € C\| — 00,0] with ¢g = 1, ¢; = ¢ and to
notice that the corresponding spectral projections Il ,) vary continuously
with ¢ for every fixed k& € N. Then the rank of IIy,,) is independent of ¢
and equal to 1 for ¢ = 0. Thus Iy, = k) is also of rank 1.

02
The numerical range We have the following result of L. Boulton fZOUU]_

Proposition 2.5.4
1
W(P,) ={t+sc; t,s >0, ts> 4_1}

We have already recalled that the lowest eigenvalue of P; is one and
this implies (by the spectral resolution theorem) that (Pyu|u) > |lul/? for all
u € B?. By integration by parts, we also have (Pu|u) = [|[Dul|* + ||zul*.
We now recall an additional inequality, the uncertainty relation:

Lemma 2.5.5 We have
||u||2 < 2jzul|||Du|| < ||Du||2 + qu||2, Yu € B (2.5.15)

Proof. The second inequality follows from “2ab < a? + b*” and since S is
dense in B! it suffices to show the first inequality for every u in S. For such
a function, we have by Cauchy-Schwartz,

|(zDufw)| = |(Dulzu)| < [lzul|]| Dull
|(Dzufu)| = |(zu| Du)| < [lzu[]| Dul.

Thus,
[(Dz — zD)ulu)| < 2||zulll| Dul.

But Dz — 2D = [D,x] = 1/i, so |((Dz — zD)ulu)| = ||ul|?, and the lemma
follows. O
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Proof of the proposition. For u € B2, ||u|| = 1, we have
(Peulu) = || Dull* + cllau]* = t + sc,

6
with ¢ = || Dul|?, s = ||zul|* and @implies that 1 < 4ts. It is then clear
that

1
W(P.) C{t+sc; t,s >0, ts> Z}

In order to show the éf)posite inclusion, we first notice that if u = eg, we
have equalities in dﬁ Indeed, the first expression is equal to 1 since e
is normalized in L?, and the last expression is equal to ((D? + z?)egley) =
(eoleo) = 1, so the inequalities have to be equalities for this choice of u. Since
|| Deol| = ||zeo||, we also have

| Deol| = ||zeo|| = (2.5.16)

1
V2
Now dilate and consider the functions

Ai(@) = Azeg(Az), A > 0. (2.5.17)

Using the same change of variables as in the calculation of the L? norms, we
see that

1

ofyl] = AN Hzeo|| = A —=,
1

D = N|Deg|| = \—.
DAl = AlDeo)l = A=

6
Hence we still have equality in the first part of (@

1AAI17 = 2llz AAID £l (2.5.18)

and
(Peulu) = DA + cllzfill? =t + sc,

where now t = ||Dfy||*> = A?/2 and s = ||z f,||* = 1/2\? can take arbitrary
positive values with ts = 1/4.

We conclude that {t+sc; t,s > 0, ts = 1/4} is contained in W (F,). The
convex hull of (i.e. the smallest convex set containing) this set is precisely
{t+sc; t,s >0, ts > 1/4} and the latter set is therefore contained in W (F,).
O
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Chapter 3

Weyl asymptotics and random
perturbations in a
one-dimensional semi-classical
case

We consider a simple model operator in dimension 1 and show how random
perturbations give rise to Weyl asymptotics in F&laeo ggterior of the range of
p. We follow rather Closel%(ogge work of Ha ars_g%{]_with some inputs also
from Bordeaux Montrieux [[I5] and Hager—Sj %5]’._501&16 of the general ideas
appear perhaps more clearly in this special situation.

Let P = hD, + g(z), g € C>(S"), S' ~ R/27Z, with symbol p(z,§) =
€ 4 g(z), and assume that ¢ has precisely two critical points; a unique
maximum and a unique minimum. Here and at many other places of this
book we work in the semi-classical limit, i.e. for A > 0 sufficiently small,
even though we may sometimes omit the wording “then for for A > 0 small
enough”. We notice that P is a closed operator: L?*(S') — L?(S') with
domain equal to the Sobolev space H'(S'). The spectrum is discrete and
confined to the line

Sz = Sg), () = = / " g(a)dz.

T or
More precisely, the eigenvalues are simple and given by

zk:(g>—|—k:h, keZ
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Let Q© € {z € C; min Qg < Jz < max g} be open. Put

Pg = P&w = hD;,; + g(x) + 5Qw,

Quu(x) = Y ape(w)(ule?)e (z), (3.0.1)

C1
|k, le] <=t

where O > 0 is sufficiently large, e¥(z) = (27)"Y2e™** k € Z, and «a;; ~
Nc(0,1) are inqlg epdent complex Gaussian random Varlables centered with
variance 1 (cf (3.4 I below). @, is compact, so Py has discrete spectrum. Let
I' € Q have smooth boundary.

1dm1| Theorem 3.0.6 Let k > 5/2 and let ¢ > 0 be sufficiently small. Let 6 =
§(h) satisfy e=0/h < § < h* and put € = e(h) = hIn(1/8). Then there exists
a constant C' > 0 such that for h > 0 small enough, we have with probability
>1— (’)(\[hg,) that the number of eigenvalues of Ps in I satisfies

<Y (3.0.2)

The conclusion in the theorem is of interest when

#(o(P5) AT) — 5 —vol(p™ (1))

2

Veh?

<1, Ve,

and that is satisfied when 1
> —.
My

If instead, we let I' vary in a set of subsets that satisfy the assumptions
uniformly, then with probability > 1 — O( ‘25) we have |w] uniformly for
all T" in that subset. The remainder of the Chapter is devoted to the proof
of this result.

1dm2| Remark 3.0.7 The estimate on the probability in Theor % is quite
%5 as we will do

rough and iag r%e %mproved by adapting the arguments in

in Sections

3.1 Preparations for the unperturbed opera-
tor

For z € Q, let z,(2),z_(z) € S be the solutions of the equation Sg(r) =
Sz, with £3¢'(z1) < 0. We sometimes view x4 as elements in R (unique
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mod 27Z) chosen so that z_ < z, < x_+2m. Define {,.(z) by {&x+Rg(x4) =
Rz. Putting p+ = (z+,£+), we have

pos) =2 £ {pTHps) >0

Here, {a,b} = 0:a 0,b—0,a O¢b denotes the Poisson bracket of two sufficiently
smooth functions a(z, &), b(x,§).

Let x € C§°(neigh (0,R)) be equal to 1 in a neighborhood of 0 and
consider the function

u(z) = u(x,z;h) = x(z — x+<z))€%¢+(9&)’
where )
r)= T,z)= Z — dy.
64(2) = 64.(x,2) /w( o)y
Then

S (7)< |z — 24.(2)]",

x € neigh (2, (z), R) := some neighborhood of z,(z) in R

and we choose the support of x small enough, so that this holds on supp (x(-—
x4 (2)). Then

[Pz =[xt =) pe e

Applying the Morse lemma (here in a rién&le one-dimensional situation) as
explained for instance in Chapter 2 of [Hb1] and Exercise 2.4 of that book, we
see that

[ u@)dz = o),
where the symbol b satisfies
b(z; h) ~ bo(z) + hbi(z) + ... in C*°(£2),
and in particular,
920Cb = 04 4(1), forall o, f € N

Here the subscripts «, § indicate that the estimate is uniform for each fixed
(e, B), but not uniformly with respect to these parameters. Moreover,

_
VIS (21(2))
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In particular b(z;h) > 0 on 2 for A > 0 small enough (since the above
holds in a relatively compact neighborhood of §2) and we can form a(z; h) =
(b(z; h))~/2 which satisfies

a(z;h) ~ ag(2) + hay(2) + ... in C°(Q), ag(z) = by(z) "2

Put |
winl®) = H ™ a(W)x(x — 4 (2))eF+ )

Then ||eip|| = 1 where we take the L? norm over |z_(z), 2, (z) + 27[. More-

over,

(P — 2)ewi, = O(eTn),

where the remainder to the right comes from the cutoff function x(x — x).
Define z-dependent elliptic self-adjoint operators

Q=(P—2)(P—2), Q= (P—2)(P—2): L*(5") = L*(5"),

with domain D(Q), D(Q) = H2(S") (the usual Sobolev space of order 2).
They have discrete spectrum C [0, +o00| and smooth eigenfunctions. (It is
a standard fact that elliptic formally self-adjoint differential operators on
a compact manifold M with smooth coefficients are essentially self-adjoint
with domain H™ (M), where m is the order of the operator. Furthermore
the spectrum is discrete.) Using that P — 2 : H' — L? is Fredholm of index
zero (exercise!), we see that dim AV(Q) = dim NV(Q) < 1. Here N(A) denotes
the kernel of the linear operator A and we shall let R(A) denote the range.
By elliptic regularity we know that the kernel of P — z in H' agrees with
that of Q in H?. If p # 0 is an eigenvalue of ), with the corresponding
eigenfunction e € C, then f := (P — z)e is an eigenfunction for () with the
same eigenvalue p. Pursuing this observation, we see that

o(Q) = o(Q) = {t2,13,..}, 0< t; /' +o0.

Proposition 3.1.1 There ezists a constant C > 0 such that t3 = O(e~Y/(Ch)),
t2 —t2 > h/C for h > 0 small enough.

Proof. We have Qey, = 7, ||7]| = O(e V") and sjpce @ is self adjoint
we deduce that #2 is exponentially small. (Cf. (&) If eg denotes the
corresponding normalized eigenfunction uniquely determined up to a factor
of modulus 1, we see that (P — 2)ey =: v with ||v]| exponentially small.
Considering this ODE on |z_(z) — 2m, z_(z)[, we get

eo(z) = Chia(h)en® @ + Fo(z), C = C(h), (3.1.1)
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Fv(x)_%/ O @D=04 D) (3 dy, (3.1.2)

T4

where ¢, (z) = f;(;: —g(y))dy. We observe that (¢, (z) — ¢4 (y)) > 0 on
the domain of integration.

Lemma 3.1.2 We have
HF||[;(L27L2) = O(h’l/Q).
Proof. We have
Fuls) = [ K(w.puliy

where

) 7 (o () —
K(l’,y) = E (1{x+§y§ISaﬂ}(‘r7 y) - ﬁl{x7—27r§x§y§m+}(x7 y)) @h(¢+( ) ¢+(y))'

By treating the three cases
o z,y =, +O(h'?),
e 1,y =x_+ O(h'/?),
o v,y =ux_— 21+ O(h'/?)

separately, we check that for some C' > 0,

1

h2
S (o4 (7) — ¢4(y) = Elx —y| = Ch, on supp K.

It follows that
sup / K (z,y)|dy = O(h™}), sup / K (2, y)|dz = O(h™})
x Y

and the Shur lemma tells us that ||F||z2 is bounded by the geometric mean
of these two quantities. O

For our particular v, we see that F'v is ex oinentially decaying in L? and
hence, since ey is normalized, that C' in (@%tisﬁes IC| = 1+0(e~/OM),
Replacing ey by e¢eq for a suitable # € R and recalling the form of Ewikh ()
we conclude that ||eg — eyxp|| is exponentially small.

To show that ¢} — ¢2 > h/C, it suffices to show that (Qu|u) > Z||ul?
when u L ey or in other words, that

C
Jull < 4/ SIP = 2)ull (3.1.3)
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If v:= (P — z)u, we again have on |x_(2) — 2m,x_(2)[:
u= Ch_ia(h)e%¢+(z) + Fv
for some constant C' and the orthogonality requirement on u implies that
0= (14 0O(h™))C + (Fv|ep),

where (Fuleg) = O(h™2)|v]|, so C = O(h~'/2)||v| and we get the desired
estimate on ||ul|. O

3.2 Grushin (Shur, Feschbach, bifurcation) ap-
proach
Let {eo, €1, ...} and {fo, f1,...} be orthonormal bases of eigenfunctions of @ =
(P—2)"(P—=z)and Q = (P — 2)(P — 2)* respectively, so that e;, f; € H?,
Qej = t?ej, Qf; =12 /- As observed prior to Proposition B._Fl we have
(P—2)ej = ajfj, (P—2)"f; = Bie;, ;=13

and combining this with ((P—z)e;|f;) = (e;|(P—z)" f;), we see that a; = f3;.
Replacing f; by e f; for suitable real values of §;, we can arrange so that
a; = ; = t;, which will somewhat simplify the notations.

Proposition 3.2.1 Define R, : H'(S') - C, R_: C — L*(S") b

Ryu= (uleg), R-u_=u_f.
Then
P—Z R, 1 2
P(z) = H xC— L*“xC
(2) ( w0 )

15 bijective with the bounded inverse

i-(2 £)-(5) a2h).

where the estimates refer to the norms in L(L? H'), L(C, H"), L(L* C),
L(C, C) respectively. Moreover,

E vy =vyeq, E_v=(v|fo).
Here we use the semi-classical norm on H':

lull g = (lell® + A Dw]*) >
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It is a general feature of such auxiliary (Grushin) operators that
ze€0(P)& E_(2)=0.
Indeed, it is easy to show the formulas
(P-2)'=E-FE,E\F_, E-L =-R,(P—2)"'R_,

under the assumptions that E_, is bijective and that (P — z)~! is bijective
respectively.

Proof of the proposition. We shall show that for every (v,v,) € L?* x C,
there is a unique solution (u,u_) € H' x C of the system

(3.2.1)

(P—2)u+Ru_ =v
R+u = V4

and give estimates and explicit formulae for the solution. Actually, it suffices
to find a unique solution (u,u_) € L? o, since we can then deduce that
hDu € L? from the first equation in % .

Express u and v in the bases above:

oo

[ee)
U= U;6; = Uge +uL V= V;€: = Vo€ +vL
- 7€5 — H0C0 y - 3¢5 — voto )
0 0

and recall that, l|lv||* = 377 |v;[* = |v|* + v 1%, v; = (v]ej), and similarly
for u. Then (3.2:1]) becomes

Uy = V4

{ZSO tiui fi 4+ u_fo= >0 vifj,

le.
t0U+ +u_ =g, Iijj =V; fOI'j > 1,

so we get the unique solution
oo v
_ L J _
U = Vg, U = E t—fj, u_ = vy — tovs,
1 J

from which we deduce the expressions for £, Ey, E_:
Ev=u", u_=E_v+E_jv,, Eiv, =v,ey, E_ = —t,.

It then suffices to recall that ¢; > \/E/C’ for j > 1. O
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|dbar|

3.3 d-bar equation for E_ |

We will use the following notations for the holomorphic and anti-holomorphic

derivatives in the complex variable z:

s 1(0 10
0z 2\0Rz i03z)

0 1 0 1 0
8fi%:§(%a‘z&g)

Also recall the expressions for the Laplace operator on C ~ R?,
o\’ o\ 90
= — ) =4—=.
A (8%2) *’(agz) 0= 0z
Proposition 3.3.1 We have

OBy (2) + f(2)E1(2) = 0,

where

f(2) = [e(2) + [-(2), [i(2) = (O:Ry)Ey, [-(2) = E_O=R_.

Thus,

Moreover,

P 1 1
%Aﬂ@=ﬁwﬁzz(ﬁnm@n_%wﬁﬂw>

) o

(33.1)

(33

(333

(3:3.4)

Proof. @Qﬁ, d%, @dﬁ follow from the general formula for the differ-

entiation of the inverse of an operator, here:

0-€ + E(0-P)E = 0.

Let II(z) : L? — Ceq be the spectral projection of @ corresponding to
the exponentially small eigenvalue ¢, and choose € to be the normalization
of II(2)ewkp. It is easy to see that the various z and Z derivatives of ey, have

at most temperate growth in 1/h. The same fact holds for II(2):

Lemma 3.3.2 For every (o, 8) € N x N, there exists a constant N, g > 0

such that
102 02T1(2) || g(z2,22) = O(h™ M%), z € Q.
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Proof. By Cauchy-Riesz functional calculus,

1
I(z) = — /(w —Q(2)) 'dw, (3.3.5)
2mi ),
where «y is the oriented boundary of D(0, h/C) for a fixed sufficiently large
constant C' > 0. For w € =, we have

(w0 = Q) oz = O (%) ,

where we recall that H' = H} is equipped with the natural semi-classical
norm. (This even holds with H} replaced by H? = D(Q), equipped with its
natural semi-classical norm, but will not be needed.)

On the other hand, 8282Q(z) vanishes when max(|a|, |3|) > 2 and for

(a, B); (o, B) € {(1,0), (0,1), (1,1)} we see that
9°0°Q(2) = O(1) : H — L2
For (o, 8) # (0,0), 8202 (w — Q(2))~" is a linear combination of terms,
(w = Q(2)) (9202 Q(2)(w — Q(2)) 1. (AN Q(2)) (w — Q(2) ™,

with (a;, 8;) # O,OA,Qal +...+any=a, fi+...+ By = 5. It now suffices to
apply 6?82’8 to (3.3.5) and use that the norm of the resolvent there is bounded
by O(1/h) in L(L? H}) when w € ~ (and hence dist (w,c(Q)) > h/O(1)).
O

Since e is the normalization of II(2)egw, we see that the various (z,Z)-
derivatives of ey and hence also of ey — ey, are of temperate growth. The
last quantity is exponentially small in L? and by elementary interpolation
estimates for the successive derivatives i Za e get the same conclusion for
the higher derivatives of ey — eykp. (Cf. [DI].

It follows that
F1(2) = (0(2)]0:¢0(2)) = (ewin(2)[0:win(2)) + O(e™TF), (3.3.6)

and the various z,z-derivatives of the remainder are also exponentially de-
caying.

Usin thg same simple variant of the method of stationary phase as in
Section %Lwee get

(cxmsloenis) =O(1) = 1 [ Inta = 22(2) PO 2 #9049
(3.3.7)

l

= —2(0:0:)(w1.(2),2) + O(1),
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where the remainder has a complete asymptotic expansion in powers of h;
~ 19(z) + hri(z) + ... in the space of smooth functions and in particular, it
remains bounded after taking z,Z derivatives.

Using that ¢ (x4 (2),2) =0, (¢4),(x1(2),2) = & (2), we get after apply-
ing 0, to the first of these relations, that

(0.64) (4 (2), 2) = —€4 ()0, (2). (3.3.8)

On the other hand, if we apply 9, and 95 to the equation, p(z,(z),£,.(2)) = z,
we get

'O, v0.6 =1
P01 + P08+ =0
and using that =, (z) and £, (z) are real valued,
70 PO, =1
PoOstiy + PeOcL (3.3.10)
P04 + P08 =0

which has the solution

Oty = T Sr(pr). Oty = L= (). (3.3.11)

0 .

. Ik_,we get fi = O(1) + £§40=x,, where the O(1)
is stable under differentiation. To this we apply 0., take real parts and notice
that 0,0-x, is real:

RO, f, = O(1) + 8%%8Z£+65x+.

.5
It n uffices to apply d@f to get the second (non-trivial) identity
in (8.3.4]) for the contribution from f,. The one from f_ can be treated
similarly. O

Using the expressions for the z-derivatives of x,,£, and t alogous
ones for x_,£_, we have the following easy result relating to the
symplectic volume:

Proposition 3.3.3 Writing 2z = x + iy, we have:
2
44 (2) A dy (2) = T
’ p. 2} o)
2

- Hp,pYHpo)

dy A dx,

—dé_(z) Ndx_(2) = dy A dx,

so by (£,

RAF(z)dy N dx = %(d&r Ndxy —dé_ Ndx_)+ O(1). (3.3.12)
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3.4 Adding the random perturbation

Let X ~ Ng(0,0?) be a complex Gaussian random variable, meaning that
X has the probability distribution
1 xp?
X (P(dw)) = —5e 2

ye

A(RX)d(IX). (3.4.1)

Here o > 0. For t < 1/0?, we have the expectation value
1

E(et|X|2) — o (342)

008
Bordeaux Montrieux HgTS}'observed that we h §St%§ following possibly clas-
sical result (improving a similar statement in [b5[).

1dm6| Proposition 3.4.1 There exists Cy > 0 such that the following holds: Let

X; ~ Nc(0, 032»), 1 <j < N < oo beindependent complexr Gaussian random

variables. Put s; = max O'JQ». Then for every x > 0, we have

N

Z|X > > 1) <eXp Z 251

Proof. For t <1/(2s;), we have

N

'2—£E —tx 12

P> IX,P 2 2) < B(C ) = o= [ B!
1

N
= exp(Zln .
1

It then suffices to take t = (2s1)7!. O
Recall that

i tr) < exp(Ch Z szt —tx).

Q)= 3 ap@l)@), ) = o= (343

[%],171<C1/h

Since the Hilbert-Schmidt norm of @, is given by ||Qull&s = D |k (w)]?,
we get from the preceding proposition:

Proposition 3.4.2 If C' > 0 is large enough, then

C
|Qullus <+ with probability > 1 — ¢~ . (3.4.4)
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Actually, we get a sharper statement: If X > /2Cy(1 + C;/h), then
1Qullus < A with probability > 1 — e~ /4,

Now, we work under the assumption that ||Q,|lns < C/h and recall that
1Qullzcr2,2y < ||Qullas. Assume that

5 < W2, (3.4.5)

so that 00| < h'/?2. Then, by simple perturbation theory, from Proposi-
tion [ we see that

%(z):(Pf}iz %):H,ix(:—w?xc

is bijective with the bounded inverse
E’ E?
(2 e )
ES E°.

E°=F+ O(i) = O™ Y?) in £(L?, L?)

h2

ES=E, + 0(%) = O(1) in £(C, L?)
5 (3.4.6)

E'=FE_ + O(W) = O(1) in L(L? C)

52

Ei_;'_ - E_+ — 5E_QE+ + O(W)

In fact,

PsoE=1+K, K= (5Q6’E 5Q‘6E+),

K — <(5Q%E)N (5QwE)"015QwE+>

and Proposition %’imphes that 1+ K : H* x C — H° x C is bijective
with inverse 1 — K 4 K2.... Hence P;s has the right inverse

E°  Ej
5:51+/c1:( +),
=1+ K) E’ B,
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where

E°=E) (—6QuE)",
0

E} =) (-EsQ.)"E,,
0

B’ =E_) (—6QuE)",
0
B, =E, —E 0Q,E; + FE_6Q,E5Q,E,...

Similarly, we see that Py has a left inverse, necessarily equal to &;.
As before the eigenvalues of Pj are the zeros of E° + and we have the
d-bar equation
aZEiJr + fé(z>Ei+ =0,
19
R w7

We can solve 9zF° = f9 (making e E° . holomorphic) with

f3(2) = 0:R. ES + E°0:R_ = f(2) + O(

) o .1
§

1dm7.2| Remark 3.4.3 We define the multiplicity of a zero 2z, of E°_(z) as the
y +

multiplicity of zy as a zero ¢ holomorphic function e E2 L (2). As we
observed after Proposition | the set of eigenvalues of Ps in 2 and the set
of zeros of E°  (z) agree and this follows from the formulae

(Py—2)" = E°(2) — ES(2) (E° () E2(2), (3.4.8)

E° (2)=—-R.(Ps—2)'R_, (3.4.9)

valid respectively when E°_ (z) and P5 — z are bijective (and implying the
equivalence of these two properties). If 2z, is an eigenvalue, its (algebraic)
multiplicity is given by

m(zg) = trI1(2),

where
1

(z0) = —— / (2 — Py ldz,

2T
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and ~ is the oriented boundary of a small disc, centered at z;. Choose
= 0D(2,r) and let 0 <r — 0. (Here we follow an.idea of M. Vogel
%7[9 to exploit the fact that d-E° , (zp) = 0.) By .

1 _

1 (3.4.10)
= lim —/ tr (Eir)_l EiEidz.
Yr

r—0 271

For the last identity we used the fact that the integrand is a composition of
trace class operators, to move the trace inside the integral and then apply
the cyclicity of the trace.

Differentiating the identity £°P° = 1, we get

0.E°, = E2E} — ((0.Ry)E} + E20.R_)E?

.3
If we insert this in % we see that the last term gives the contribution

0, so
1 _
m(z) :limf/ (E°,) ™ 0.E° ,d=. (3.4.11)
Yr

r—0 271

On the other hand, the multiplicity m(zo) of 2o as a zero of E° , is given
by

m(z) = }“ILI(IJQLM /% <6F6Ei+> -1 d, <eF6Ef+) dz

' X (3.4.12)
zlim—,/ (EiJr) 8E_+dz—|—11m2—/8F5dz,
Vr

r—0 271 r—0 271
and the last term in the last member vanishes and hence
ﬁl(Z()) = m(Zo).

Proposition 3.4.4 Assume that 0 <t < 1, § < h*/?,

St e T, f> (3.4.13)

h5/2

where Cy > 1 is fized. Then for h > 0 small enough we have with probability
1
> 1—e¢e on? that
5 TN )
|E2 (2)] <e or + o Vz e Q. (3.4.14)

For every z € Q, we have with probability > 1 — O(t?) — efﬁ, that

E,(2)] > . (3.4.15)
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5
Proof. We have by Proposition %

E_Q.E, = (Qwe[)’fo)
= Z ae o (w)(eole®) ("] fo)
|k| le|<

Z a(w)en(k) fol0),

Ikl <t

where ey(k), ]?0(6) are the Fourier coefficients of ey, fy. This is a sum of in-
- 2

dependent Gaussian random variables ~ N¢ (O, (%|€O(k)| | f0(€)|> ) Now,

if X = M X;, where X; ~ Nc(0,07) are independent Gaussian random

variables, then X ~ Ng(0, 31 02).
Thus, E_Q,E. ~ Nc(0,0?%), where

1 R —~
0-2 = (271')2 Z |€0(k)|2 |f0(£)|2
k|, Je]<GL
(3.4.16)
1 R 1 ~
o > [eo(k)P 7 > 1 folk))?
Jk|< 1 <

If ¢ is large enough, we get by repeated integration by parts that for

every N € N,
N Y C
lewin (k)] < Cn (@) , k| > 717

and similarly for ﬁvkb. Since |lewkn|| = || fwxnl| = 1, we get by Parseval’s
formula that

Z (B =1 o= 3~ (B = 1- 0(),

\k\< k> -
and similarly for fyi,. On the other hand we know that

Heo - €wka7 Hfo - fwkb” = O(hoo)a

SO
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and similarly for f;. (%% now shows that

o=1-0h>). (3.4.17)

19
To finish the proof, we combine this with the last equation in @f&nd
the fact that |E_, | < e /" to see that with probability > 1 — e~ /(%)

1 C6 52
|Ei (2)] <e"on + — . +O(h5/2),zeﬂ.

Since § < h%?, we get {@ Similarly, for every z € 2, we have with
probability > 1 — O(t?) — e~ /(") that

_ 52
|E°_(2)] >t6 —e V(M — 0 <W) :

which together with (% implies 1|°]Z;LZ_'E % 0

Proposition 3.4.5 Let k > 5/2 and fix ¢y €]0,1] sufficiently small. Let
§ = 8(h) satisfy e~ /" < § < h*, and put € = e(h) = hln%. Then with
probability > 1 — e~V (CM) e have |Ef+| <1 for all z € .

For any z € Q, we have |E? | > e=“/" with probability > 1 — O(5?/h°).

5
This follows from Proposition %by choosing ¢ such that

1 _ 1
max(—e Co”

5
5 ,hf/Q,cac <t <0(

)

which is possible to do since

1 0 ey 4§
56 Coh C(S <<W

Under the same assumptions, we also have with probability > 1—e~/ (ChQ),

o .1 1
By~ F < O(05)+ < 0(d)5
Thus for the holomorphic function u(z) = e E?_ (2) we have

e With probability > 1 — e~ /(") we have |u(z)| < exp(RF(z) + Ce/h)
for all z € .

e For every z € 2, we have |u(z)| > exp(RF(z) — Ce/h) with probability
>1—0(8%/h°).
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To conclude (;c&e proof of Theorem %, we will use the following result
of M. Hager ([54], Proposition 6.1) with ¢ = hRF.

Proposition 3.4.6 Let I' € C have smooth boundary and let ¢ be a real
valued C*-function defined in a fized neighborhood of T. Let z +— u(z; h) be
a family of holomorphic functions defined in a fized neighborhood of T, and
let 0 < e=e(h) < 1. Assume

o |u(z;h)| < exp(3(4(z) +¢€)) for all z in a fived neighborhood of OT.

o There exist z1, ..., zy depending on h, with N = N(h) < ¢ '/% such
that OT' C UY D(zy,\/€) and such that |u(zg; h)| > exp(3(d(z1) — €)),
1 <k<N(h).

Then, the number of zeros of u in I satisfies

(1 (0) N T) — ﬁ /F Ao(2)dzdy| < c\/;.

End of the Proof of Theorem % Consider the holomorphic function
u(z) = IR (2)

and put
o(z) = hRF.

Then with probability > 1 — e~/ (Chz), we have
u(2)] < en @@+ for all 2 € O
and for each z € €, we have
u(z)| > e#(**)=C9 with probability > 1 — O(6%/h%).

Choose 21, 2y, ..., 2y € OI such that O € UND(z,V/Ce), N = O(e71/?).
Then with probability > 1 — NO(6%/h%) > 1 — O(6%/(\/€h?)), we have

u(z;)| > ex@EN=C9 - 12 N. (3.4.18)

Having already identified the igenvalues of Py with the zeros qf u and
their multiplicities in Remark we conclude from Proposition % that

with probability as in the theorem,

#orynn) - 5 [amrLa)| < S5 (3.4.19)

™
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Returning to (%7, we notice that the maps z — (z4(2),£.(2)) and z —
(x_(2),£-(z)) have Jacobians of different sign, so when passing to densities,
this relation shows that the direct image under p of 1/h times the symplectic
volume density is equal to RAFL(dz) + O(1). Consequently,

o) + / (RF)L(dz) = volp (D).

and the theorem follo O

Proof of Proposmlon‘% Define ¢;(z) by i¢;(2) = ¢(z;)+20,0(2;)(z—z5).
Then

Be) = Rigy(2)) + Ry(2), Bil2) = O((z = %))
H(z) = 20.6(2)+ O((=— ).
Consider the holomorphic function
vj(zh) = u(z; h)e w9,

Then |v;(z; h)| < en(@@-Rit;@) — e R < ¢, when z — z; = O(y/€), while

Ce

lvj(z5;h)| > e .

In a y/e-neighborhood of z; we put v = v; and make the change of variables
w = (z — z;)/Ve v(w) = v(z), so that
[5(w)| < e““/" on D(0,2), [5(0)] > e~ /M. (3.4.20)

Using Jensen’s formula, (used in Chapter and to be used in Section
we see that the number of zeros wy, ..., wx of v in D(0,3/2) (repeated
with their multiplicity) is O(e/h). Factorize:

N
o(w) = eI H(w — Wg)- (3.4.21)
1
In order to estimate g and ¢’, we need to find circles on which we have
good lower bounds on the proc fo) above. This is a classical argument in
complex analysis and we follow [[I29], Section 5.

Lemma 3.4.7 Let x1,22,....,xx5 € R and let I C R be an interval of length
1| €]0,+00|. Then there exists x € I such that

H|x—x]|>e (I+1n
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Proof. Consider the function

Zln x—x]|

1 /2 2
/ln d:1:§2/ ln—:m<1—|—ln—>
|z — ;] 0 t 1]

since the first integral takes its largest possible value when x; is the midpoint
of I. It follows that

2
d:v<N(1—|—ln )
IU/ 1]

We can therefore find z € I such that F(z) < N(1+ 1n(2/|1])),

We have

H|x—x|—eF(x)> N(1+n )

O
The lemma shows that 3r € [4/3,3/2] such that for every w € 0D(0,r),

N

H(w — wy)

1

N
> T Ir = i) > e ¥0+5) > c=0w/n,
1

Consequently, for |w| =r,

|€g(w)| < 60(6)/h|5(w)| < O/h

Y

and by the maximum principle, this estimate extends to D(0,r):

Rg(w) < %, lw| < r.

If C > 0 is large enough, £¢ — gg non-negative harmonic function
on D(0,r) which in view of satisfies

Ce O(e) 5

7—%9( w) <




1.e.

O(e) 5
> — < Z
Rg(w) > o lw| < T
and hence,
[Rg(w)] < O;f), [w| < Z. (3.4.22)

Representing Rg(w) by means of a Poisson kernel for D(0,5/4):

R(w) = / K (w, ) Rg(w) e,
aD(0,5/4)

and using the smoothness of the kernel K (w,w) for w in the interior of the
disc, we see that

vig = 29w <65,

h
and hence by the Cauchy-Riemann equations,
@
g = % lw| < 6/5. (3.4.23)

We now return to @ Ifvy:[0,1] >t~ ~(t) € D(0,6/5) with 4 and
1/4 uniformly bounded and which avoids the zeros wy, then on one hand,

1 1 1 v’
%Varargv'ﬁz %L%d(lnv) %—/dln@':éﬁT/ —dw,

271 ™

and on the other hand,

N
1 1
o var arg, v = %7 /gdw + Z var arg, (w — wy) =

O(e)
P

We notice that these relations are invariant under the substitution z =
zj++/ew. Now cover 9I" by =< 1//e discs D(zj, \/€) with z; € OT. Then there
at most O(e/h) zeros of u in each such disc and we assume for simplicity that
none of them is situated on 0I'. We equip JI' with the positive orientation
and partion it into segments 7; so that 7; C D(zj, v/€). Then

27rz/ —]dz— )
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Writing u = v;e’®/" along 7;, we get

v
—dz = — s
27rz/ dz = / Oz + §R271’Z 5, Uj
N————

~o()

v | (2000 + 0 = ) ) @z + 0 (5)
—h/% Z8z¢(z)dz+(’)<%>.

Summing over j, we get the number of zeros of u in I':

1 u'(z) 2 Ve
571 o ul2) dz = %ﬁ . ;@gb(z)dz + O(T)
o / Ao()dady + 0(\/;).

Here, we used Stokes’s formula for the last equality:

dg@zqﬁ(z)dz = g&zazqﬁ(z)dz Ndz = 40:0,¢(z)dx A dy = A¢(z)dz A dy.
i i
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Chapter 4

Quasi-modes and spectral
instability in one dimension

4.1 Asymptotic WKB solutions

In this section we describe the general WKB construction of approximate
“asymptotic” solutions to the ordinary differential equation

P(z,hD,)u = zm: b(x)(hD,)*u = 0, (4.1.1)

on an interval @ < x < [, where we assume that the coefficients
C*>(Jey, B]). Here h €]0, hy] is a small parameter and we wish to solve
up to any power of h. We look for u of the form

u(w; h) = az; h)e @/, (4.1.2)

where ¢ € C*(]a, 8]) is independent of h. The exponential factor describes
the oscillations of v and when ¢ is complex valued it also describes the
exponential growth or decay. a(z;h) is the amplitude and should be of the
form

a(x; h) ~ Zay(x)h” in C*(Ja, B]). (4.1.3)

4
The sum to the right is in general not convergent and 1%. -3) says that a is
the asymptotic sum in the following sense:
For all N, M € N and every interval K €|a, 3]

there is a constant C' = C ny s such that
(4.1.4)

| ( ! )M (a(z;h) — Y a,(z)h")| < ChN*! Vr € K.

dx
v=0
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For any sequence a, € C*(Ja,[) there exists an asymptotic sum by
virtue of the following Borel lemma (see e.g. [40]):

Lemma 4.1.1 Let agy, a1, as,... € C]OO] (%a,ﬁ[). Then there e(ftz’%s i(w;h} €

C>=(Ja, B]), 0 < h < hg, such that [£.1.3) holds as defined in

Thus, a(z;h) is smooth in x for every h €]0, hy] and that is in general
enough in practice. A closer look at the proof below shows that we can
choose a smooth also in h and even in both variables simultaneously; a €
Coo(](% 6[X [07 hO])

Let us make a remark about the unicity of a: If a(z; h) is a second function
with @ ~ > a,h”, then

VN,M € N, K €|a, 8], 3Ck n . such that
d\ N B 4.1.5) [wkb.6]
| <d—) (a(z;h) —a(x;h))| < Cgyuh™ ™, 2 € K. ( )
x
We will write this more briefly as
a = a+ O(h™) locally uniformly on |a, ]
and similarly for all the derivatives,
or simply
a=a+ O(h™) in C*(]a, B]).
To P we associate its leading semi-classical symbol:

m

p(z,€) = bi(x)e" € C=(Ja, B[xR) (4.1.6)

k=0

which is a polynomial of degree m in £ with coefficients that depend smoothly
on x. More generally, we can let b, depend on h and consider the semi-
classical differential operator

m

P = P(z,hD;h) = > by(a; h)(hD)",

. (4.1.7)
bi(w;h) ~ > by ()R, b, € C(Ja, B])

v=0

and its leading semi-classical symbol
p(w,£) = bro(x)&", (4.1.8)
k=0
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as well as its full symbol

m

P(z,&h) = b(x; h)EF ~ p(x,€) + hp(2,6) + .. (4.1.9)

k=0

where p,(z,€) = > L, bry(7)EF, and we will sometimes write p = po. The
last asymptotic sum takes place in the Fréchet space of smooth functions
on |a, B[ xR that are polynomials of order m in £. If we consider a second
semi-classical differential operator

m

Q=Q(z,hD;h) = cp(x; (4.1.10)

k=0

then by using Leibnitz’ formula we hall prove that the composition R := Po()
is a semi-classical differential operator of order m + m with full symbol

R(z,&;h) Z—' (¢ P(x,& ) DEQ(x, & ), (4.1.11)

where the sum is finite. (When considering pseudodifferential operators,
one encounters infinite sums of the same type and they can be defined as
asymptotic sums.) Here D, = i710, denotes partial derivative wi regpect
to x. Writing Q ~ Sk hFqu(x,€), 7 ~ S8 hFry(z, €) similarly to Q%L, we
get from the composition formula above, that '

ro(z,€) = polx, §)ro(x, €), (4.1.12)

r(x,§) = —35170( £)0:q0(x, &) + po(z,§)q (2, &) + p1(2,&)qo(x,&). (4.1.13)

Proof of (ﬁ It suffices to treat the case when P = a(z)(hD,)",
Q = b(z)(hD,)". Leibnitz’ formula gives

P o Qu(z) = a(x)(hD,)*(b(x)(hDy) u(z))

= 3 a@) e (WD, b)) (AD,) T u(a).

A A Gl

Thus the symbol of Po @ is

LB ! o
—a(x) — M DIb(x)E"
; gt (k=)

—~

J

0% (a(2)e") D] (b(x)€")

| Plﬂ:

<
|
=)
<

(0LP)(2, ) D1Q(x,€).

I
L[~]e
<=
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O

Here is a more sophisticated but perhaps more intuitive proof of ﬁ;:
We observe that

]

e~/ o P(x, hD,; h) 0 €7/" = P(x, &+ hDyi h) = Z OLP(x,& h)(hD, ),

J=0 ‘]!

where the sum is finite. In particular P(z,&; h) = P(x,+hD,; h)(1). More-
over,

R(z,&+hD,) = e /"o(P(z, hD)Q(x, hD))oe™*/* = P(x,£+hD,; h)Q(x, E+hD,; h),
and in particular,

R(x,& h) = P(z,€ + hD,)Q(x, & + hDy; h)(1)

— P(0,€ + hD Q.6 h) = 3 (3P (@, & MW DIQ(, & h),
i=0
which proves ﬁ
If ¢ € C*(]av, B[), we have
e @@/ oD, o' =hD, + ¢'(x)

which is a semi-classical differential operator of order 1 with full symbol
£ + ¢/'(z). From the composition result above we see that more generally

e~ @)/h (th) o g @)/h (hD =+ ¢ ( )) k€N,

is a semi-classical differential operator of order k. We can apply this to the
conjugated operator

P? = e ®@/hp(x hD,; h)e@/h = Zbk(x; R)(hD, + ¢'(z))*. (4.1.14)
k=0

to see that P? is also a semi-classical differential operator of order m with
symbol

Y ) (4115
v=0
where p,(z,€) is a polynomial of order m in £ with smooth coefficients.
Moreover,
PO (2, &) = pf(2.) = pla, ¢/ () + &) (4.1.16)
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Now assume that we have found a function ¢ as above such that

p(z,d'(x)) =0, z €]a, 5] (4.1.17)

and in addition
pe(x, ¢'(x)) #0, on ]a, B, (4.1.18)

where we use the notation pé = O¢p. Then for the conjugated operator above,
we get
p°(2,0) =0, 9ep®(z,0) # 0. (4.1.19)

We now look for a(z;h) ~ > 07 a,(x)h” with ag(x) non-vanishing on
Ja, B[, such that
P?(z,hDy; h)(a(z; h)) ~ 0, (4.1.20)

in the sense of asymptotic sums and for that we write P? as an asymptotic
sum of h-independent differential operators of order < m,

P?(2,hDy; h) ~ Qo(x, Dy) + hQ1(x, D) + h?Qa(x, D) + ... (4.1.21)
Here Qo = p®(x,0) = p(z, ¢'(x)) = 0,
Q1 = 9ep®(2,0) D, + pf(x,0) = pi(a, ¢' () Dy + p (2, 0), (4.1.22)

Q
where we used @ilﬁ Applying @ to a(z;h) ~ > 07 a,(z)h” and
regrouping the terms in powers of h, we get the sequence of transport equa-
tions

Qlao =0,
Qia1 + Qa0 = 0,

4.1.23
Qraz + Qa1 + Qza9 = 0, ( )

Each equation is of first order and can be solved explcitly. From the first one

we get
pi(t,0)

Clo(iL') = Co exXp —Z/ Wdt, (4124)

where Cy € C is an arbitrary integration constant and xy an arbitrary point
in Joy, B]. We fix Cy # 0.

Remark 4.1.2 Let a(x; h) ~ ao(z)+has(3)+... where ag, aq, ... are obtained
by solving the transport equattions and where ag is non-vanishing.
Then the general solution is of the form a(x;h) ~ c(h)a(z; h), where c(h) ~
co + hey + ... for any complex numbers ¢, ¢y, ...

o4
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Example 4.1.3 Let,

NEAY
P==h (%) TV -E (4.1.25)
P(QI,&) :p(.%',g) - 52 + V<I> - L.

where V € C*(Ja, f[;R) and E € R.

a) Assume that V(z) < E on |a, 8. We are in the classically allowed region
and the equation p(z, &) = 0 has two real solutions £ = &, = E—V(z),
and we have two solutions +¢(x) of the eikonal equation , given by
o(z) = f;f) VE —V(y)dy. The WKB constructions above can be applied

and we find two oscillatory solutions
ug (z; h) = a*(z; h)ete@/h (4.1.26)
with u_ = wu,, that satisfy
Pus = O(hY) (4.1.27)

locally uniformly on the interval for every N € N together with all their
derivatives. (We will express this more briefly by saying that Puy = O(h™)
locally uniformly together with all its derivatives.)

In this case, we have P{ = (hD,+¢')>+V — E = h(2¢(x) D, + 20" (x))+

1

(hD,)* and we get ag = C(¢') 2.

b) Let V(z) > E on |a, 5. we are in the classically forbidden region (in the
sense that there are no points in the real phase space where p vanishes). Now
the equation p(z, f) = 0 has the two non-real solutions { = +iy/V(z) — E.

Let ¢ (x f VvV Edy. The WKB method produces two functions
v(z; h) = bE(z; h)eEV@/h

such that
P(x, hDq; h)(b* (w; h)e? /™) = 17 (5 h)e= /",

where 7% (z; h) = O(h™) locally uniformly with all their derivatives.

1

Again, by = C(¢') 2.
Notice that if for some (xg, &) €]a, 5[xC
p(x0, &) = 0, pe(wo, &) # 0, (4.1.28)
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then there is a small open interval I Cla, ] containing zo such that the
equation p(x,&) = 0 has a solution £ = £(z) € C depending smoothly on
z € I with §(xo) = &, pe(r,§(x)) # 0. If we let ¢ € C*°(I) be a primitive of
&(x), so that ¢'(z) = &(x), then we get

p(z,¢'(z)) =0, pe(z,¢'(z)) # 0.
Summing up the discussion, we have

Theorem 4.1.4 Consider the semi-classical differential operator

P = P(z,hD;h) = ibk(x; h)(hD)*, x €]a, B], (4.1.29)
k=0

where by(x;h) ~ > 07 by (@)hY, b, € C™(la, B]) and its leading semi-
classical symbol

p(x,&) = bro(z)é". (4.1.30)

Let (xg,&) €la, B[xC be a point where (% holds. Then there exists an
open interval I with xy € I Cla, 5] and a function ¢ € C*(I) such that

p(x,¢'(x)) =0, pe(x,¢'(x)) # 0, ¢'(x0) = &o.

This function is uniquely determined up to a constant.
For any such (I,¢) there exists a(z;h) ~ > 0" a,(x)h” with ag # 0 on I
such that

P(x, hD; h) (e @/ a(z; b)) = r(x; h)e®@/ = O(h™),

locally uniformly on I with all its derivatives.

4.2 Quasimodes in one dimension

E.B. Davies %‘i’a]gobserved that for the one-dimensional Schrodinger operator
we may construct quasimodes for values of the spectral para ter that may
be quite far from the spectrum of the operator. M. Zworski [I50] observed
that this result can be 'oeG\ggd lglzgsgbspecial case of more general and older
results of L. Hormander FTS,_TQ]a_nd_generalized the result of Davies to more
general operators in the semi-classical limit in arbitrary di?%%n%%q, by adap-
tation of Hormander’s results via a known reduction. In [39] a direct proof
was given. (See Chapter Here we explain the result in the simpler one

dimensional case.
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Consider an operator as in @ The formal complex adjoint is given
by

m

P(z,hD;h)* = (hD,)"by(x; h) ch z; h)(hD,) (4.2.1)

0

where ci(z;h) ~ cpo(x) + hegi(x) + ... in Cm(]a,ﬂ[) and ¢ o(7) = byo(z).
The (semi-classical) principal symbol of P* is equal to p(z, £) (when & is real),
where p(x, &) is the one of P. Motivated by the notion of normal operators,
we are interested in the commutator [P, P*].

Proposition 4.2.1 Let

hD:h) 1) (hD,)
Q. E:%x (4.2.2)

ck(azz7 h) ~ cpo(z) + hepa(x) + ... in C(Ja, B]),

be a second semi-classical differential operator of the same type as P. Then

m+m—1

[P,Ql=h Y di(x;h)(hD,)" =: hR(x, hD,; h) (4.2.3)

where R is a semi-classical differential operator of order m +m — 1 of the
same type and whose principal symbol is given by

r(z, )——@&}—(m%—m%) (4.2.4)

This result fg!lo%s e%%om the composition formula (% and es-

pecially from , (A . Notice that the Poisson bracket {a,b} :=
ag(z, §),(x,8) — a(z,§)be(z,§) of two smooth functions a and b is anti-
symmetric

{a,b} = —{b,a} (4.2.5)
and in particular,
{a,a} = 0. (4.2.6)
From the proposition and the fact that the principal symbol of P* is equal
to Bz, €), we get
1
[P,P] = hR, r = ~{p, B}, (4.2.7)
7
where r denotes the principal symbol of R. Notice that r is real-valued

(reflecting the fact that [P, P*] is formally self-adjoint). We also have the
formula

{7} = —2{Rp, S} (123
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Example 4.2.2 Let

P = (%) +V (), Ve C™(a,B]). (4.2.9)

Then p(z,&) = €2 + V() and an easy computation gives
1
Ap.ph = 4BV (). (4.2.10)

Back to the general case, let (z9,&) €]a, S[xR = T*]a, 5[ be a point
where

p(50,6) = 0, ~{p. P} > 0. (1.211)

In particular,

so we are in the situation of Theorem @ Let &(x) € C*(neigh (x, o, B]))
(using the notation “neigh(z, A)” for “some neighborhood of z in A”) be the
solution of p(x,&(x)) = 0 with £(zo) = & and pi(z,&(x)) # 0. Let

o) = [ €y (1213)
o
be the corresponding solution of

plz, ¢ (x)) =0,  ¢(x0) =0, ¢'(z0) = &o. (4.2.14)

Proposition 4.2.3 In the situation above,
S¢" () > 0. (4.2.15)
Proof. We differentiate and get for ©r = xq:
Pl (w0, &0) + pe(0, &) 9" (w0) = 0,

/ A~
¢”(JJO) _ _pf:(x07€0) _ _pmlpg
pg(l’(],go) |p§|

Hence,

o1 _ _
S¢" (o) = || 22—Z.(—p;p’g + pp,)

PN
= [Pl 2Z{Pap}($o7§0) > 0.
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Let
f(z;h) = h_%a(x; h)e®@/h g € neigh (o, o, B]) =: J (4.2.16)

be an asymptotic solution of

P(x,hDy: h) f(z;h) = O(h™®)e@/n, (4.2.17)
It follows from ﬁﬁb, (ﬁgﬁ%b, @d'zé-l%[) that there exists a constant C' > 0
such that 1
= < 7@ M) e < €. (12.19)
and for every ¢ > 0,
1 2
/ fla: h)2dz = O(h—3e ), 0 < h< 1. (4.2.19)
|lx—x0|>d
From @ we conclude that
P, hDgs ) 100y = O(H). (1220)

Thanks to @D the estimates (ﬁ%ﬁb @d'Z__LI&B[) remain valid if we

replace f by xf, where y € C§°(J) is equal to 1 in a neighborhood of .

Assume now that we have a closed operator P = Py, : L*(I) — L*(I) with
D(P) D C§°(1), I =|a, B[, such that Pu = P(x, hD,;h)u when u € C§°(I).
Using the quasi-mode y f, we get

Theorem 4.2.4 For every N > 0, we have 0 € oy~ (P) when h is sufficiently
small depending on N.

We can have other values than 0 for the spectral parameter. It suffices
to find p(z) = (x(2),£(2)) € T*I such that

P(2),6() = 2 =+ {p.PH(2),£(2)) > 0 (1.221)

Here we observe that if we identify p with the smooth map F : T*I >
(z,€) — Rp(x,£),Sp(x,€)) € R?, then dF(z,&) is bijective precisely at
the points where i~ '{p, p}(z, & . By the implicit function theorem the
points for which we can solve form an open set ¥, C C and locally
we can choose the solution (x(z),£(z)) to depend smoothly on z € ¥,. The
preceding theorem can be generalized:

Theorem 4.2.5 For every N > 0 and every compact set K C Y., there
exists h = h(N, K) > 0 such that K C o~ (P) for 0 < h < h(N, K).
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Exercise Show that if z = p(z,£), then there exists u € C§°(R) which is
normalized in L2, such that ||(P — 2)ul| = O(h'/?).

Identifying p again with the map T*I 5> (z,€) — (Rp, Sp) € R?, we see
from Sard’s theorem that the image N under p of {p € T*I; i *{p,p} = 0}
is of (Lebesgue) measure 0. We get

Proposition 4.2.6 Let X1 = {p(p); p € T*I, +i"Y{p,p}Hp) > 0}. Then

R(p) =%, US_UAN, (4.2.22)

where N is of measure 0.

If p(x,€) is ap, even function of &, then i~*{p,p} is odd and we have
Y, =Y_,s0 becomes R(p) = X, UN. In particylar this is the case
for the semi-classical Schrodinger operator in Example %

Noticing that vararg. (p — z) = £27 if v = JD(p,¢) is the positively
oriented boundary of a small disc centered at a point p € p~'(z) where
+i7Hp,p} is > 0, it is possible to show that ¥, = ¥_ under more general
assumptions. 1

Now return to the non-self-adjoint harmonic oscillator P = P, in @
with ¢ € C\] — 00,0]. We have p(z,£) = &2 + cx? and X := R(p) = {t +

sc; t,s > 0} and it is easy to see that ¥, = X_ zf] is the interior of X. 2992
Assume that Sc > 0 in order to fix the ideas. A first result of Davies H)B‘Z]_
was that if 0 < 6 < arg (c), then in the case h = 1, we have

|(Poey — E)7Y| = +o00, E=¢€"F, F — +00.

It is now easy to see that we have the following improvement when E tends
to infinity along the half-ray [0, +ool:

For every N € N, there exists ¢ = ¢(N, ) > 0, such
. 4.2.23 d.25
that ||(Pae1 — E)7Y| > ¢|E|N, E=¢€“F, F > 1. ( )
Here, we adopt the convention that ||(Py—;—E)7!|| = +00 when E € o(Py—;).
In fact, the equation (P,—; — F)u = v reads
(D2 + ca® — E)u = v,

and the change of variable z = |E|"/?Z (which changes the L? norms of u
and v with the same factor) gives

(|E| ' D2+ ¢|E|7* — E)u = v,
that we can write
(hDz)* 4 ¢ — Yu = hv, h=1/|E|.

incg e € X, we can find u € B? with |lu|| = 1 such that ||v| < Cxyh" and
follows.
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Chapter 5

Spectral asymptotics for more
general operators in one
dimension

In this chapter, we generalize the results of Chapter w T reeibults and the
main ideas are close, but not identical, to the ones of I—Bageg 67[]_We will use
some h-pseudodifferential machinery, see for instance [40 H

5.1 Preliminaries for the unperturbed oper-
ator

We will work in L*(R). Only minor modifications are required if we wish
to replace R by the compact manifold T. Actually, the discussion in this
section extends to the case of R™ and general smooth compact manifolds
respectively.

Let m € C*(RZ ,;]0, +00[) be an order function, so that for some fixed
Co>1, Ny >0,

m(X) < Co(X —Y)m(Y), X,Y € R (5.1.1)

Here, for X = (z,€), we write (X) = (1 + X?)¥/2, X% = 22 + £2. Basic
examples of such functions are

e m(X) = (&)™, where {€) = (1+£2)1/2
o m(X) = (X)™,

where my € R.
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We say that P € C*°(R?) belongs to the symbol space S(m), where m is
an order function, if for all a, § € N, there exists C, 3 = Cy g(P) such that

0207 P(2,€)| < Cagml(z, ), V(z,€) € R”. (5.1.2)

When P depends on additional parameters (like the semi-classical parameter
h €]0, hol, ho > 0), we say that P € S(m) if (}% holds uniformly. S(m) is
a Fréchet space with the smallest possible constants C, 3(P) as seminorms,
We say that P € hVS(m) = S(h¥m), when P depends on h and
holds uniformly with m there replaced by h™¥m.

If P € S(m), we define a corresponding h-pseudodifferential operator, by
using the Weyl quantization,

" 2mh 2
1 )

= — // e’(“_y)’eP(x i y’ ho)u(y)dydo.
2m 2

Pz, hD)u(z) = — / / ke 0p(T Y o)) dydo s
5.1.3

As explained for instance in %gﬂgtghis gives a continuous operator P : S(R) —
S(R), which extends to S'(R) — S’(R), and we use the same letter, to denote
the extension. The semi-classical version of the Calderén-Zygmund theorem
tells us that when m = 1 then P : L?(R) — L*(R) is bounded and the norm
is bounded by a constant times a finite sum of the C, g(P).

In the h-dependent case, we say that P = P, € S(m) is a classical symbol,
and write P € Sq(m), if there exist pg, p1, ... € S(m) independent of h, such
that

P~ hrp in S(m), (5.1.4)
0
in the sense that for every N € N,
N
P =Y h*p, e hNTIS(m). (5.1.5)

0

The leading term p := pq is called the semi-classical principal symbol.

We assume
m>1 (5.1.6)

and that
Jz9 € C such that p — z is elliptic (5.1.7)

in the sense that (p(X) — z9)™! = O(1/m(X)) uniformly for X € R? Then
it is standard to check that (p — 29)™' € S(1/m) (noticing that 1/m is an
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order function). We also know that when i > 0 is small enough, then P — 2,
is bijective § — S, & — &' and the inverse Q = (P — z)~ ! is a classical
h-pseudodifferential operator with symbol

1
p—z

Q ~ qo+ha + ... in S(1/m), q:=qy=

For h small enough, we can define the semi-classical Hilbert space H(m) =
(P — z)"'L?(R), which does not depend on the choice of P — 2 as above:
After regularization and without changing the order of magnitude of m, we
can assume that m € S(m), then define H(m) = m~'L*(R), where m =
m(x,hD) and m~' = (m(z, hD))~'. We also have,

Proposition 5.1.1 For h small enough, the closure of P as an unbounded
operator in L* with domain S is given by P : H(m) — H(1) = L* with
domain D(P) = H(m). (We use the same letter to denote the closure.)

Again, this follows from standard elliptic theory of h-pseudodifferential
operators. Having now a closed operator in L?, we can consider its spectrum
o(P).

Let

2 = X(p) = p(R2). (5.1.8)

Proposition 5.1.2 e p— z is elliptic for every z € C\ X(p),

o [f K C C is compact, h-independent and disjoint from 3(p), then for
h small enough, P — z : H(m) — L? is bijective for every z € K.

Here, the first property is elementary and quite easy to verify. The second
property is a standard elliptic result (as in Proposition%])
Define

Yoo(p) = the set of accumulation points of p(p), p — oo, (5.1.9)

so that
Yo(p) C X(p). (5.1.10)

Proposition 5.1.3 Let W & C be independent of h with smooth boundary
and assume that

o W is open and simply connected,
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o W X,
e WNYy=0.

Then, for h small enough, the spectrum of P in W is discrete, i.e. given by
a discrete set (in W) of eigenvalues of finite algebraic multiplicity.

Proof. Let zo € W\ X and let k : C\ {20} — C\ {20} be a diffeomorphism
onto its image such that

o s(W\{z}) "W =0,

o k(z) =2z, for z € C\ W, where W is a neighborhood of W that we can
choose arbitrarily small.

We choose W with its closure disjoint from ¥.. Then p:=p o« is equal to

p outside a compact set and p — z is elliptic for z € W. Let
P(z,hD) = P(z,hD) + (p — p)(z, hD).

~ iSi99
The symbol p — p has compact support and we know (cf. e.g. H)Z[Uﬁ_fhat the
corresponding operator is compact and even of trace class. For A > 0 small
enough, P — z : H(m) — H(1) is bijective for every z € W. Write on the
operator level,

P—z=(1+(p-pP-2))P-2), :eW

Here W 3 z +— 1+ (p — p)(P — 2)~" is a holomorphic family of Fredholm
operators, invertable for at least one value of 2 (in W\ ¥). By analytic
Fredholm theory, reviewed in Chapter 8] we know that (for each h small
enough), 14 (p — p)(P — z)~! is bijective for z € W away from a discrete
set I'(h) and since the spectrum of P in W has to be contained in I'(h), it

is a discrete set. Moreover the singularities of 1+ (p — p)(P — 2)~! at T'(h)
are poles of finite order with finite rank Laurent coefficients, so we have the
same property for

(P=2)'=(P=2)' 1+ p-pP-2")"
and in particular the spectral projections

1
II(z) = — (z—P) 'z, 0<ex 1,
270 Jap(z,e)

have finite rank (equal to the algebraic multiplicity of z as an eigenvalue of
P) for every z € I'(h). O
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5.2 The result

We treat the case of operators on R and indicate later the_modifications to
be made in the case of T. Let W be as in Proposition Then p~*(W)
is compact. Let @ C W be open, h-independent, simply connected with
smooth boundary We assume:

— 1
Q C ¥ and for every p € p~*(Q), we have —{p,p}(p) # 0. (5.2.11)
i

This means that dRp, d3p are linearly independent at every point of p~!(€2)
and by the implicit function theorem, we conclude that p~1(2) is a finite set
for every z € Q, whose cardinality is independent of z. Since € is simply con-
nected, we can write p~1(2) = {p1(2), ..., pm(2)}, where p;(z) are mutually
distinct and depend smoothly on z € .

Proposition 5.2.1 The cardinality of p~'(z) is even = 2N for every z € €,
and we can write

P~ (=) = {pT (), ooy PN (2), 7 (2), s P (2)
where p;t(z) depend smoothly on z and :I:ifl{p,]_o}(pf(z)) > 0.

Proof. We only have to prove that the number points in p~'(z) with
i~Yp,p}(p) > 0 is equal to the number of points with i~'{p,p}(p) < 0.
For that, we notice that if p € p~(2) and v is a simple closed positively
oriented loop around p in R?\ {p}, confined to a small neighborhood of p,
then

sararg, (o - 2) =sign (10.740)) (5:2.1

Here, to define positive orientation of a closed contour, we take for granted
that notion in the case of contours in C and make the corresponding con-
vention that (2i)~'dz A dz = dy Adx > 0. As for R}, the corresponding
positive form is the symplectic one, o = & A 1dx. (Or more down-to-earth,
we identify R2 . ~ Rj, o, ~ C.) Then 4%’ follows by direct calculation,
or by the identity,

cf. Proposition %

Let v be the positively oriented boundary of dBgr2(0, R), for R > 1.
Then,

1

1
— - 2.2
50 AN dp = o {p,P}dE N du, (5.2.2)

M
1 1
5 var arg (p— z) = El 5 Var arg,, (p—2), (5.2.3)
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where ; are the oriented boundaries of Br2(p;(2),€), 0 < € < 1. On the
other hand, p = p along v when R is large enough, so

1 1 ~
g var arg. (p — 2) = g var arg. (p — z) = 0. (5.2.4)

Indeed, Bgr:(Q, ) iy cpntragtible and z is not in its image under p. The result
follows from (5.2.1)), (5.2.3), (5.2.4). O

2
From the proposition and its proof, in particular @’, we get

= 2i 2i
Pl =2 <{p,z‘?}(pj+(2)) ) {p,z—»}@j(z») i 62

where L(dz) = |dSz A dRz| is the Lebesgue measure and |o| = |d§ A dz| is
the sympplectic volume element.

Let L > 0 be large enough, so that m, (p_l(ﬁ)) C| — L, 7L[, where
7. : R2 . = R, is the natural projection. Let x € C5°(R;[0,1]) be equal to
1 on [—7L,wL]. Our perturbed operator is given by

Ps = P(x,hD; h) +0Q,,, (5.2.6)
Quu() = > anr(w)(xule®)(xe") (@), (5.2.7)
k|, o< S

where C; > 0 is sufficiently large, e*(z) = (27L)~2e™**/L k € Z, and
ajr ~ Nc(0,1) are independent complex Gaussian random variables.

Notice that e* form an orthonormal family in L?*([—7L,7L[). Alterna-
tively, we could have taken

Quu= > arr(w)(uley)er,

%51
k<SL

where ¢;(z;h) = h~Y4e;(x/vVh) and e; is the sequence of L?-normalized
Hermite functions (reviewed in Section , so that e; is an orthonormal
family of eigenfunctions of the semi-classical harmonic oscillator.

Theorem 5.2.2 Let I' € Q have smooth boundary, e=/" < § < h™/? where
€0 > 0 is a sufficiently small constant. For 2Nhln(1/0) < € < 1, we have
with probability > 1 — O(e~Y/?)e~/?" that

4(o(pynT) — 7D
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If instead, we let I vary in a set of subsets that satisfy the asgiumptions
uniformly, then with probability > 1—O(e1)e~/?" we have {?@’ uniformly
for all I' in that subset. The remainder of the Chapter is devoted to the
proof of this result that will follow the general strategy in Chapter %g%vith an
improvement of the probabilistic discussion.

Example 5.2.3 Let P, be qle semi-classical variant of the non-self-adjoint

harmonic oscillator in @7

P, = (hD)? + c2?, with S¢ > 0.

This operator fulfills the general assumptions with order function m(z,§) =
1+ 2%+ &% and
Yoo =0, X =[0,400[+]0, +oo[xc.
Let € be open, bounded, simply connected, h-independent with smooth
boundary, such that
QcCy.
Then we can find W as in Proposition %L containing (2.

If 2 € Q, then p~!(z) consists of the 4 points (+z, ££), where x = z(z) >
0, £ = &(z) > 0 are determined by

(Sc)r? =Sz, €+ (Re)r? = Rz

The Poisson bracket {p,p}/(27) is positive at two of these points, namely at
(x,=¢) and (—=x, &) and negative at the other two. Theorem % shows that
after adding a small random perturbation, the eigenvalues will obey a Weyl
law in €2, while the eigenvalues of the unperturhed operator are confined to
the bisector of ¥, as we saw in Proposition "ﬁ[

5.3 Preparations for the unperturbed opera-
tor

To each point p;(z) = (2] (2),&(2)), z € Q, we_associate a quasi-mode

. . 4 4j . .. SEY.
e/ (x,2;h) = a(x,z;h)er®” @) as in Theorem Proposition , SO

that
(P —2)(e') = O(h™) in L?(neigh (z)). (5.3.1)

Here ¢/ satisfies the eikonal equation

p(z,0:¢ (2)) — 2 = 0, 2 € neigh (), (5.3.2)
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and
¢ (27 (2),2) =0, %0 (2] (2),2) = & (2), S/ (2,2) < (x — 2] (2))*. (5.3.3)

Actually, this follows from the quoted results only when P is a semi-classical
differential operator and we need tg Beal to some more microlocal analysis
in the pseudodifferential case. (.3.2]] makes sense when p is analytic in
&, since 0,¢’ is complex-valued, and for a more general pseudodifferential
operator considered here, we have to weaken that equation to

p(z,0,¢"(z)) — 2= O ((z — ] (2))%) . (5.3.4)
_ . eSi75piSi99
in the sense of formal Taylor expansions. We refer to %’UI},_ 40] for more
details.

To get a globally well-defined quasi-mode we let x be a standard SEO%O‘L}%

cut-off, equal to one near 0, and notice that by the last property in
the above properties remain unchanged if we insert the cut-off x(z — 7 (2))
and obtain:

Y

el (x,z;h) = x(x — xj(z))hfl/‘laj (x, z; h)e%w(x’z). (5.3.5)

we can then arrange so that a/ is a classical symbol of order 0, with

e’ | 2wy = 1, (5.3.6)
1
and so that @’ holds globally:
(P —2)(e) = O(h™) in L*(R). (5.3.7)

In the construction, we can arrange so that
ool = O(h ™" in L2, (5.3.8)

Naturally, we have the analogous constructions of quasi-modes for (P —
z)*, where we replace the ,0;-" by the p; . We have quasimodes of the form

P, 25 h) = X = 2 4, 2 et ), (5:3.9)

where b; is a classical symbol of order 0,

p*(z,0,¢") —Z = 0 near Ty, (5.3.10)
V(x5 (2),2) = 0, 07 (25 (2), 2) = & (2), W (a; (2),2) = (& — 25 (2))?,
(5.3.11)
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I fillze =1, 0%0Lfi = O(h™**) in L2, (5.3.12)
(P —2)"(f)) = O(h™) in L. (5.3.13)

Here we write p*(z,&) = p(T,,&), to be understood in the sense of lor
series, when p is not analytic. Also when p is not analytic in &, (5.3.10]
should be weakened to

p*(z, 0.9 (2,2),2) — 2= O((x — x5 )%), (5.3.14)

in the sense of Taylor expansions at z; (2).
By construction,

(ejlen), (filfe), (eulfu) = OW>), j#k, (5.3.15)

so approximately, we can say that {e;})¥, {f;}1 are orthonormal families,

which are mutually orthogonal.
Define R, : L? - CN, R_: CYN — L2 by

Riu(j) = (ulej), u e L? (5.3.16)

N
Rou_ =Y u_(j)f;, u_ € C". (5.3.17)
1

Note that RyR% —1, R* R_ — 1 are O(h*) in L(C",C") and that in par-
ticular, HR+H£(L2,CN) =1 + O(hoo)’ HR*HE(CN,LQ) =1 + O(hoo)
Define

Pl) <PR—+Z Fg—) . H(m) x G = [? x OV, (5.3.18)

and notice that P(z) is uniformly bounded in £(H(m)x CV, L? x CV) when
h is small and z varies in any fixed compact subset of 2.

Proposition 5.3.1 P(z) is bijective for z € Q with an inverse

£(x) = (5_(8) g_fé))) , (5.3.19)

satisfying,

(5.3.20)
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The proof contains some microlocal analysis that e .%}g,all not develop in
detail here. Using the h-pseudodifferential calculus ( Zm]l)_we first see that

Qi =(P—=2)"(P=2), @ :=(P—2)(P—2)

are essentially self-adjoi ith domain H(m?). Here we make use of the
ellipticity assumption %’V (Here and in the following, it is tacitly assumed
that A is small enough.) Moreover because of the ellipticity assumption and
the fact that m > 1, we know that these operators have purely discrete
spectrum in some h-independent neighborhood of 0. We also notice that
Q@+ > 0, so the spectra are contained in [0, +00].

For a given fixed constant C' > 0, the eigenvalues in [0, Ch[ have complete
asymptotic expansions in integer powers of h and can be described in the
following way: The operators )+ have the same principal symbol ¢(z, &, z) =
Ip(x, &) — z|? which vanishes precisely at the points pj[, j=1,2,...,N, that
we will also label p,, 1 < v < 2N whenever convenient. These points are also

nondegene e, 'lnsigna for q(+, z). Therefore, as for semi-classical Schrédinger
operators EI)[ ) gfg?:u O%nd in later works for more general pseudodifferential
operators [[69], [[67], each such point generates a sequence of eigenvalues of

Qi?
AEp(zih) ~ DA (2) + PAY(2) + s B =10,1,2, .

where )\if(z) are the eigenvalues (arranged in increasing arithmetic progres-
sion) of a harmonic oscillator, appearing as a quadratic approximation of Q)+
at p,. These quadratic approximations are P; P, and P, P} for Q4 and Q)_
respectively, where P, = 0,p(p,)z + 0ep(p,)D,. When p, = p;r, then P; is of
annihilation type (surjective H({(x,¢))) — L? with a 1-dimensional kernel,

generated by a Gaussian function), while P} is of creation type (injective),

and we then know that /\11,:8r =0, )\i,j > 0 for k > 1, while )\11,,; > 0 for
k > 0. When p, = p;, then P, P; are annihilation and creation operators
respectively and we get )\iz > 0 for k > 0, )\i:g =0, )\i,; > 0 for k> 1.

Thus if C' > 0 is large enough, each of @), ()_ has precisely N eigen-
values in [0, h/C] and these eigenvalues are O(h?). However, the existence
of approximately orthonormal systems {e;}Y, {f;}) with Q.e; = O(h™),
Q+f; = O(h™), shows that these eigenvalues are actually O(h™).

Let Si be the N-dimensional subspace of L? corresponding to the eigen-
values of Q. that are O(h*>). We observe that S. C H(m"), Vk € N, by the
ellipticity of Q4 near oo. Let ¢7 <3 < ... <3, with 0 < ¢; < O(h*) be the
corresponding eigenvalues of (), and let 0 < Ny < N be the number of zero
eigenvalues, so that (when Ng > 1) 0=t =ty = ... = tn, < tng1 < ... < tn.
Ny is then also equal to the dimension of the kernel of P — z. By Fredholm
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theory and ellipticity, we know that P — z : H(m) — H(1) is Fredholm of
index 0 for z € Q and this implies that dim Ker(P* — Z) = dim Ker(P — z).
It follows that ()_ has precisely Ny vanishing eigenvalues.

We have the intertwining property

Q*(P_Z) = (P_Z)Q+>

and a similar one with (P* — %). It follows that if Qe; = t3e; for some
j > No+1, then Q_(P — 2)¢; = t3(P — 2)¢;, and hence that (P — z)e; is an
eigenvector for ()_ with the same eigenvalue tjz. Since P — z is injective on
the eigenspace corresponding to (Q, t?) we see that the multiplicity of t? as
an eigenvalue )_ is > that of t? as an eigenvalue of ),. The sum of all the
multiplicities is equal to IV for each of (), and )_ so the multiplicities have
to agree.

Pursuing this argument, we see that we can find orthonormal bases {¢;}}
in S, and {v;}} in S_ such that

(P — Z)Ej = tj’Yj, (P — Z)*’}/j = tjGj.

Let {¢;}Y and {v;}} be orthonormal bases in Sy and S_ respectively.
For instance, we can take

{€;}7 equal to the Gram orthonormalization of {IIg, e;}7, (5.3.21)
{%’}]1V equal to the Gram orthonormalization of {IIs_f j}iva -

where IIg, denotes the orthogonal projection onto Sy. With that choice, we

have
e —ej, vi— f; = O(h™) in L. (5.3.22)

20 1 —~ ~
With €;, v; as in (E%_, d%_we define R, : L? - CY, R_:CN —
L? by

N
Ryu(j) = (ule;), Rou- =Y u_(j)v, (5.3.23)
1
so that
IRy = Rylleecmy IR- = Rl gion,ie) = O(h™). (5.3.24)

Using the spectral and orthogonal decompositions L? = S, @ Si, L? =
S_ @ St, we see that

P(z) = (P}iz %) : H(m) x CV — L* x CV (5.3.25)
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is bijective with an “explicit” inverse

E(z) = ( 5 EEi(ZZ))) (53.26)
where

E(z)~(P—2)"': St = ST,

Boo() = (P = 2)aly)fyoy = P— 21 8 — S
It follows that
(h2): L* = H(m),
O(1) : CY — H(m),
O(1): H(1) - C",
E_. =0O(h™).
Using this together with @ we see that% has an inverse £(z) such

that £ — & = O(h*) and we get Proposition .

Cayy
I
QS

5.4 d-bar equation for F_
=
%e shall generalize the discussion in Section %‘ The proof of Proposition

leads to the d-bar equation,

&ZE——F + E_+(82R+)E+ + E_ (&ZR_)E__;_ - 0 (541)

We are interested in the eigenvalues of P as the zeros of det E_,. Using
t%g %'d(intity OzIndet E_, = tr (E:}ragE_Jr), the cyclicity of the trace and

, we get

O:(Indet E_;) + f(z) = 0, where

’ 5.4.2) [gldb.2
£(z) = tr (0-R,)E. + E_0-R_), (542)
away from the zeros of det E_,(z), which can also be written,

Oz(det E_(2)) + f(z)det E_ =0, (5.4.3)

valid also near the zeros of det E_, either by continuity or by direct compu-
tation without explicit use of logarithms. Again, e’ det E__ is holomorphic,

if F' solves
0:F = §. (5.4.4)
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The multiplicity m(zo) of a zero zg of E_, is by definition equal to the
multiplici A 1o4f 2o as a zero of ef"det E_,. We have (using an observation of
M. Vogel [149]),

(z0) = I O.(ef'det E_,) dz im/ 0.(det E_) dz

mi z = 111m _— = -

R oD(z00) € det E_ 2mi =0 Jop o det By 2mi
(5.4.5)

since faD(zo 0 0.Fdz — 0, ¢ — 0. On the other hand, inview of the standard
identity
(2= P)'=—E(2) + E;(2)E_(2) " E_(2),

the algebraic multiplicity m(zo) of zy as an eigenvalue of P, is equal to

dz dz
tr li —P) ' —tr i E. (2)E_ g
r lim aD(Zm(z ) 5 — oF lim b ()B4 (2) E_(2 )%Z
d d
— lim tr (BLE-LE.) == —lim r (BZLE_By) =
=0 OD(20,¢) 2mi =0 OD(20,€) 2mi
(5.4.6)

1
Now by the same proof as for @’,
E,E+ — 8Z<E,+) + E,+<82R+)E+ + Ef (azR,)E,+,

and using this in the last integral together with the cyclity of the trace in
one of the resulting terms, we get

dz

m(zo) = lim tr (EZL0.E_y) — = m(z). (5.4.7)

=0 0D (z0,€) 2mi
Here we also used the classical identity,
(det B_y) 10, (det E_,) =tr (EZ10,.E_,).

The formula (ﬁ and its derivation have straight forward generaliza-
tions, and we get

P (isition 5.4.1 We have W so that et det E_ is holomorphic when

holds. The zeros of det E/ %m cide ’Ufith the eigenvalues of P in )
and the multiplicities agree, cf. (lb 4 A—(10-4.71). Moreover,

21

1 N .
AL WZ(@ PHoT <>>‘{p,m<p;<z>>>+0“)‘ (5:48)
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5.5 Adding the random perturbation
gldrp 18
We still have Proposition % and we make the assumption 1'%%5_,

§ < h?, (5.5.1)

to be strengthened later on. Proposition % is applicable and we shall work
under the assumption

|Qullrs < C/h.

With Ry as above, we introduce the perturbed Grushin matrix,

Pat = (M7 1) HOm x 0¥ s 20, (55.2)

19
which is bijective with a bounded inverse (cf. (ﬁf

E° ES
56—(@ E)

such that

E'=FE+ (9(%) = O(h~Y?) in L(L? H(m))
)

B} = B+ + O(55) = O(1) in L(CY, H(m))
0 0 ; 2 N (5.5.3)
B’ = B_+O(757) = O(1) in £(L*, C")
2
Ei+ =F , —-0FE_QF, + (’)(5_) in £(CN,CY).

1572

The eigenvalues of Py in € coincide with the zeros there of det B + and the
multiplicities agree. We have the d-bar equation,

8 (det E° ,(2)) + fOdet B2 (2) = 0,

5.5.4 )
fo(2) = tr ((0-Ry)ES + E0:R_), (5.5.4)

.3
and from and the boundedness of E, we have

F) = f(2) + O (;f;) | (5.5.5)

We can solve 3;F° = f? (making e*” det E? , holomorphic) with (cf, B-4.7)

1 )
b _

2
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.3
xt ]9001{ t the seco %term in the expression for E‘S+ in @7
From (iég.:iii) 1i§ § igi We get for the matrix £_QFE.,
B_QE.(j. k) = (Qeilfy) + Oh™). (5.5.7)
7
Here, by @’,

(Qexlfs) = Y avpu(w)(xenle!) (e Ixf;)

), lul< St
= Z au,u(w)@(u>ij(V)7
), lul< St

where the last equality is an implicit definition of the Fourier coefficients
of xe; and x f; with respect to the orthonormal family {e”}, where we can
assume that e; and f; are supported in | — mL,7L[. We have seen that
XE€js ooy XENs X f1, s X fn 1s an orthonormal system up to O(h*) and if C is
large enough, we get the same properties for xej, ..., xeny and ;f\l, . X/ﬁv in
C!H2/M  Then Yer ® ;f\] is an orthonormal family in C™ up to O(h™),
where M := (1+2[C}/h])?. Let Ey, ..., Ex2 be the Gram orthonormalization
of this family and complete it to an orthonormal basis Ei, ..., Ey in CM.
Write,

"
o= E a; E; + E a;jEj, o = (a,...,an2), & = (an2i1, ..., Q).
N2+1

7
By @End the following discussion, we have with @ = Q(« (@’
E_QE, =d + O(h™) in CV°. (5.5.8)

Our change of coordinates depends on z, but the estimates are uniform.

For notational reasons, WE %?an%e the sign of (), so we get rid of the minus

sign in the last equation in ~which we then write
Ei-‘r - E_+ + 514,

5.5.9) [gldrp.9
A= EQE++O<h§/2):a/+O(hOO+L)7 (5.5.9) |gtdrp.9|

}5/2

for the new a-coordinates, obtained from the old ones by a z-dependent
unitary transform. Applying the Cauchy inequality to complex lines in CM,
we get

= da'+ 0 (4 5 ) in g (0¥ 0Y). (5.5.10)
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From the implicit function theorem, we see that the map

Bem(0,0/h) 3 a v (A, ") € CM (5.5.11)

is a holomorphic diffeomorphism onto its image B which is sandwiched be-
tween

C ) C )
B]\J - — o - BI\I - > - .
fo (O,h O(h +hg>) and Bg (O,h—l—(?(h —i—hg))

10
It also follows from d@_fhat
)

L(da) = L(da')L(da") = 1—|—(’)<h°°+—3)>LdALdo/’. 5.5.12 1drp.12
(de) = Lide' L") = ( D)) sz, (5512 [glarp.i2)

.9
By(@ﬁehave

)
laf> = |[AP + "]+ O (h"o + ?> . (5.5.13) [gldrp.13
2
.1
Now, strengthen the assumption @_ﬁo

§ < he. (5.5.14) |gidrp.14
12 13
Then from 1|gg i§), (igg i%i, we get

W_Me_‘aPL(dO{) _ <1 + O (hoo + i’?)) W_Me_‘AP_‘Oé"lQL(dA)L(dO//)-

(5.5.15)

The probability distribution j of A is the direct image of 7= Me~1o° L(da)
under the map

Beu (0,C/h) 3 a — A(a) € CV.

Thus, if f(A) is a continuous function, we have

/ F(A)u(dA) = = / S L)

=M //(A "eB f(A) (1 O <h<>° i %>) e AP L(dA) L(da)
< wN2/ 5 F(A)e™ 4P (1 +0 <h°° + %)) L(dA),

and we conclude that

s 1) N2 A2
ws (140 (14 2 ) 1@ r e L@, 6519
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Combining this with @Z“below, we see that
P(In|det(D + A)|) < a) < O(1)e¥? + ¢ V) fora <0,  (5.5.17)
uniformly with respect to D € CN*. Equivalently,
In|det(D + A)| > a, with probability > 1 — O(1)e*/? — ¢~ /(€
Applying this to B2, = §(A+6'E_,), we see that for every z € (,
In|det E°_ (2)| — NIn§ > a with probability >1— O(1)e"? — e /(CH),

1.e.
1

In|det E° ()| 2@—N1n5

with probability > 1 — O(1)e¥? — e~ 1/(@h%)
(3519
uniformly for z € Q, a <0.

. -3 .
On the other hand, by the last equation in (@T we know that with
probability > 1 — e~ Y(€"*) e have

In|det £ (2)| <0, for all z € Q. (5.5.19)

Now, consider the holomorphic function

u®(z;h) = e P det B2, (2), (5.5.20)
.6
and recall @7 Then with probability > 1 — e~ 1/(Ch*),
O(9)

Infu()] < RF(z) + 2, 2 € Q. (5.5.21)

Moreover, for every z € 2, b > 0 we have

1 0@
In [u’] > %F(z)—(b—l—]\/lng + h5(/2)

) , with probability > 1—(9(1)6*”/2—@*1/(0’12)'

14
By the assumption @ﬁe have N In(1/8) > 6/h>/?, and restricting b to
the interval 2N In(1/0) < b < 1/h, we get for every z € Q:

In [u’| > RE(z)—2b, with probability > 1—0O(1)e~"2—e V(") (5.5.22)

et 2]5 S b&independent of h and hav ooth boundary. In view of
5.21)), (5.5.22]], we can apply Proposition% to u = u’, with ¢(2)/h =

RE(2) +b, € = hb and with < ¢~'/2 boundary points, where the lower bound
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gstdrpq21
(5.5.72) is required. We conclude that with probability > 1—O(1/v/hb)e /2
e 1/C"*) we have

< 0(1)%. (5.5.23)

‘# 0)nT) - 17T /F ARF(2)L(d2)

By @’ and w we have

ARF(2)L(dz) = %p*(|0|) + o),

22
SO gives,

# ()7 ONT) = govolrns™ ()] < O()

(5.5.24)

where we also used that v/b/vh > 1, since 2N 1n(1/6) < b < 1/h. Now,
(u®)~1(0)NT = o(Ps) NT and we get Theorem with € = bh. O

s

5.6 Appendix: Estimates on determinants of
Gaussian random matrices

. . . . [HaSjo8 |
In this appendix, we follow Section 7 in %5 . Consider first a random vector

u(w)' = (y (W), ..., ay(w)) € C, (5.6.1)

where aq, ..., ay are independent complex Gaussian random variables with a

Nc(0,1) law:
1

(@)u(P) = ~e ¥ L(dz) = f(2)L(d2). (562)

The distribution of u is

1
u, (P) = —e 1P

— “F Lo (du). (5.6.3)

If U: CY — C¥ is unitary, then Uu has the same distribution as u.
We next compute the distribution of |u(w)[?. The distribution of |a;(w)/[?
is p(r)dr, where

r Je”” =e "H(r),

where H(r) = 1jgo((r). The Fourier transform of y is given by fi(p) = ﬁ'
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We have |u(w)|> = 3V |a;(w)]? and since |o;j(w)|? are independent and
identically distributed, the distribution of |u(w)|? is p * ... * udr = pNdr,
where * indicates convolution. For r > 0, we get

1 : 1
*IN _ irp d

1 1d 1
— irp(_ — " \N-1
(N — 1)!2%/76 g G
1 Ld xyy o,
(N —1)12r /W(idp) ()G,
-1

rN / irp 1 d
=——— e
(N=112r )~ 1+ip P

,rN—le—r

(N =-1)V

where v is a small simple positively oriented loop around the pole p = 1.

Hence
,',.Nfl e’

*Nd:—
=N o)

H(r)dr. (5.6.4)
Recall here that

/ rNte™dr = T(N) = (N — 1)1,
0

so u*V is indeed normalized.
The expectation value of each |a;(w)|? is one so:

{Ju(w)|*) = N. (5.6.5)
We next estimate the probability that |u(w)[? is very large. It will be
convenient to pass to the variable In(Ju(w)|?) which has the distribution ob-
tained from %ﬂ?replaﬁng r by t = Inr, so that r = €, dr/r = dt.
Thus In(|u(w)|?) has the distribution

rNe dr eNt—¢'
(N =11 (r) " v = 1)!dt vy (t)dt (5.6.6)
Now consider a random matrix

where wu,(w) are random vectors in CV (here viewed as column vectors) of
the form

up(w)' = (g k(W) ..., an i (W)),
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.2
and all the o, are independent with the same law @7
Then
det(u1 UQ...UN) == det(u1 ag...’le), (568)

where @; are obtained in the following way (assuming the u; to be linearly
independent, as they are almost surely): @y is the orthogonal projection of
us in the orthogonal complement (u;)*, U3 is the orthogonal projection of us
in (up,uz)t = (ug,uz)t, ete.

If wy s ﬁ eth%n Uy can be viewed as a random vector in CN~! of the
"""" (b-6.2J, and with u;, us fixed, we can view uz as a random vector
of the same type in CV¥=2 etc. On the other hand

| det(uy ug..un)* = |ug|*|ua|? - .. - [un|*. (5.6.9)

The squared lengths |u;|?, ]ﬂg| ., |tn|? are independent random variables
with distrib tlgoons wNdr, )dr, ..., pudr. This reduction plays an impor-
tant role inIf'

.9’
Taking the logarithm of (@ﬁm get a sum of independent random
variables to the right with distributions vydt, ..., 1 dt, so the distribution of

the random variable In | det(u; us...uy)|? is equal to
(v * vy * ...k vy)dt, (5.6.10)
with v; defined in @‘.ﬁ
We have ]
vn(t) <on(t) == - 1>‘6Nt

/ " i =1 (5.6.11)

More explicitly, we have z(/N) > 0 and

1 1 1
meNm(N) =1 2(N)=Fm(N) = DN +1). (5.6.12)
S5j08
In T5a5 we used Stirling’s formula, to get
(N) = 1N+—1N—1+ﬁ+0( 5))) (5.6.13)
x n o 1B N , 6.

where Cy = (In27)/2 > 0. Here we shall not need the large N limit.
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With this choice of z(N), we put

PN (1) = Lj—oca() ()N (D),

so that py(t)dt is a probability measure ”obtained from vy(t)dt, by trans-
fering mass to the left” in the sense that

/ Fondt < / Fondt, (5.6.14)

whenever f is a bounded decreasing function. Equivalently,

g*x VN < g% PN,

when ¢ is a bounded increasing function. Now, for such a g, both g * vy and
g * py are bounded increasing functions, so by iteration,

gxvL k. xUny < gk P k. kPN

In particular, by taking g = H, we get

t t
/ V% .ok vy (s)ds < / p1 % ... % pn(8)ds, t € R. (5.6.15)
14
We have by @7
ﬁN(T) _ /x(N) 1 et(NfiT)dt _ 1 6Nx(N)7ix(N)‘r
oo (N =1)! (N —1DI(N —ir)
B e—z‘m(N)T
C1—iL
(5.6.16)
This function has a pole at 7 = —ilV.
Similarly, .
T o (7) = ——e7"7, (5.6.17)

7+ 10
By Parseval’s formula, we get

a 1 oo —
/ p1L*x ..k pydt = %/ F(Pl * LK pN)<7_)]:1]—00,a](7—>dt

—0o0
Yoo . N

_ L[ s e 11 L
21 J_o T—i0 4t (1-)
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We deform the contour to 7 = —1/2 (half-way between R and the first pole
in the lower half-plane). Tt follows that for a < 37 x(j) :

/ pr# % pydt < C(N)e?. (5.6.18)

[e.e]

17
In view of @Tﬁhe right hand side is an upper bound for the probability
that In|det(u;...uyn)* < a. Hence, for a <0,

P(In | det(u;...uy)* < a) < C(N)e?. (5.6.19)
We shall next extend our probabilistic bounds to determinants of the form
det(D + Q)

where @ = (ug...uy) is as before, and D = (d;...dy) is a fixed complex N x N
matrix. As before, we can write

]det((dl + Ul)(dN + UN))|2 = |d1 + U1’2|(fj2 + 62’2 L |67N + ﬂ]\[|27

where dy = dg(ul) us = Us(ug, us) are the orthogonal projections of ds, us on
(dy+u1)t, ds = ds(up, us), Us = Us(uq, us, uz) are the orthogonal projections
of ds, uz on (dy + u1, ds + us)* and so on.

Let Vc(l ) (t)dt be the probability dlstrlbutlon of ln d + ul?, when d € CV

is fixed and u € C¥ is random as in : . Notice that V(N) (t) =
v () is the density we have already studied.

Lemma 5.6.1 For every a € R, we have

/ uéN)(t)dtg/ M) ().

Proof. Equivalently, we have to show that P(|d +u]*> < a) < P(|ul*> < a)
for every @ > 0. For this, we may assume that d = (c,0,...,0), ¢ > 0. We
then only have to prove that

P(lc+ Rui|? < ?) < P(|Ruy|> < %), b >0,

and here we may replace P by the corresponding probability density

for Rpy. Thus, we have to show that

1 i / e
— e U dt < — dt. 5.6.20
VT Jietti<b \/_ |t|<b ( )
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Fix b and rewrite the left hand side as
1 b
I(c) = — /
N .

I(e) = — (=40 _ =0-0%) <

The derivative satisfies

23
hence ¢+ I(c) is decreasing and (%_foﬂows, since it is trivially fulfilled
when ¢ = 0. O

Now consider the probability that In|det(D + Q)|* < a. If x,(t) =
H(a — t), this probability becomes

/ / (duy)..P(duy) x

Xa(hl |d1 + u1|2 + hl |d2(u1) + ﬂg(ul, U2)|2 4+ ...+ hl |JN(U1, .y uN—l) + ﬂN(ul, .y UN>|2).

Here we first carry out the integration with respect to uy, noticing that with
the other wuy, .., uy_; fixed, we may consider dy(u1, .., unx_1) as a fixed vector
in C~ (dy + uy,....,dy_1 + uN_l)L and uy as a random vector in C. Using
also the lemma, we get

P(In|det(D + Q)[? < a)
/ /l/~ tN dtNP dUN 1) P(dul)

1n|d1—|—u1| + .. +1H|dN 1<U1,.. UN-— 2>+UN 1(U1,..,UN71)|2+75N)

/ / a ) tN dtNP duN 1) P(dul)

YXo(In|dy +u [ + .. +1n |dN_1(u1, o Un—2) F Un_1 (U1, . un_1)[* + tw).

We next estimate the uy_;- integral in the same way and so on. Eventually,
we get

Proposition 5.6.2 Under the assumptions above,
P(In|det(D + Q)|* < a) < / /Xa(tl + ...+ tN)V(l)(tN)V(Q)(tN_l)..V(N)(tl)
=P(In|det Q* < a).

2
In particular the estimate (@% extends to random perturbations of con-
stant matrices:

P(In|det(D + Q)|* < a) < C(N)e™?, for a <0. (5.6.21)
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Chapter 6

Resolvent estimates near the
boundary of the range of the
symbol

6.1 Introduction and statement of the main
result

The purpose of this chapter is to give quite explicit bounds on the resolvent
near the boundary of X (p) (or more generally, near certain “generic boundary
like” pointsf}o [Ehe result is due (up to a small generalization) o W, Bordeaux
Montrieux T?l}“and improves earlier results by J. Martinet [95] about upper
and lower bounds for the norm of the resolvent of the complex Airy operator.
There are rnoreersetsu(}ts about upper bounds and some of them will be recalled
in Chapter when dealing with such bounds in arbitrary dimension. To
fix the ideas, we will consider operators on R and indicate later the minor
modifications needed for operators on_S!. oy

Let P € S(m) be as in Chapterrgﬁgnd assum @%;,, ﬁ:f
). Define ¥ = X(p), oo = Zuo(p) as in @ , (b-1.9) and recall
. Let zp € X(p) \ Xoo(p) and assume that

- L, — .
For every p € p~'(z), we have —{p,p}(p) =0, {p. {p.P}}(p) # 0. (6.1.1)
This is in some sense the generic situation for zy € 0%(p) \ Lo (p).

Example 6.1.1 a) Let P = hD + g(z) be Hager’s operator, g € C*(S1)
and assume that S¢g has a unique minimum z,,;,, € S' and that this

minimum is nondegenerate. Notice that the extension of the defi-
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nition of ¥ and X, to the case of semi-classical differential opera-
tors on compact manifolds is straight forward. In our case p(z,£) =
£ + g(x), either as a symbol on T*R or on T*S'. In both cases,
Y = R + i[min ¢, max Jg|, Yo, = 0 and we can take m = (£). In
the S'-case, if 2y € O belongs to the lower part R + i min 3¢ of 0%,
then p~'(z0) = {po}, where py = (Tmin, §0) and & = Rzo — Ng(Tmin)-
In the R-case, Ty, is unique up to a multiple of 2. We have

%{p,z‘?}(po) = =3¢ (xmin) = 0, {p, {p, P}}(p0) = —2iS¢" (Tmin) # 0.

The non-self-adjoint Airy operator, P = (hD)? + iz with symbol p =
&2 +iz. We have ¥ = [0, +oo[+iR, X, = 0 and we can take m =
& + (z). Let zg = iyp € 9%, so that p~'(z) = {po}, where p, =
(90,0). We have (2i){p, p}(x,£) = —2€ which vanishes at py. Further,
{p; (20" "{p,P}} =20 # 0.

The non-self-adjoint harmonic oscillator P = $((hD)? + iz?). We have
¥ = [0, +00[+i[0, +00[, Lo = @ and we can take m = 1 + z* + &2
The boundary of ¥ is the union of [0, +o00[ and i[0, +oo[ and by Fourier
transform, the study near one of these half-rays is equivament to that
near the other. Let 0 # z; € 0% and take 2y > 0 to fix the ideas.
Then p~'(29) = {p+,p_}, where pr = (0,4+&) and & > 0 is given by
£2/2 = z. We have (2i)"Yp,p}(z,&) = —x& which vanishes at py.
Further, {p, {p,p}} = —2i(&* —iz?) is # 0 at p4.

As we we shall see below, the assumptions imply that p~!(z) is a finite set.
Let po € p~*(20). Then

1= {p € neigh (po); o {p. P}(p) = 0} (6.1.2)

is a smooth curve, since %{p,}‘?} is real-valued with a non-vanishing differen-

tial near py. Along ~ the vectors Hy, are Hg, are collinear and never both
equal to zero. Hence there is a smooth function v 3 p +— 6(p) € R such that

e‘ie(p)Hp is real and non-zero. 6(p) is unique up to multiple of 7.
We can parametrize v by

Then,

+(t) = exp (—tHi {m) (o). (6.1.3)

SHO0) = ~H (D) 20) = (b 5, (0. PHG(0) £0.
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SO
d:=por (6.1.4)

is a smooth curve in neigh (29, C) and

. . A 1
e—ze(w(t))(s(t) _ e—ze(w(t))Hp (Z{p’ﬁ}) € R\ {0}. (6.1.5)

In order to simplify the local geometric discussion it will be helpful to
replace p by f o p, where

f : neigh (zo, C) — neigh (0, C) (6.1.6)
is almost holomorphic along the curve §:
O-f = O(dist (z,0)>). (6.1.7)

When p is real-analytic, ¢ is a real-analytic curve and we will be able to
choose f holomorphic. Notice that

Hyop = (0:f)Hp + O(dist (p,7)%), 0.f = (9:f) op (6.1.8)

le.{f op,fop}= Iazf|22%.{p,]_9} + O(dist (p, 7)), (6.1.9)

so -{f op, f o p} vanishes on v and

(Fop. 5 F on.Top}} = 051087 (p 5 p.P)} £ 0oy (6.110)

Thus, p = f o p satisfies the same general assumptions as p, with zg replaced
by 0 = f(zo).

Now, choose f mapping (the image of) ¢ to a real interval. Then p is
real-valued on 7, and since dp is a complex multiple of a real differential
when p € v, we conclude that dp is real and hence that Hj is real on . By
the choice of f, we know that Sp = 0 on 7 and it follows that

Ip = O(qist (p,7)?). (6.1.11)

1

The natural parametrization in (@‘mduces an orientation of v such
that the region where (2i)~'{p,p} > 0 is to the right when walking along ~
in the os}tive direction. Replacing p by p will change the parametrization
in @'—but not the orientation of ~.

We now choose smooth local symplectic coordinates (x, &) centered at pg
such that v becomes the &-axis {(0,&)} with it natural orientation, namely
that of increasing values of £. Then, since Ip = O(z?), we can write

p(x, &) = d(x, &) + ir(x,§) (6.1.12)
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where d, r are smooth real-valued functions such that
0:d(0,€) £ 0, Sr=0(z?).
We have 1
Z{ﬁ,ﬁ} = —derl, + d,ry = —derl, + O(a?),
and at x = 0:

04 {7, o7 Y} = (o)l (6.1.13)

Having chosen the symplectic coordintes so that the orientation of the &-
axis is the same as the one of 7 (when identifying the two sets), we know
that (2¢)~'{p,p} has the same sign as z. In order to fix the ideas we can
impose an additional condition on the map f, namely that the orientation
of fod = fopo~y on R is the one of increasing real values. This simply

means that p(0, &) should be an increasing function o or 1i{1 other terms,
that 0 < —{(2:)"{p,p},p}, i.e. that the quantity in is > 0. Hence

0ed(0,€) >0, r).(0,£) <0. (6.1.14)

We can refine the choice of s mp}gctic coordinates above so that d(x,§) =
&. Then with a new r as in @T we get

Pz, &) =E4ir(x,€), 0<r(x,€) < a? (6.1.15)

and .
2—@,{;3’,5} = —0,r, (6.1.16)

which is positive for z < 0 (i.e. to the left of ) and negative to the right. The
map p is orientation preserving to the left and orientation reversing to the
right, when we adopt the standard orientations on R2 ;. and on C,, = R, g

We can say that p has a simple fold along ~v: The equation p(p) = w, for
p € neigh ((0,0), R?), w € neigh (0, C)

e has two simple solutions when Sw > 0,
e has one degenerate solution when Sw = 0,

e has no solution when Sw < 0.

The equation p(p) = z, z € neigh (2o, C) is equivalent to p(p) = w when
w = f(z) and locally, the inverse image under f of the upper half-plane is
the region situated to the left of the oriented curve §. p has a simple fold
along v and is orientation preserving to the left and orientation reversing to
the right of v as %{p,ﬁ} is positive to the left and negative to the right. The
range of p is the region situated to the left of 6. Thus the equation p(p) = z
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e has two simple solutions when 2z ¢ ¢ is to the left of d,
e has one degenerate solution when z € 4,
e has no solution when z ¢ ¢ is to the right.

For both equations we denote the solutions (when they exist) by p., p_ with
p+ and p_ to the left and to the right of ¢ respectively.
Let p1 be the corresponding solutions of 7(p) = w, so that pL(f(z)) =

p+(2). We get pu(w) = (v, &4), where

& =Rw (6.1.17)
and r4 are given by
r(z, Rw) = Sw, Fry <0. (6.1.18)
We have
Ty = Th(£VSw, Rw), (6.1.19)

where k(s,t) is the smooth function given by
Vr(k(s,t),t) = s

and y/r(z,£) is the smooth branch of the square root of r which has the
same sign as x. To leading order,

S

Ko ) = @ O
zs = F(r’ (0, Rw)) " 2V23w + O(Sw). (6.1.20)

lintny 15 Hintny 17 /intny 18

Naturally, (6.1.17)), (6.1.19), (6.1.20) also describe py. All we have to do,
is to work in the same symplectic coordinates and represent z by the local

coordinates (s,¢) = (Sf, Rf) = (Sw, Rw). . 1
Combining , where p = f op, with @T where now d; =1, we

get

0 < 12,(0,6) = ~10- PO F{p. AP PH (o), 0 =0-(),  (6.1.21)

where p € 7 s determined by f(p(p)) =& We may choose f so that |f'| =1
on 6. Then (6.1.21)) simplifies to

L0.9 =0 9= g o)) 12
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Combining (6.1.20, (6.1.22)) with (6.1.15]), we get for Sw > 0,

S P} (ps) = (26(R))V*(Su)2 + O(Suw).
As in @{ﬁwe have

257} 0) = 10 (p(p)) 510, BHp) + Oldist (7))

S P}(ps) = +2e(Rw)) () + O(Sw), Sw >0 (6.1.23)

Assume for a while that p is analytic near pg, so that f, p are analytic
also. If Sw > 0, then {p € neigh (py, C?); p(p) = 2} is a complex curve I'(2)
which intersects the real phase space at the two points p+(z) and we can
therefore define the action

i) = [ o (6.1.24)
I'(z,p+,p)

where I'(z, py, p_) is a real curve in I'(z) which starts at p,(z) and ends at
p—(z) and which stays in a small neighborhood of pg, so that all such curves
are homotopic to each other. All curves in R? are Lagrangian manifolds and
this remains true when we pass to the complex-holomorphic category. Hence
{dx‘r(z) is closed (and even exact since we work locally) and the value of

J(z) does not depend on the choice of I'(z, p4, p—). If (y,7n) are some other
real and analytic symplectic coordinates, then £dz — ndy is closed and hence
exact, so £dx — ndy = dG, where G is real and analytic. Consequently,

[ e[ iy =Go) -Gl
I'(z,p4.p-) L(z,p+,0-)

is real and we conclude that

I(z) := 3J(z) is invariant under changes of real

(6.1.25)

and analytic symplectic coordinates.

. ' 13 .
This means that we can work with p in the form @ﬂnd write

with the analogous definition of /(w). Parametrize z by

w= f(z) =is+t, (s,t)€neigh((0,0),R?), (6.1.26)
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and write I(z) = I(s,t).
It is clear that with z represented as in , we have

I(z) = I(s,t) = 1(\/s,1), (6.1.27)

where ¢(0,1) is smaoth and, as we shall see, = O(c?). Working in the coor-
dinates of , L'(2) is given by p(z, &) = w, i.e. £ +ig(x,&) = w and

I(z) = S/I Az, w)dz, (6.1.28)

where A is the solution of
p(z, Mz, w)) = w. (6.1.29)
By successive differentiations of this equation, we get

)\/x — _px(x7 ’ )\; _ ’
Pe(, ) Pe(w, A)

mx(xa >‘) 2p:c§ ('7:7 A)ﬁx( ) ﬁ ( )\)2}375/5(33’, )\)

Pe(, ) Pe(w, A)? ACRNE

In particular, A(0, w) = w, \,(0,w) = 0,

"o
)\J::c__

N (0,w) = —pl (0, w) = —irl (0, w). (6.1.30)

We get the leading Taylor expansion in x,
Mz, w) =w — 57"”(0 w)a? + O(z?), (6.1.31)

where we recall that 7 (0,w) = e(w) for real w and we can extend this
releti% and holomorphically in w. Thus, with w = ¢t + is as in

| SNz, w) = s — ?ﬁ + O(s)x* + O(2?). (6.1.32)
By (120
Ty =7F 62(—:) + O(s) (6.1.33)

are smooth functigps of F/s, for s > 0 and we notice that (@ also
follows from (6.1.32) and SA\(xx,w) = 0. I(z) is a smooth function of /s
and

25/e(0) . o3
I(z) = O(s?) +/_ — <s — iﬁ) dr = 2(2 ) +0O(s*).  (6.1.34)



rest1d0.5

We shall now drop the analyticity assumption and we pause for a general
discussion: Let p be a smooth function defined in a neighborhood of 0 € R”
(and soon this will be applied to the original p above with n replaced by
2n). We assume p depends smoothly on a finite number of real parameters
w € neigh (0, R¥) that we do not write out. Assume that dp # 0 and that
(for w in a closed subset of the paremeter space, containing 0), there are two
real points 4+ € R"™ where p vanishes and that x4 as Holder continuous as
functions of the parameter with x, = z_ =0 for w = 0.

Let p also denote an almost holomorphic extension of p to a complex
neighborhood of 0 € C". This means that dp(z) = O((Sw)>) and we know
that such an extension is unique up to a term which is O((Sz)>). After a
permutation of the variables we may assume that 0, p # 0. Then by the real
implicit function theorem we have in a neighborhood of z = 0 in C”,

p(x) =0z, = \(2),

where A : A(2) is a smooth function of 2’. Here, we write z = (2, z,,).
Differentiating the equation p(z’, A(z')) = 0 we see that

0w\ = O((S2', IN(2))™).

Let w(z) - dz be a smooth 1-form and denote by the same symbol an
almost holomorphic extension. Consider

Jy = /w(x) -dx (6.1.35)

where 7 is a curve from z, to z_ inside the complex set p~1(0) with the
property that
length (v) = O(|zy. — z_|).

We have sup |[S7| = O(|xy—x_]), we can writey : [0,1] S t — (7' (¢), N+ (1))
where 7/ is a curve from 2/, to 2’ with length (v') = O(|z/, — 2’ |). In the
given coordinates, the simplest choice of v would be to take v = ~o(t) =
(70(t): A(0(2)), where y5(t) = (1 — t)a!, +ta’.

Using Stokes’ formula we get

Proposition 6.1.2 In the general situation described above, and up to a
term O(Jxy — x_|>*) J = J, does not depend on the choice of v, nor on
the choices of almost holomorphic extensions of p and w. We have the same
mwvariance under smooth changes of local coordinates in R™.

. . 13
Now return to p in (@ and p = fopin @.ﬁBy taking almost

holomorphic extensions we can still defined the almost complex curve I'(2)
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i Q
by p(p) = z,as prior to (%% and when Sw > 0, we define the action J(z)
as in (6.1.24]), choosing the curve from p, to p_ of length O(|p. —p_|). Then
J(z) is well defined up to O(|py — p—|*) or equivalently up to O(|Sw|>).
The imaginary part I(z) is inyariapt under real canonjcal fransformations
up to O(|Sw|*) and we have %V} where A solves (6.1.29), where p also
denotes an almost holomorphic extension.

Prq sit.ié)n 6.1.3 Under the assumptions above, let w = f(z) be defined
in (6.1.0]) and after, so that |f'| =1 0 othe curve 0 = po-~. Recall the
definition of e(t) = ¢(fopo(t)) in . Then I(z) = J(w) is well defined
(cf. (6-1.24), 16.1.28)). up o O(|Sw|>®) in the region Sw > 0. Writing
w =t +is, we have : (s, t) = u(y/s,t) where i(o,t) is a smooth
function, welldefined mod (¢°°) such that

442 o3
3 e(t):

Lo, t) = O(c?) (6.1.36)

We now start to formulate the main result of this chapter. Recall that
x(p (p) and that we work under the assumptions 1'% 1)), ,
(ig i A)-(.1.7), (6.1.1)). It follows from the discussion above that the points

of p~1(2p) are isolated and hence that this set is finite,

P~ (20) = {pp, - P }- (6.1.37)
The discussion above then applies wit 0 £d al t ,00, 1<5<N. Through
p} we have a curve v;, defined as in (. .' , with pg replaced by pj.

Let §; = po~y; be the image curves, all passmg through z5. We have smooth
functlons fj : neigh (29, C) — neigh (0, C), almost holomorphic at ¢;, such
that [f;| =1 on ¢; and p; = f; o p is real-valued on ;. Put

fj(Z) =wj; = tj + iSj. (6138)

When s; > 0 we have two real points p € neigh (p}, T*R) determined by
(,0] ) =z, £(2i) " {p, p}(p] ) > 0 with strict inequality (and pf # p;) when
s; > 0.

As in (@L,
S PY(rh) = +(26,(17) VO, 5520 (6.1:39)

20
where €;(t) = €;(7;(¢)) is defined as in :

- [tp 20PN 0. (6.1.4)
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1di
As in Proposition Iﬁ l ?, we can define for s; > 0,

L = (it e = ST 06, (614

where ¢(0,t) is smooth and real-valued.
lo1d .1 lo1d o1d .4 lo1d

rest1d2] Thegrem 6.1.4 We make the assumptzons >-1.1), (5.1 4) 15 1.4)—(5-1. /|)

0.1.1), and define the quantities p;, 0, [, t; as above. Let z € neigh (z, C),
so that we have the representation foreach j=1,....N. For Cy >0

large enough, put

(W3 + |s;]) 7", when s; < Coh*/3,
Mj(z;h) = (3" exp( S(2)/h)
(L. ) (D0}

when s; > Coh2/3.

(6.1.42)

Assume that for some arbitrarily small and fized 6y > 0,

2
1\3
—h% <5, <O(1) (hln E) , j=1,..,N. (6.1.43)

Put ,

N = {j € {1,2, ,N}, Sj 2 Coh,g}.
Then for h > 0 small enough, we have uniformly with respect to z that
P —z:H(m)— H(1) is bijective and

= maxjen (1 + O(h/sY?) M;(z: h), when N # 0,

< O(1) max; M;, in general.
(6.1.44)

The lower bound in (@ has been introduced for convenience only and
could undoubtedly be removed without any substantial extra work.

(P —2) " a@)—na) {

6.2 Preparations and reductions

In this section, we discuss the situation locally. Let py € T*R = R?, p €
C>(neigh (po, R?)) satisfy

L. _
2; 12, P}(po) =0, (6.2.1)
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{p, %{p,ﬁ}}(/)o) # 0. (6.2.2)

Let z9p = p(po). We are interested in p — z (and in a corresponding
pseudodifferential operator P(x,hD;h) — z) when z — z; is small. Let f :
neigh (7, C) — neigh (0, C) be the map for which p = f o p where p'is as in
(]%7 One could probably develop a functional calculus, allowing to work
with “f(P)”, but we opt for a more direct approach, where we linearize f at

200 f(2) = e (2 — 20) + O((2 — 2)?) and redefine p by

p—z =" (p(p) —w),

where ' '

Blp) = e (p(p) — z), w = e ") (z — ).
We are then interested in p(p) — w when w is small. p satisfies the same
assumptions, now with 2, replaced by 0.

Remark 6.2.1 z; = p(z), corresponds to w = wy = 0 and hence to w = 0.
By Taylor expansion we get w = w + O(w?) for z € neigh(z). In the
application later on, we will choose the point py € v and the corresponding
point zy € 9 as functions of the spectral parameter z. Thus, for a given z,
we can choose the new base point py = p(z) € v and the new zy = p(p(2)),
so that w = w(z) has a vanishing real part. Then

w = iSw + O((Sw)?).

The image curve p o« is tangent to R at 0 and oriented in the positive
real direction at that point. It is of the form

d: Sw=k(Rw), Rw € neigh (0), ¥'(0) =0

e The range under p of neigh (py, R?) is equal to {w € neigh (0, C); Sw >
kE(Rw)}. (It is situated to the left of po~.)

e The map p : neigh (py, R?) — neigh (0, C) has a simple fold along . It
is a local diffeomorphism on each side of v, orientation preserving to
the left and orientation reversing to the right.

Until further notice, we discuss p, but drop the tilde and simply write p.
After composing p with an affine canonical transformation, we may assume

that
o = 0. dp(0) = dE(0). (6:2:3)
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in addition to the fact that p(0) = 0. Then,
p(x, &) = & +ir(z,§), r(z,€) =O@*+&%). (6.2.4)

Moreover,
1

i 0
and (cf. 1'61152)5
O*Rr(0,0) = €(0) > 0. (6.2.5)

. . a06b .
Using Malgrange’s preparation theorem (see H{M]_for the use in the present
context and for further references), we know that

P, €) —w = alw, &,w)(€ + gla,w)), (x,€w) € neigh ((0,0,0), R x C),
(6.2.6)
where a, g are SEI}OOth functions (and ¢ is basically equal to —A, discussed
prior to @With n =2, (x1,22) = (x,€)). Actually, for our purposes
it suffices to have at the level of formal Taylor series at (z,&,w) =
(0,0,0) and hence to settle for the more elementary fact that

p(,§) —w = a(z,§,w)(§ + g(z,w)) + O ((,§,w)>). (6.2.7)

Looking at the Taylor expansions for r, a, g up to second order, we first
write

(2, &) = ropx® + rija€ + 1026 + O((2,€)%), (6.2.8)

and get after some calculations,

a(x, & w) = 1+ir 1z +irge(€ +w) + O((x, &, w)?), (6.2.9)
9(7,w) = —w + irgpx* + iry 12w + P19 2w + O((z,w)?). (6.2.10)
Here we know that Rry o = €(0)/2

Let
P(z,hDy;h) = hD, + ir(z,hD,) + hQ(z,hD,; h)

be a classical h-pseudodifferential operator with symbol defined in a neigh-
borhood of (0,0). Using Malgrange’s preparation theorem repeatedly, we
find classical symbols

Az, &, wih) ~a(x, &, w) + hay(z, &, w) + ...,

6.2.11
G, ;) ~ gl,0) + hga(,w) + . (6:2.11)

defined in a neighborhood of (x,&,w) = (0,0,0), such that in the sense of
formal composition of h-pseudodifferential operators,

P(x,hD;;h) —w = A(x,hD,,w; h)(hD, + G(x,w; h)). (6.2.12)
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When using the softer version of Taylor series division, we have to add an
error term to the right hand side of the form S(z, hD,,w;h), where

S(x, &, wih) ~ so(z,§,w) + hsy(x,§,w) + ..., sj(x,&,w) =0((x,&w)™),

and this will still suffice for our purposes.
We now concentrate on the region,

Rw| < Sw > hi (6.2.13) [geopr.16

and study the factor,
B(z,hD,,w;h) = hD, + G(x,w;h). (6.2.14) |geopr.17

We introduce the scaling
w=aw, v =+at, (6.2.15) [geopr.18

where we let
a =< Sw, so that Sw <1, |Rw| < . (6.2.16) |geopr.19

Then, with h = h/a’? < 1, we get

o~ o~ 1 - - -
B =aB, B=hD;+ —G((/ax,aw;h) = hD; + G(Z,0,a;h).  (6.2.17) [geopr.20
o

14
From we get,

G(7,3,05h) = g(F,00,0) + Y a'* hrg(VaT, o), (6.2.18) [geopr.24
k=1

where
SO 1 SO ~ j i
9T, w,a) = —g(v/aT,aw) = -0 + E gjpe 2 TEAZIgk
a
h>2

and we write the Taylor expansion

g(r,w) = —w+ Z ginriwk.

Jt+k>2
13
Recall here that by @f%k =1r; for j+k=2.
Hence,
JE@.3.0) ~ > atG(F,0), (6.2.19)
0
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where
G90(T,0) = =0 + ire07°, §1(T, ) = g30T° + i1 170, (6.2.20)
and in general, for ¢ > 1:
Q@)= Y gt (6.2.21)
Iik=1+%

Recall that Rrq o = €(0)/2.

6.3 The factor hD, + G(x,w;h)

In this section we stud th%—l— G(z,w; h) and its inverse. We mainly concen-
trate on the region @T where we add the restriction that Sw < h?, for
0>0 arbitrzaril% srq@l and I}ied, and this assumption will be strengthened

later. From (|6.2. 2. we see that

IG" =1, (6.3.1)

SG, = 2Rryox + (Rry1)w + O(|(x, w)|? + h), (6.3.2)

for  in a small fixed neighborhood of 0. Hence SG(+,w) has a nondegenerate
minimum at

T = Tmin(w) = O(Jw| + h), (6.3.3)
with
SG (T min, w; h) = —Sw + O(Jw|* + h). (6.3.4)
13
We cpn extend the geﬁnition of G to x € R in such a way that @T
(Efl Iy, %?l I, (6.3.2] become valid for x € R and so that G = —w+iT2,ol’2
outside a small neighborhood of x = 0. We have
IG (2, w) — SG(min (W), w) <X (T — Tmin(w))?, (6.3.5)
$0,G(zr,w) X T — Tyin (W), (6.3.6)

and we see that the equation
SG(zr,w) =0 (6.3.7)
has exactly two solutions, z = x4 (w), with
T (22 (W) — Tmm(w)) = (Sw)2. (6.3.8)
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Let £ = &4 (w) = O(Sw) be the solutions of £ + RG (x4 (w),w) = 0, so that
x4+ G(rL(w),w) =0. (6.3.9)

Apart, from the fact that Sw < 1, we are very much in the situation qg
ha tey Bl To remedy for the smallness of w, we make the scalings ]@7
%Eﬁ ;95 a

nd work with
B = hD; + G(,&, o h),
where we recall that,
G(E5,a: 1) = éG(\/af, o h) = §(7,3) + aho(1).

Here O(1) stands for a funcﬁion which is bounded with all its z-derivatives.

(The asymptotic expansion will be used in a region £ = O(1).) Then
S2G =1, S0:G =T — Toum(@),

and 3G (+,w) has a nondegenerate minimum at T, (W) = T (w)//a.
Further, the equation B
SG(z,w) =0, (6.3.10)

has exactly two solutions T = 74 (W) = x4 (w)/y/«, with
F(TL(®) — Tuin@)) < (SB)2 < 1.
Let £ = é;(a, a) be the solution of £+ %é(fi, w,a) =0, so that
&+ G(FL, D) = 0. (6.3.11)

Notice that & = &4 /o = O(1).

Under the assumption,
h<1,ie a> h3, (6.3.12)

~ o~ ~ u r
we can now study B = hDz + G as in the sections and @.&Since we will
work in the rescaled variables for a while, we will drop the tildes until further
notice and simgly recall their existence by adding — after each formula. As
in Section 3.1 we have a function

ewin(2) = B aa(h)x(z — 24 (w, a))en®+ @~ (6.3.13)

fact.11.5



such that

1 2
xe€Cyr(]-Cr_(w,a)— 5[, x=1lon|—— 2z (w,a) — 5[’ ~ (6.3.14)
where C' > 1 7,
1
A2 1
a ~ ap(w, @) + hay(w, @) + ..., ap(w,a) = <\s8%+(x+)> ., (6.3.15)
lewwwllz =1, ~ (6.3.16)
¢+(ZE) = ¢+(ZL‘,W,O&) = _/ ( )G(vaaa)dyu N (6317)
T4 (w,a
Soy(z) < (xz —wy)?, ~ (6.3.18)
uniformly on any fixed compact subset of | — oo, z_[ ~. By construction,
h i -
(h’Dx + G)ewkb(x) = ;X,(:L' - 1’_,_(&), a))h_%a(h)eﬁ¢+(x)7 (6319)

which decays exponentially in L2.
Define the (w, @) ~~dependent self-adjoint operators

O=(hD+G)*(hD+G), O=(hD+G)hD+G)" : L*(R) —» L*(R) ~
with domain
D(O) =D(0) = {u € L*(R); #¥(hD)* € L*(R), for j +k < 2}. ~

These operators can be viewed as h ~-pseudodifferential operators with sym-

bol in S(m), m(z, &) = ((€) + (2)?)".
Again,
o(0)=o(0) ={t5, t1,...}, 0< t; S +oo ~

and Proposition @ applies so that 3 ~ is a simple eigenvalue which is

exponentially small and ¢ — 5 > h/C' . The, second fact can be proved
by modifying slightly the proof of lemma or else we, can apply more
general microlocal analysis as indicated after Proposition %

Let Ty ~ be the spectral projection corresponding to (O,#2) ~ and let

¢o = [[Moewis ||~ Moewi, ~ be the normalized eigenstate with (0 —t3)eg =0 ~
(unique up to a factor ¥, for some § € R). By (é? i§i7

h 1 i ~
Oewiy =1, 7= (hD + G)*=x/(x — 24 )h~3a(h)er®t, (6.3.20)
i
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and we see that for any given € > 0, we can arrange so that

r=0 (e k@) 2 - (6.3.21)

. . ~. 3
by choosing the cutoff “wide enough”, i.e. with C' ~in (@ large enough.
Here Sy > 0 7 is the tunneling action between (x,,£.) ~and (z_,&_) 7,
given by
So = - / G, w, a)dz ™ (6.3.22)
T4

or equivalently by

S =5 / cde, ~ (6.3.23)
Yy

where v = {(2,€); 2y <z <2, £+ G(r,w,a) = 0} 7 is oriented from

($+,§+) " to (I_, —) -
For [z] =hd —,0<é <1 7, we write

(z — O)ewkp = Zewkb — T,

leading to

(Z — D)_lewkb = Z_lewkb + Z_l(z — D)_lT’. -
Using that

1 ~
Iy = — (z — D)_ldz,
210 J|z1=sn
we get
1 -1 -1 1 —L(So—e) \ 2 ~

Hpewih = ewkb+=— 2 Hz—0)"rdz = e+ O | —e 7 in L2

27T'L \z|=5h h

0
Here we use @ in the last step. It follows that
Ipewin|| = 1+ O(h_le—%(So—e)L ~

SO
€0 = ey, + O(h e 750=9) in 12, ~ (6.3.24)

Similarly, we have a WKB state for (hD + G)* = hD + G ~ given by
Fuan(x) = h5b(R)R (@ — 2_(w, @))er =), ~ (6.3.25)
o () = ¢_(z,w,0) = —/ Gy, w,a)dy, ~ (6.3.26)
z_ (w,a)
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So_(7) < (x —x_)?, ~ (6.3.27)

uniformly on any fixed compact subset of |z, o],

b~ by(w, @) + hby(w, ) + ..., bo(w, ) = (—%Gggb;(x_)) ! ,  (6.3.28)
[ forbllre =1, ~ (6.3.29)
(hDz + G) fun () = %9?’(33 — . (w, @)hTib(h)er* =, T (6.3.30)

which is exponentially decaying in L?. The properties of Y(z —x_) ~ are
analogous to those of x(x —xy) ™.
As above, we get a corresponding normalized eigenstate fo ~ of O

(O -t fo=0, ~ (6.3.31)

with 1

fo = furw + O(h e w509y in 12 ~ (6.3.32)
After multiplying fy (or eg) by a factor of modulus 1 (which will play no role
in the following), we may arrange so that

(hD + G)ey = tofo, (hD +G)fo =toeo. ~ (6.3.33)

W, now g0 beyond Chapter @%nd study the precise asymptotics of .
Use (Eggg

| to write

to = ((hD + G)eol fo) = (x+ (D + G)eol fo) + (x—(hD + G)eol fo), —

where x. € C*(R) 7, suppx4+ C] —oo,z_[ 7, suppx- Clzs,+oo[ 7
1=x++x- . Weget

to = (X+(hD + G)eo| fo) + (x—eo| (RD + G)" fo) + ([x—, hDleo|fo) ~
= to (x4 folfo) + (x—eoleo)) + ih(x"_eol fo). ~

fact 23 Ifact 31

Here we use (6.3.24]), (6.3.32)) and the exponential decay of fyp, — and ewip,

away from z_ ~and x, ~ respectively, to see that

(x+folfo), (x—eoleo) = O (e‘ﬁ> .

Hence,

(1 O (e*ﬁ)) to = ih(xeolfo). ~ (6.3.34)
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[fact 23 Ifact 3

(e

Using again (6.3.24]), (6.3.32) and the fact that supp x’. ~ is contained in
a compact subset of |z, x_[ ~ where ey, ~ and fu, ~ are exponentially

decaying, we get
— 1 1y
(X_eol fo) = (X_ewin| furn) + O(1)e™ 50+ a),

33
Then d@_shows that

t() = ih(Xieka]fwkb) + O(l)eii(soJr%). -

(63.35)

Recall that tg > 0 ~ by construction and that we have inserted an = -

independent fachr of-modulus, one in front of fo, " and, fypn
Combining (6.3.35]), (6.3. ,% 3. ,1%.E§.i§i,we get

(%&mm)i (%azwx)) e

™ ™

NI

to=(1+O(h))h

Here we also used that

eh(@+@)—6-(@) _ i Jop COWdY _ ib-1s)  ~

where § € R~ 'ssinigege?‘glent of x 7 and the fact that fj;o X (y)dy =1

From ([6-3. ,(].. , we get

Introducing ¢ = £ + g(z,w, ) ~, we get
1 ~
S04 (xy) = A0, aHpy) + O(h) =< 1,
1 ~
30;¢-(v-) = {a a}(p-) + O(h) < 1,

35
where pL = (z+,&+) . Then d@_becomes

1
1

h .

(6.3.36)

(6.3.37)

to = (1+ O(h) (%) (212.{q,a}<p+>)i (5@ adon)) et~ (6339)

5
Proposition %arrles over to the present situation, where we write out

explicitly the various tildes that were hidden up to now.
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Proposition 6.3.1 Let m = 1<§12 t&c)z and define the semi-classical Sobolev
space H;(m) as in Section wi as the semi-classical parameter. Define
R, : H%(R) —C, R_:C— L*R) by

éJrU = (uléo), Rou_ = u—fo.
Then

-~ ([ hD+G R
P(z).—( i, 0

>:H,~l(m)><C—>L2><C

15 bijective with the bounded inverse

=~ (E E.\ _ (ohz 001 o 3
E(z) = <E E++) — ( o(1) O(e“oﬁ)) : L* x C — H;(m) x C.

Here, B B L N
E+U+ = U+go, E_U = (U|f0), E_+ = —t().

We furn to the corresponding result for the unscaled operator hD + G in

fu
@f Recall that

hD, + G = a(hDz + G), h=h/a’?, = = /aZ. (6.3.39)

Thus the common lowest eigenvalue of O = (hD + G)*(hD + G) and O =
(hD + G)(hD + G)* is of the form 2 = «o?t2, where ty = aty, and the
corresponding normalized eigenfunctions are

1 ~

eo(x) = a i6y(T), folz) = a i fo(%). (6.3.40)

They are approximated by

i 1y

ewkb<l’> = 46ka($), fwkb(x) = 4fwkb(x)- (6341)
The common gap 3 —t2 between the first _t qigenvalues of O, 0 is < a’h =
Vah. Recalling the proof of Proposition y spectral decomposition, we
get,

Proposition 6.3.2 With m as in the preceding proposition, we define the
semi-classical Sobolev space H(m) as there with h as the semi-classical pa-
rameter. Define R, : H'(R) - C, R_: C — L*([R) by

Ryu= (uleg), R-u_=u_f.
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Then
P(z) ::(hD+G B > : Hy(m) x C — L* x C

Ry 0
18 bijective with the bounded inverse

_(E B\ _(Olin) o) - .
5(2) = (E_ E__;,_) = < O(l) O(aih% 3/2) o L XC—)Hh( )XC

Here,
Eivy =vyey, E_v=(v|fy), E_4 = —to.

36
Let us finally derive an asymptotic formula for ¢, with the help of @_
where all the quantities carry invisible tildes. Now with the tildes written

out, we recall that T, are given by

IG(FL) =0, T, < F_.

This corresponds to x4 = /o satisfying SG(xy) = 0. We get,

So az (7= . az [*SG(y)dy Sy
== Gy)dy = —— — =—
S h/ﬁd@y W), a af B
where,
s =-3 [ Gy (6.3.42)
Ty
Recalling that ¢ (7) = _f?ci G dy, we put ¢ (x) = —fgi G(y)dy.

Then by the change of variables above, we get QL = a7 32¢,(x), or equiva-
lently,

$r _ Ox

hooh
Similarly, N

¢ _ o

hooh

£
T

where (cf. (6.3 )

), 6 () = — [* Gly)dy. Clealy,

2

(’)%@E = a@igi = a‘éﬁngi.
Let g=¢+9,(=£+47, s0
(@30 = a g, 7} (ps).
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36
We use this in d%ﬁ_and get

t():oz?o:

o (140 (E)) () (o twnion) (ot Saan) i

We already know that the precise choice of a < Sw should not appear in the
final result, and indeed the powers of a cancel and we end up with

0= (1+0(mat)) (2) % (212.{41,@}@9)‘i (500

Here p1 and Sy are determined from the full symbol Q = {+G(z,w; h) =
q + O(h). There are unique (real) points p} = p+ + O(h//a) such that
q(p%) = 0 and moreover,

{¢. 0} (p+) = {0, T (p2) + O(h/Va) = (1 + O(h/a)){q, q}(pL). (6.3.43)

Similarly, we can compare Sy with

1= [ Sglwwyn, =€) (6.3.44)
25
Since
1) — 1L = O(h/Va), |25 < Va, G —g= O(h),
we get
I—-S,=0(1) <h—\/% + W&) = O(hV/«).
Here we also used that G = O(a) when z = O(y/a). Hence,
e/ = (1 + O(v/a))e /" (6.3.45)

and here \/a < h/a*? if we work with « in the range

Coh?? < a < W'/, (6.3.46)

16
which will be the case when in addition fo A@TWG have Sw ~ a <

O(1)(hIn(1/R))*3. Using (6.3.43]j, (6.3.45) in the formula for ¢, above, we
get

w=(1+0(wah) (1) (Fenen) (Saae) b
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where from now on p1 denote the real zeros of ¢ = & + g(z,w).
As we have already seen,

to =< hraie /" < he, (6.3.48)

I=az. (6.3.49)

16
So far in this section, we have worked under the assumption d@‘m
conjunction with Sw < O(1)(h1In(1/h))%3. Let us consider two more regions:

1) When
lw| < O(h¥?). (6.3.50)
We check that hD, + G : Hy(m) — L* has the two-sided inverse,

Ev(x) = %/ e%(d’(x)"b(y))v(y)dy, (6.3.51)
+o00

where ¢ is determined up to a constant by the eikonal equation
¢ 4+ G(z,w; h) = 0. (6.3.52)

We have
L [0, el <Om)
=< B 42t x| > R

It follows that for y > x,

7(86(0) = S0() = ~0(1) + g [0 + £y
— oW+ g (M0 + 2 -2)
1

— (y — 2 2 2
> 0(1)+5h(y x)(h +x +y),

~ 46
for some C,C > 0. Thus in 1|§E§-§-I_,

ot (6@)—0(v)) < O(l)e’ﬁ(h%Hz'zﬂyp)(y%)> (6.3.53)

and by applying Shur’s lemma to E, we can conclude that

(WP 4+ 2)E =0(1): L* — L2 (6.3.54)
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48
Proof of déﬁ_ The distribution kernel of (h%*? + 2%)E is bounded in
modulus by a constant times

2/3 2
Kla,yeh) = " ooty

and if K (h) denotes the corresponding integral operator, it suffices to show
that the £(L?, L?)-norm ||K(h)|| is O(1), uniformly in h. We observe that

K (hM°%, 15 Ry = K (%, §; 1)dy,

so |[K(h)|| = || K(1)|]. It the suffices to consider the case when h = 1. By

Shur’s lemma, ||[K(1)|| < mi/ngl/z, where

My = Sup/K(x,y; Ddy, my, = sup/K(x,y; 1)dz,
x Yy

and it suffices to show that these quantities are bounded.
Here

+00
my < sup/ (1+ 22)e c0+)W=2 gy < O(1).

T

The estimate of m,, is slightly more difficult. Write,

y
my = sup/ (1+ xQ)e_%(HxZJ“yQ)(y_“)dx <I+11,

Y —00

where y
I = sup/ (1+ yQ)e—é(l-i-xQ-l—yQ)(y—x)dl, < 0O(1),

Yy —00
as for m,, and

1= sup/ |a:2 _ y2|6—%(1+x2+y2)(y—a})dm

) —00

= sup/ |+ y|(z — y)e T H D) gy

Y —00
Since |z +y| < O(1)(1 + 2 + y?), the integrand in II is

< |z +y|(z— y)ef%(1+12+y2)(y7w)e*%(yﬂ) < @(1)67%(1/%)

?

and it follows that IT = O(1). Hence m, = O(1). O

From (hD + G)E = 1, we see that hDE = O(1) : L* — L?. Tt follows
that

E=0(h%3): L* - H,(m). (6.3.55)
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2) When Sw < —h?3 |Rw| < O(1)|Sw|, we do essentially the same scaling
as above, = a'/?Z, a < —Rw, to see that

- - - 1
hD + G = a(hDz + G(Z,w; h)), G(z,w;h) = EG(\/ax,w; h),

which is anNelliptic~71-pseudodifferential operator. We conclude by elliptic
theory that hDz+ G : H;(m) — L* has a bounded inverse and, after return-
ing to the x-coordinates, that

hD + G : Hy(m) — L?
is bijective with inverse F satisfying,

E=0("): L* = Hy(m). (6.3.56)
6.4 Global Grushin problem, end of the proof

As a preparation for the cutting and pasting in the global situation, we
establish some microlocal properties for £, E1 in Proposition [6.3.2 This
T that

will mainly concern the eigenfunctions ey, fo. Assume (cf.

—

Rw| < Sw, hi < Sw < b2,

The symbol ¢ + G(x,w;h) belongs S(m), m = (£) + (z)?. For 0 < § < 1,
|z| > h%2, we have 3G > h® and hence |€ + G| > hom(x, &) for all €. The
same conclusion is valid when |¢] > h°. Thus,

€+ G| > hom(x,€), when €] + |z]? > h°. (6.4.1)

Hence £ + G(x) is a slightly degenerate elliptic symbol in the region || +
2|2 > h? and %oil%og/&ng the standard construction of parametrices for elliptic
operators (cf. [40], Ch. 8) we get a symbol J(x,&; h) (depending also on w)
such that

02 = O ()LD (2, €)1, (2,€) € R, (6.4.2)

(E+G)J, JH(E+G) ~1in S(1), when || + |z|* > h°. (6.4.3)

Here # denotes the composition of symbols in the Weyl calculus, correspond-
ing to composition of A-pseudodifferential operators.

Letting J also denote the corresponding h-pseudodifferential operators,
this means that

(hD+G)oJ=14+K, Jo(hD+G)=1+1L, (6.4.4)
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where K, L are h-pseudodifferential operators with symbols K (z,&; h), L(x,&; h)
that satisty,

O(h=%l), on R?,

0 K, 0% oL = ’ 6.4.5 lgr.5
(z,8) (z,8) {O(hoo)’ for ’5‘ + ‘x’2 > Bl ( )

Recall that O = (hD + G)*(hD + G), O = (hD + G)(hD + G)* and
use the same letters for the b gs of these operators. Both symbols are
= |€ + G|*mod S(hm?). By %ﬁ we have t7 < h. We conclude that

O(x,& w; h) — 3], [B(x, &, w; h) — 5] > h*'m(x,€)?, when [¢] + |2|* > 1?,

(6.4.6)

provided that 6 > 0 is small enough (< 1/2 suffices here). If 6 < 1/4 we can
construct symbols R, R such that

TP Ofng B = Oalh™H10), (2,€) € R, (6.4.7)

6.4.8 lgr.8
in S(1), in the region |£| + |z|*> > A°. ( )

Passing to the corresponding h-pseudodifferential operators, this means that

(O—t2)oR = 1+ K, Ro(O—t2) = 1+L, (O—t2)oR = 14+K, Ro(B—t2) = 1+L,

(6.4.9)

where K, L, K , L are h-pseudodifferential operators with symbols satisfying

0% K, 0% K, 0% oL, 00 oL O(h~>7¢l) on R?, (6.4.10) [glgr.10
) T 3 T ) T - L. T.
(z,6) (z,8) (z,8) (z,8) O(hoo)7 for ’£| + |x’2 > K.

9
Applying the 2nd and the 4th equations in d@’ to ep and fy respec-

tively, we get _
€y = —LEQ, f(] = —Lfo, (6411)

showing that ey, fy are microlocally concentrated to a region |¢] + |z]* <
g?h‘s). This gives a corresponding localization for Ry = E+ in Proposition

E,=—-LE., E_=—E_L" (6.4.12)
Let x € C§°(R) be a standard cutoff function, = 1 on [—1/2,1/2] and
with support in | — 1, 1[. We claim that

E =x2Ex1+ J((1 —xa2x1) — [AD 4+ G, x2]Ex1) + O(h™) in E(L2, Hy(m)),

(6.4.13)
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4
where J is the h-pseudodifferential operator in @’ and
Xi(2,€) = x (€ +2")/(C;h*)), C1,Co > 1.

3
(In @ X; denote the corresponding h-pseudodifferential operators.) In
fact, let

Then, since (hD + G)E + R_E_ = 1 and K(1 — x2x1), K[hD + G, x2],
R_E_ — xaR_E_x; are = O(h™),
(hD+G)F =1—-R_E_+O(h™) in L(L? L?),
SO
(hD+G)F + R_E_ =1+ 0O(h™) in L(L? L?). (6.4.14)

Moreover,
R,F = O(h™) in L(L?, C). (6.4.15)

4
Apply E to the left in (@and use that E(hD + G) = 1 — E.R,,
ER_=0. Then

E=(1-E;R)F+0O(h™)in L(L?* Hy(m)).

5 3
From @we then infer that £ = F + O(h™) and (@follows.

Let X; be narrower cutoffs with the same properties ag x; so that x;ty; =
X;iX; = X; modulo O(h*) in S(1) and so that remains valid with
X; replaced by X;:

Then modulo O(h*) in L(L?, Hy(m)),

[hD + G, x2] Ex1

= [hD + G, X2l J(1 = XaX1)x1 — [hD + G, x2]J[hD + G, X2] EX1x1
= [hD + G, x2]J(1 — XaX1) X1

= [hD + G, x2]Jx1,

3
and @ simplifies to

E = x2Ex1+ J (1 = x2x1) = ([hD + G, x2]Tx1) + O(h™) in L(L?, Hy(m)).

(6.4.16)
W& can now set up the global Grushin problem for P — z i leorem
E.i.?[._Recall that p~'(zg) consists of N points p}, ..., p) by (6.1.37). For
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peigh (20, CD, %e introduce the new base points p;(z) as in Remark

@’SO that (|

reduces to w; = is;. Let x; (depending on z) be an

affine canonical transformagion, mapping (0,0) to p;(2), such that as in the

discussion around Remark '

po ;= plpi(2)) = P PO il (,€)),
or equivalently,

por;—z =l il (2,€) - w)),

where 17 (z,£) = O(2® + £2), w; = is; + O(s7)
On the operator level, this means that
U (P —2)U; =" ieiE@)(P; — w;)
= Aj(hDﬂﬁ + Gj(xawj; h)) + Sjv
gj — (i A

(6.4.17)

15
as in @7 Here U; is a unitary metaplectic Fourier integral operator

associated to ;.

Most of the work in this section concerns the case when j € N, where we

recall that

N ={je{l,.,N}; Coh*? < s; <O() (hIn(1/h))**}.

For each j, we consider the Grushin problem in Proposition %

D (hD + G, Rj>
7 R, 0

B
“=\g m,)

with inverse

where RPu = (ule}), Ru_ = u_f]. Recall that E) = f ;)* and that

E + = —t;, where ¢, fulfills the j-dependent version of

Let ¢ € COO(R2) be a standard cut-off function, equal to 1 near (0,0).

For 0 < §y < 1 fixed, we put ¢;(z,&;h) = (k™ 50((1:,5)

p;)) and also write

1; for the corresponding h-pseudodifferential operator. Our global Grushin

problem is then

P(z) = (P_Z R—) : Hy(m) x CN — L2 x CV,

R. 0
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where m now denotes the original order function, associated to P and

(Ryu)(j) = RAUu, jEN, (6.4.19)
Rou_ =Y UiA;R u_(j). (6.4.20)
JEN

The localization properties of €}, f] imply that R_ is well defined mod O(h>)
despite the presence of Zj which is only defined microlocally near (0,0). It
is independent of the choice of 1; up to operators that are O(h*).

Let J(x,&; h) be a parametrix of P — z in the region,

dist ((2,€), {71, .7 }) = b, 75 = 7 (75(2)), (6.4.21)

where 8y < 0 < 1, such that

Ore) = O(h 20N m(z,€)71), (6.4.22)
1

(P —2)tJ, J4(P — z) ~ 1 in the region (@’ (6.4.23)
As usual, J will also denote the corresponding h-pseudodifferential operator.

To construct a right inverse of P(z) amounts to find a solution (u,u_) €
H(m) x C¥ of the system

{(P —2)u+R_u_=v (6.4.24)

R+u = Uy
for any given (v,v,) € L' x CN. Take first ug = J(1 — 3.V 4;)v, so that
(P —2)ug = (1= 327 ¢)v+ O(h=|v]]) in L2,
Riug = O(h*||v]]) in CV,

When j € N, we look for a solution u; microlocally concentrated to a small
neighborhood of p;, and u_(j) € C, so that

(P — 2)u; + Ru_(j) = Yjv,
(Ryuj) = vi(4)d;,

up to small errors, where we let d; denote the j:th canonical basis vector

in CV, so that §;(k) = 0,4, the latter being the Kronecker delta. The

concentration of u; to a small neighborhood of p; will then imply that
(Riuj)(k) = O(h™) for k # j and we try to solve

U;A;(hD + Gy U uy + Uy A RV u () =y,
RLU uy = v (j),
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which formally would follow from

(hD + G)U; uy + RLu(j) = A7' U 0,
RLU  uy = vy (j),

so we are led to the choice

u; = UjEjgng{%U + UjEi%(j)’
u_(j) = EZ AU o + B Lo, ().

Notice here that Avj is well-defined and elliptic only in a fixed neighborhood

of (0,0), but the operator gglUjfle is well-defined modulo O(h*), thanks
to the cutoff ;.
When
je{L,2,.. . N}\ N = N,

we know from the discussion at the end of Section %}that hD, + G, :
Hy(m) — L?*(R) is bijective with inverse E7 : L2 — H;(m) of norm O((h?/3+
|s;])7). The obvious j-dependent version of also holds.

As an approximate right inverse of P(z), we try

E = (E_ E_+> : (6.4.25)

where
Bv=J(1 =7 v+ 30 UE A U g,
E+U+ = Z]GN U]Eiv+(])7
N e 6.4.26 legr.25
(B-v)(j) = ELA;'U "o, j €N, (6:426) |gter 2]
E_, = diag (E”.).

) d2
Recall that we work under the assumptions of Theorem @, SO

h% < 's; <O(1)(hIn(1/R))*?, Vi,
where g > 0 is arbitrarily small and fixed.

Proposition 6.4.1 We have,

- 1

E = O(1) max (manGN h_%sj T maxjene(h?3 + |sj|)_1) ,

E,=0(): CVN = H,(m ,

F o) oot (6427
~ 17 1 2

E_, = O(1) maxjepn S;hie_si/ /o eN - ¢V,
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Moreover,

(P—2)E+R_E_=1+0(h®): L?— L%
(P—2)E,+R_E_, =0OMh®): CN = 2

R E=0(h>®): [? = CV, | (6:4.28)

R.E,=1+0(h®): CN - CV.

6 18 0
Proof. w follows from Proposition %ii, (ﬁﬁj dﬁﬁ (where

we recall that o =< s; when |o;| > h*3) and the bounds J = O(h7?),
U, A7 =0(1).

R
The proof of @ is just a long calculation with some attenﬁ%% %

terms that dissappear because of the localization properties. Using
we get modulo O(h*>) : L? — L2

(P—2)E=1- v+ > (P—2)U;E/ A7 U ;. (6.4.29)

(P — 2)U; BV A Uy = UjAj (WD + Gy) BV AT U Wy + Uy S;E7 AT U1y,
) o ) (624.30)
By Egorov’s theorem, Aj’th’ 11/1j = ;bjAjflUj’l, where 9; is a pseudodiffer-
ential operator of the same class as ¢; and whose symbol is supported in an
(’)(h‘5) ne1ghborhood of (0,0). Now by the localization properties of E;, we
see that ijj qﬁjE wj, where % has the same properties as % Recalhng
that every term in the h- asymptotlc expansion of S; vanishes to infinite order
at (0,0), we conclude that S;F’ wj = 0 and hence the last term in d@_is
= 0. Using also that

(hD+G)E +R.E’ =1, jEN,
(hD+G,)EP =1, j € N

we get

V; — U;A;RVET A 1U YWi, jEN,

A-177—1,), —
(P — 2)U; P AT U oy = {% e N (6.4.31)
5 0
On the other hand, using Wm d%%f%
R.E_ =Y UAR E AZ'U ;. (6.4.32)
N
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30 31
Summing (ﬁ%ﬁ_over j and adding (%ﬁﬁ_, we get
N N N
NP —)U AU + REE- =Y 4y,
1

8 7
which together with (@ gives the first equation in (%

Next look at

(P — z)E+v+ = Z(P — Z)UjEi,U-F(j)'
N

Modulo O(h*®|jvy||) in L?, we get
(P—2)Evy =Y UjA;hD + G)ELv.(j) = = Y UjA;RVE? v, ().
N N

On the other hand,

R.E_jvuy =Y UARE v.(j).
N

7
Adding the two equations then gives the second equation in (@
Next, look at

Ry Ev(j) = R\U; U E AU v,
which simplifies to
R Ev(j) = R, E A7 U 0 = 0.

=0

.
This gives the 3d equation in @
Finally, we turn to

(RyEivy)(j) = LU UnEhv, (k).
keN

Because of the localization in E%, we get modulo O(h*||v]|):
(R Eyv,)(G) = RLU; U BLu, () = R Blos () = 0. ()
7
and the 4th equation in @ follows. O

3.5
A similar discussion of the uniqueness of the solutions of @‘E&ds to
the approximate left inverse of P(z):

£ = (E_ E_+> : (6.4.33)
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where
Bo=(1- S0 4)Jo + S 4B A U,
(E_v)(j) = ELAT'U v, j €N,
E—+ = diag (Ej—+)

(6.4.34)

Using the localization properties of E7, E +, we can check directly that
E =&+ O(h™). This fact also follows from,

Proposition 6.4.2 gsatisﬁes wz’th the obvious modifications. More-

over,

E(P —2)+ E R, =1+ O(h*®) : Hy(m) — Hy(m),
E_(P-2)+E_,R,=0(h®): H,(m)— CV,
ER_=0O(h>®): CN = H,(m),

E_R_=1:CN V.

(6.4.35)

e omit the proof which is merely a variation of the proof of Proposition
An immediate consequence of the two results is

Proposition 6.4.3 For h > 0 small enough, P(z) : Hp(m)xCN — L2xCV
is bijective with a bounded inverse E(z) = P(z)~" which satisfies,

~ ~

E(z)=E(2)+0O(h®) = E()+0O(h™) : L*xCN = H,(m)x CV. (6.4.36)
We can finally look at the norm of the resolvent,

(P—2)'=E() - E,(2)E_ (2) 'E_(2). (6.4.37)

6 34
Here ||E(2)|| can be estimated as in @ in view of d@_ and we

concentrate on the second term whose norm is much larger, as we shall see.
This term is of rank #/N and we pause to consider in general, the norm of a
finite rank operator A : L? — L2, given by

n

Au = Z a;jr(ulfr)e;,

J,k=1

where fi,..., f, and ey, ..., e, are two linearly independent families in L?. We
orthonormalize the two families,

(B . @) =(e . en)Ge?,

N|=

Y

~
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where
Ge = ((ejler)) . Gy = ((filfx)

are the Gramians and we get after a straight forward calculation,

Au= )" b=r(ul f;)&, (6.4.38)
3 k=1
where
1 1\ * 1 1
(5) = GZ o (ap) 0 (G}) = G2 o (azu) 0 GF. (6.4.39)
ince j_rge families €7, ..., e, and ﬁ, ,f; are orthonormal, it is clear from
T that
[All 22 = [[(b5 ) l[crscms
37
and (@_gives
1 1
HAHLQ%LQ = ||Ge2 O (aj’k) O G; ||C"~)C”~ (6440)

25
We apply this to E+ELIFE_. From @_and Proposition @We have

in L2,

E\E"{Eu=>Y UE (B )" AU u+O(h®||ul|2),  (6.4.41)
N

N J/
-

=:Au

7
From the discussion after @ we recall that

Elo,(j) = vy (j)ed, (Ev)(j) = (v|fd),

S0
Au="> (B )7 (u|U;(A5) 7 f)Ujed,. (6.4.42)
N
38
In order to apply (@T we observe that the Gramian Gy, of Usey, U ey
is equal to 1+O(h>) and that the Gramian Gy, 7.1 4, of U AT e UNAN Y
is of the form D + O(h™), where D = diag (d;) with

d; = (U;(A) 7 BIU; (AT ) = ((A) 7 BIAD T ). (6.4.43)
By complex stationary phase in the rescaled variables,
() RIA) TR = (L4 Oh/sy™)la (5 ()],
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and since p; = p;(2) + (9(3]1-/2) and 5]1-/2 < O(h/s?m) by the upper bound

(6.1:43)), we can replace p; (2) by p;(z) in he above formula. Here a; denotes
the leading symbol in A;, given in )

pokj—z =0 g6+ g)) +5, (6.4.44)

where 5; = O((p — p;(2)>) and ps(2) € v; still denotes the 2-dependent base
point, introduced in Ebg ark .
Combining (6.4.40)—(0.4.43]), we get when N # 0,

|BLELE_ || = O(h%) + | DY o diag (E2,) )|
<1 + O(h/sj.’/z)) (6.4.45)

= O(h*) + max - :

7 Jaj(pi(2)) ELL (2)]
Here we recall that t; := |E’_ (2)] satisfies the j-dependent version of @

ti= <1 +o (%)) (2) (5w adeby ) ot
6.4.46

From @1—\5@ see that ( )
{Qjaqj}(pji) =

o

=
~

%{pyﬁ}(/}’;) +O(s),

ay(rL)

and agan a;(pL) = (1+ O1/5})a;(p,(=)). Then (EFY gives
(oDt = (1 +0 (#)) (2) (G Ph)g ) et

J

(6.4.47)
12
Using this in (%_, gives when N # (),
|EETLE. |
h ™z (1, _ . ;.1 _ i ]
—max | 1+0 (y)) (ﬁ) (Q—Z.{P,P}(M)Q—Z-{P,p}(ﬂ])) en.
(6.4.48)
26 _ 35
From (%.iéi_and the fact that £ = E 4+ O(h*) in @7 we have
o -1 1 2 1
|E|| = O(1) max (rjré%(sj ‘h 2,%%}5@3 + |s5]) )> . (6.4.49)
5

3 15 16
Co%l%gling 1%ﬁ§1_ d%%%_, d%%_, we get the conclusion in Theorem
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Chapter 7
The complex WKB method

In this chapter we shall study the exponential growth and asymptotic ex-
pansions of exact solutions of second order differential equations in the semi-
classical limit. As an application we establish a Bohr-Sommerfeld quantiza-
tion condition for Schrédinger operators with real-analytic complex valued
potentials.

7.1 Estimates on an interval

In this section we derive some basic estimates for differential equations on
an interval. Let I = [a, b] be a bounded interval and consider the problem

(h0y — A(x))u(x) =0, z € I, (7.1.1)

where A € C*(I;Mat (n,n)) and we let Mat (n,n) denote the space of com-
plex n x n-matrices. Using the basic result in the theory of linear ODEs about
the well-posedness of the Cauchy problem, we can introduce the fundamental
matriz E(z,y) € C®(I x I;Mat (n,n)), determined by

(h0y — A(z))E(z,y) =0, E(y,y) = L. (7.1.2)
Let W(A(z)) denote the numerical range of A(x) as in Definition iilg I

Proposition 7.1.1 Let ji; (A(z)) = subyew gy BA, p(A(2)) = infrew () RA.

Then
exp([7 (s (A(E)dt /), o>y,
expl[7 (AW /1), o<y
Proof. If u = u(z) is a solution of (hd, — A(z))u = 0, we have u(x) =
E(z,y)u(y). Moreover,

hoy(u(z)u(z)) = (A(z)u(x)u(z)) + (u(2)|Alz)u(z)) = 2R(A(z)u(z)u(z)),

1E(z,y)|| < { (7.1.3)
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SO

< 2p4 (A(2)) [[u() ||

oy ||u(z)||? {z 2 (A(z))||u(z)||2.

integrating these differential inequalities, we get

(@) < {exp@ [ i (AW )|, > .
= exp(@ [ i (A®)dt/) [u), = <y,

i.3
and @ follows, since u(y) can be chosen arbitrarily in C™. O

Remark 7.1.2 For x = y we have hd,F = —h0,E and hence hd,E(x,y) +
E(z,y)A(y) = 0 when x = y. On the other hand,

(hdy + A(2))(hd, E(z,y)) = 0,
(hd + A(x))(E(x, y)Ay)) = 0,

(hdy + A(z))(hOyE(x,y) + E(x,y)A(y)) =0on I x I.

From the uniqueness in the Cauchy problem, we deduce the second differen-
tial equation for the fundamental matrix,

hd, B(w,y) + Bz, y)A(y) =0, z,y € I. (7.1.4)
i, 2 i,3.5 ;
Differentiating @’, @@Wral times, we see that (hd,)?(hd,)*E(x,y)

is a linear combination of terms
(hO,)7 A(x) o ... 0 (hD,)’ A(x) o E(z,y) o (hd,)* A(y) o ... o (hd,)* A(y),

where
jg, /{?mZO, l/—|—j1+...+jy, ,Uz—f—kl—i‘—f‘k“:k

It follows that

(0. (h,)* B, )| < Gy the RHS of (13-

We now assume, in order to fix the ideas, that n = 2. Assume that

o(A(@)) ={Mi(z), ao(2)}, Mi(z) # Xo(2), z € L. (7.1.5)

We then know that A(x) is diagonizable and more precisely that there exists
Un(a) € C(1: G (n), (716
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where Gl (n) C Mat (n,n) is the group of invertible complex n x n matrices,

such that
)\1 (ZL‘) 0

U () A2) o () = ( b (m)) o A(a), (71.7)
Then
Us(a) (3 = A)Uo(r) = W — Ao(o) + h Uole) "0, (Ui (x)

R 7.1.8) |esti.6.5
— ho, (Al(@ +hby () hba(x) ) (7.1.8)
: hbor(z) (@) + hby(z) )

Naturally, we have the equivalence
(hd, — A(x))(Up(x)u) = 0 < (hd, — (Ao(z) + hB1(x)))u = 0.

If F(x,y;h) is the fundamental matrix for hd, — (Ao(x) + hBi(z)), then we
have the (equivalent) relations,

E(z,y; h) = Uo(x)F (2, y; h)Us(y) ",
F(ilj',y; h) = UO(x)ilE(*%y; h)UO(y>

(7.19)

4
In addition to @ we now assume:
R (z) > RAe(x), z € 1. (7.1.10)
Then,

fi(Ao(x) + hBy(2)) = R (2) + O(h),

and Proposition i; i 1] gives

exp(} [7RM (D)t + Oz — ), &> y
exp(y [, RAa(t)dt + O(|z —y]), = <y

1F' (2, y; h)|| < { (7.1.11)

As before, we get

. i 12
1(h0,) (h8,)* F(z,)|| < Cjx % the right hand side of (FLIT}.  (7.1.12)

Back to hd, — A(x), we get
lesti 4 lesti 11
Theorem 7.1.3 Under the assumptions (7.1.5), (7-1.18), we have

exph™? fyx R\ (t)dt, = >y,
exph™! fyx R 2 (t)dt, © <

(0, (10, Bl e )| < cj,k{ 711
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sti 10)Esti 12 Jesti 13
This follows from(ﬁl&)p LTI, (7. T.12)).

i.6.5
We can eliminate the off-diagonal elements in @‘tﬁ any order in h by

means of additional conjugations. Let C' = cn 012) € C*(I; Mat(n,n))

C21 C22
and consider 1+hC(x) which is invertible for i small enough with the inverse

(1+hC(z))™t =1 —hC(x) + h?C(x)* -
where the series is convergent but will be viewed as an asymptotic one. Then,
(1+hC(x)) " (hdz — (Ao(x) + hBy(2)))(1 + hC(z))

= h0; — (Ao(2) + (=C(2)Ao(z) + Ao(2)C(z) + Bi(w))) + O(h?)
= h0y — (Ao(x) + h[Ao(2), C(2)] + Bi(x)) + O(h?),

and we see that

o €= <<Az e - _oAQ)m) |

Choose ¢11 = ¢ = 0, ¢jp, = —bjx/(Nj — M), k # j. Then with [71(3:) =
Up(x)(1 + hC(x)), we find

Uy (z; h) " (hdy — A(2))Uy (x; h)

_ho, - (Al(x) + hby () 0 ( )) Lom), (7.1.14)

0 )\2 (27) + hb22 T

where the last term has an asymptotic expansion in powers of h. Again we
can kill the leading off diagomal entries (of the form th ( )) by conjugating
with a matrix 1+ h?D(z) and so on. We get

i 4
Proposition 7.1.4 Under the assumption (@7, we can find

U(z;h) ~ Up(x) + hUy(z) + h*Us(x) + ... € C°(I;Mat (n,n))  (7.1.15)

with Up(x)~! € C=(I;Mat (n,n)), such that

U(x; h) Y (ho, — A(x))U(x; h) = hd, — A(x; h), (7.1.16)

where
A(z; h) ~ No(z) + hA; (z) + R*Ay(x) + ... in C°°(I; Mat (n,n)),
and each matriz A; is diagonal, so
A(z;h) = (Xl(x; P el h)> o ria(wsh) ~ 0
rap(@;h)  Ao(w;h)
Aj(@ih) ~ Aj(x) + hAja (@) + W2 a(@) +
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Using this result it is easy to find formal asymptotic solutions.
The discussion in this section can be applied to the scalar Schrodinger
equation

(—(h8y)* + V(z))v =0 (7.1.18)

if the potential V' is smooth on I. Indeed, introducing

(w(@) _ (vl
uy () hov(x) )’
we see that dﬁ% is equivalent to

(hdy — A(z))u = 0, where A(z) — (3 é) (7.1.19)

i 4
The eigenvalues of A are £V (x)Y/2 and the condition @ is equivalent
to the fact that V(z) # 0 for all z € I, or in other words that there is no
turning point in /.

7.2 The Schrodinger equation in the complex
domain

Let Q € C be open and simply connected. Let A(z) € Hol (2; Mat (2,2)). As
in the case of an interval the very basic result is that the Cauchy problem is
well-posed: Let w € O and let ug € C2 Then there is a unique holomorphic
solution, u = u(z) € Hol (Q; C?) of the problem

(h0, — A(z))u(z) = 0in Q, u(w) = uy, (7.2.1)

which can be written
u(z) = E(z,w)uo, (7.2.2)

where E (,zi W ) 15 the fundamental matrix.

As in we now assume that A(z) has distinct eigenvalues:
0(A(z)) = {M\(2), Aa(2) } where A\i(2) # Ao(2), Vz € Q. (7.2.3)

Let Ei(z), F(z) € C? be the corresponding 1 dimensional eigenspaces that
depend holomorphically on z. Locally, we can find non-vanishing holomor-
phic sections e;(z) € E;(z). The choice can be made global if we impose that
0.e1(z) € Ey(z), 0.e2(2) € E1(z) everywhere. In fact, this leads to simple
differential equations that have global holomorphic solutions: Choose local
holomorphic sections €9(z) € E;(z). Then 0.€}(z) = ai(2)e}(2) + az(2)ey(2)
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for some holomorphic coefficients. If we put e;(z) = ui(2)ed(z), then the
condition that 0,e1(z) € FEs(z) is equivalent to the differential equation
0.u; + a1(2)u; = 0 which locally has a unique non-vanishing solution, if
we prescribe uy(2p) in C\ {0} at some point 2. Since 2 is simply connected,
this leads to a unique non-vanishing holomorphic section e; in E; over (2.
The same works for ey of course.

With such a global choice, we let Up(z) bg the invertible matrix with e;(2)

and ey(z2) as the two columns. Then as in we have
—1 . )\1 (Z) 0 .
Uy (2)A(2)Uy(2) = ( 0 Na(z)) = Ao(2), z € QL (7.2.4)

From this we obtain the following analogue of Proposition %

Proposition 7.2.1 Under the assumption @, we can find
U(z;h) ~ Up(x) + hUy(x) + h*Up(x) + ... € Hol (Q; Mat (n,n))  (7.2.5)
with Up(x)~! € Hol (2; Mat (n,n)), such that
U(z;h)"H(hd. — A(2))U(z; h) = hd. — A(z; h), (7.2.6)
where
A(z; h) ~ Ao(2) + hA(2) + h*Aa(2) + ... in C°°(I; Mat (n,n)),
and each matriz A; is diagonal, so
Az h) = (Tz’ll(é;f;l)) %j(f ii;)) . rin(zih) ~ 0
Xi(zh) ~ Nj(2) + b (2) + h2Aa(2) + ...

(7.2.7)

Strictly speaking, for every K € €, the inverse of U(x;h) exists for x € K,
0 < h <h(K) for some h(K) > 0 small enough.

Corollary 7.2.2 Let ¢;(z) be holomorphic in 2 with ¢;(2) = \j(2). Then 3
a(z;h) ~ ag(z)+hay(z)+... in Hol (Q) such that 0 # ao(z) € N(A(z)—\,(2)),
Vz e Q and

(h0. — A(2))(a(z; h)e® DM = (2 h)e?i R/~ 0. (7.2.8)
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Proof. Let gzﬁj(z h) ~ ¢j(z) + h¢;1(z) + ... be a holomorphic primitive of
A i(z;h). Then ebizh)/h = G (2 h)e? )/ G (z h) =1+ haj;(z) + ... and if
V1, Vo is the canonical basis in C?, we have

(hd, — A)(e?P)/hy) = O(h)e?s )M,
It then suffices to define a (depending also on j) by
a(z; h)e ¢j(2)/h _ = U(z; h)(e ; (z:h)/h,, 1)

O

By examining directly the equations for ag and a; that follow from @D,
we see that ag(z) = Const e;(2) respectively when j = 1,2, where €;(z) are
t%e %on—vanishing sections of N (A(z) — A;) that we constructed prior to

Let v : [a,b] 2 t — ~(t) € Q be a smooth curve with §(t) # 0. If we
restrict the equation (h0, — A(2))u = 0 to v, we get

(hdy = () A(y (1)) u(¥(#)) = 0, (7.2.9) [sc.9
from which we deduce the general estimate for the fundamental matrix:
IE(y(t),7(5); B)|| < O(1)en Je maxs—r2®GMA Gr)dr (7.2.10)

fora <s<t<hb.
Now assume that

REOM((0) = REOA((1)), a <t <b (7.2.11)
Then the integral in the exponent in (@D simplifies to

[ om0 = [ oG = R660) - o)
and dﬁb becomes,

IE(y(@),~7(s); ]| < O(1) exp - (§R¢1( () = Rr(v(s)))- (7.2.12)

Similarly (still with s <)

[E(y(s),7(#); Al < O(1) exp ~ (3%2( (s)) = Re2(7(1)))- (7.2.13)
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Theorem 7.2.3 Under the assumption (@, let

uwks(z; h) = awks(z; h)e¢j(2)/h

be an asymptotic solution of (hd, — A(z))uwks(z;h) = 0 as in Corollary
. Let u(z; h) be the exact solution of (h0,—A(z))u = 0 in neigh ([a, b], C)

such that u(y(a)) = uwkg(y(a)) when j =1 and u(y(b)) = uwks(v(b)) when
j =2. Then u(z; h) — uwxs(z; h) = O(h™)e? /" with all its derivatives on

(e ).
If we strengthen the assumption (@V to
Ry ()M (v(2) > Ry () A2 (v(2)), a <t <, (7.2.14)
then
u(z; h) — uwks(z; h) = O(h>®)e?)/h
in neigh (y(Ja, b)), Q) and neigh (y([a, b]), Q) for j equal to 1 and 2 respec-
tively.

Proof. The cases j = 1 and j = 2 are basically equivalent and we choose
j = 1in order to fix the ideas. Let u(z;h) be the unique exact solution such
that u(y(a)) = uwks(v(a)) and recall that

(hD. — A)uwks = 7(2; h)e?* @/ 0,
so that

z

u(z) = wwicn(2) = = [ Bl ws by et
v(a)

(line integral). If z = ~(¢) and we integrate aE % and use @D we get

the desired conclusion under the as u ption
Under the stronger assumption ([7-2.14)), it suffices to take a smooth family
of curves v, : [a, b+ €] — Q, s € neigh (0, R ) starting at y(a), with Wlggp =7

so that the images of the v, fill up a neighborhood of ~([a, b]). O

Remark 7.2.4 Assume and normalize the choice of ¢1, ¢o so that
¢1(v(a)) = ¢2(v(a)). Let

uwis(2; h) = awks (2 h)e” " + byyg(z; b))/

be the sum of two asymptotic null solutions as in Corollary @ Then we
have the same conclusion as in Theorem | namely that the exact solution
u, with the “initial condition” u(vy(a)) = u(ywks(a)) satisfies

u(z; h) — uwks(2; h) = O(hoo)€¢1(z)/h in neigh (7(]6% b]), Q).
Further, notice that
uwks(z; h) = awks(%; h)e‘bl(z)/h + (’)(h"o)e‘bl(z)/h in neigh (y(Ja, b]), ).
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Now consider the scalar Schrodinger equation

(—(hO)* + V(2))u =0, (7.2.15)

where V' is holomorphic in the open simply connected domain 2. Writing

"= (1)

we get the equivalent 1st order system

(ho — A)u =0, (7.2.16)
where

Alz) = (3 é) (7.2.17)

The eigenvalues of A(z) are £V (2)/2, so @ is equivalent to the assump-
tion that V(z) # 0 everywhere in €, i.e. that there are no turning points in
Q. The earlier discussion can be applied with ¢} = V(2)¥/2, ¢}, = —V(2)'/?
after fixing a holomorphic branch of the square root of V'(z). Notice that this

ives an alternative approach to the construction of asymptotic solutions to

Definition 7.2.5 A Stokes line is a curve along which R¢ is constant. An
anti-Stokes line is a curve along which S¢ is constant. Here ¢ = ¢y or ¢s.

Study near a simple turning point. Let z5 € Q2 be a simple turning

point;
V(z0) =0, V'(20) # 0. (7.2.18)

In order to simplify the notation, assume that zy = 0. Consider the eikonal

equation
1

¢'(z) = V(2)? (7.2.19)

in a neighborhood of 0. Clearly, ¢(z) will have to be multivalued and in
order to understand this better, we pass to the double covering of a pointed
neighborhood of 0, by putting z = w?. Then

o_19

0z 2wow’
and if we put V(w) = V(2) = F(2)z = F(w?)w?, ¢(z) = ¢(w), where
F(0) # 0, the eikonal equation becomes

Dud = F(w?)22u?,
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and the right hand side is an even holomorphic function of w. If we also
require that ¢(0) = ¢(0) = 0, we see that ¢(w) is an odd holomorphic
function of the form

~ 2 -

o(w) = SF(w’yu?, where F(0) = F(0)2 = V'(0)>.

In the original coordinates, we get the double-valued solution

6(2) = ;ﬁ(z)z | (7.2.20)

(NI

Now look for Stokes and anti-Stokes lines that reach 0. On such curves,
we have Rp = 0 or ¢ = 0, i.e. §¢? = 0: IF(2)?2% = 0. In other words
F(2)%23 = 3 for some t € neigh (0,R) and taking the cubic root, we get
three curves

F(z)gz — ™R3t ke {0,1,2} ~ Z/3Z.

We get the following picture, where we have taken V’(0) > 0 for simplicity.

Each curve «; splits into a Stokes curve v,  ending at the turning point
and including that point by convention, and anti-Stokes line 7;", which does
not include the turning point. Restricing the attention to a small suitably
shaped neighborhood W of 0, the three Stokes curves delimit three closed
Stokes “sectors” ¥ in that neighborhood. On the picture we also draw some
Stokes curves inside each sector. .

Let ¢y, be the branch of ¢ in neigh (0) \ v, such that ¢, < 0in 2 (and
such that ¢5(0) = 0 since ¢y, is odd). Notice that ¢y and ¢y are both well
defined in > U X1 and satisfy ¢ 1 = —¢y there.
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Let W be a sufficiently small open disc centered at 0. Then (as can be
seen by working in the coordinate 23/2) each level set {z € W; Ro;(z) =

Const. # 0} is connected and hence equal to a Stokes line. Let A; €3;, and
notice that every point in

{z € W\ ;s Ro;(2) > Re;(4;)} (7.2.21)

can be reached by a curve in W'\ 7, » starting a A; and ending at z, along
which R¢; is strictly increasing. By Theorem it is clear that we have a
holomorphic solution to (—(hd)? + V)u; = 0 in W, such that

{%(27 ) = a;(z; h)e in the set @7

(Zj(Z; h) ~ a,j’(](Z) + hCLjJ(Z) + ...

Here, as in Example % (which extends to the complex case) a;jo(z) is
unique up to a constant factor and we can choose

aj0(2) = (¢(2)) 2.

where we have not chosen any preferred sign. Further, by Remark % we
may arrange so that

u;j(Aj;h) =0.
In the following we replace the disc W by

WAz € 255 Rey(2) < Rey(4;)}

and decrease X; accordingly.
Recall that if u, v are solutions to our homogeneous Schrodinger equation,
then the Wronskian
Wr (u,v) = (hdu)v — uhdv

is constant. Applying the asymptotics of ug and u; at some point in the
interior of ¥ U 3, we see that Wr (ug, u;) has an asymptotic expansion in
powers of h:

Wr (ug, u1) = 2a9,a1,00¢0 + O(h)

%
=2 + O(h
Voot "
0
=2 + O(h).
) "
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Similarly,

+

/ !
Wr (uy,u_y) =2 o1
Vo
-1
/ !

Wr (u_q,up) =2 O +

V%

0
This can be further determined in the following way: Let us fix a branch of

(¢})'/? as above for j = 0,1, —1 mod4Z. Then for any two different Stokes
sectors, j # k we have in the interior of ¥; U X, that

(h)

o
O(h).

()12 = vix (g,) V2, (7.2.22)

J

where v, € Z/AZ is odd and v, = —vy ;.
Starting in >y we make a tour around 0 in the positive direction and write

(1)1 =i (9"
(L)% = 7 ()
(60)'72 = a0 (0L))"

This means that if we follow the continuous branch of (¢})*/? around 0 in
the positive sense, then after one tour, we get the branch

Z'Vo,—1+l/—1,1+V1,0 (¢6)1/2'

But (¢))'/? = V/4 for a suitable branch of the fourth root and following this
function around 0 once in the positive sense, we get iV'/4. Hence we get the
cocycle condition

Vo,—1 + V_11 + Vio = —1 mod 4Z. (7223)

We can now specify the signs in the computations of the Wronskians above:

Wr (1, up,) = 2 V9 + O(h) = 2i"* + O(h). (7.2.24)

V%%
The space of null solutions is of dimension 2 and any two of u_1, ug, u;
are linearly independent, so we have a relation

a_1u_1+ QoUg + ou = 07 (7225)
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where the vector (a_1, ag, 1)t € C3\ {0} is well defined up to a scalar factor.
Applying Wr (u;, -) to this relation, we get

a_q
(Wr (uj,ug))ie | @ | =0, (7.2.26)
an

or more explicitly,

—a 0 ¢ ap | =0. (7.2.27)

We can take
a_1 C
ap | = | -b], (7.2.28)
aq a
Using we can specify the values of a, b, c and of a_1, ag, aq:

a=Wr(u_y,u9) = 2i""1° + O(h)
b=Wr(u_q,u;) = 2"+ O(h) (7.2.29)
¢ = Wr (ug, uy) = 2" + O(h),

which gives a choice

o §vo.1 gro.1
ao | = | = | +om) = [ | + 0. (7.2.30)
oy jV-1,0 jv-1.0

Bohr-Sommerfeld quantization for a potential well. Let 1 be a real-
valued and analytic function on neigh ([A, B],R), where —co < A < B <
+00. Let Ey € R and assume that there exist A < ag < y < B such that

A B
Vo By 1= 0 om 1A colUlfo, B (7.2.31)
< 0 on |ayg, Bol.
Also assume that ag, fy are simple turning points for Vy(z) — Ey:
‘/0,(04()) < 0, Vg(ﬁo) > 0. (7232)

Then the situation is stable under small perturbations of the real energy E:
For E € neigh (Fy, R) we have simple turning points a(E) < S(F) in A, B[
such that Vo—E > 0 on [A, a(E)[U]5(F), B] and Vi — FE < 0 on |a(E), B(E)].
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We can draw the Stokes lines of Vj — F in a complex neighborhood of [A, B|
with o or 8 as an end point:

/.
TN

One of the Stokes lines from « reaches 5.
Let © € C be a complex neighborhood of [A, B] to which Vj extends
holomorphically. Let V(z) = Vo(z) + W (x), where W is holomorphic in

and
W (z)| <e, xe. (7.2.33)

If € > 0 is small enough and E belongs to a small complex neighborhood of
Ey, we still have two simple (in general complex) turning points o = «(V, E),
B = B(V,E) close to ag and Sy and in general a and § will not be connected
by a Stokes line.

5, s,/
Zo A o \'B 0
S
21 -1

The drawing indicates the three Stokes sectors ¥; near o and the three Stokes
sectors S; near 3 for k = —1, 0, 1. Note that A € ¥y, B € Sy. For each ¥,
we have an exact solution w; which is of the form

uj = aj(z;h)e® @M in i]‘

with ¢;(a) = 0 and w; subdominant in the interior of ¥; (as in the discussion
above of a simple turning point. Similarly, we have the exact solutions v;
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associated to the sectors S; of the form
v; = bj(z;h)e¥" @M in g,

subdominant in the interior of S;, ©;(8) = 0.

When dealing with v; we think of —z as the new independent variable,
rather than z (giving a new Schrédinger operator). Conseq nfly, the leading
term in b; becomes b;o = (_%)71/4' In analogy with (7.2.22]

[7.2.22)], we have
(_w/A)l/Q _ iuj,k(_q%c)l/?’ (7.2.34)

J

where we choose fhe same v .

u; satisfy %D with a; as in @[} v; satisfy the analogous relations
with coefficients, that we denote by 8; and we have ; = o; + O(h).

We may arrange so that ug(A) = 0, vo(B) = 0. Also we may arrange so
that u;, v;, a;, b; depend holomorphically on E.

Now consider the Dirichlet problem

(—(hd)* +V — E)u =0, u(A) =u(B) = 0. (7.2.35)

In other words, we are looking for the spectrum in neigh (Ey, C) of the un-
bounded operator

P = —(hd,)* +V : L*(JA, B]) = L*(]A, B)),
with domain
D(P) = {u € H;(A, B]); w(A) = u(B) = 0}

We see that
E € 0(P) < Wr (ug,vp) = 0. (7.2.36)

In the construction of the subdominant solutions, we may arrange so that
uj = fj(h)v_; for j = £1. (7.2.37)

In order to determine the asymptotics of f;, we compare the asymptotic
expansions for u; and v_; in ¥; N S_;.

We first look at the exponential factors. In 3o, we have ¢o(z) = [7(V (y)—
E)'2dy with the continuous branch of the square root which is positive for
r < a when V', E are real. Thus,

¢;(x) = — /x(v — E)'2dy, j==£1,
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where the branch of the square root is given by the continuous extension of
the one in ¥y to the adjacent sectors (and with a cut along the curve that
separates X1 and ¥_;). When V| E are real, we get for j = +1,

pi(r) = —ji/ (E—-WY2dy, a <z <, (7.2.38)

where (E —V)'/2 denotes the natural branch of the square root (> 0 on Ja, A
when V', E are real)
Similarly, ¢o(z) = — [7(V p E)'2dy in Sy with the natural branch so

¢j(:c):/ﬁ (V- E)Y2dyin S;, j = +1,

with the continuous branch, having a cut alopg the curve separating .S from
S_1. Hence with the same branch as in dﬁ

)

wy(o) = ji [ (B V) Py (7.2.39)
B
It follows that

B
¢1 = ¢—1 - Z/ (E - V)I/Zdy
. (7240
¢4=¢ﬁw/XE—VW%y

Next compare the leading amplitudes. From the eikonal equations, we
know that
6= (V—E)"2 —yp=(V-E)

in Yo, Sp respectively, with the natural branches of the square root. Hence,
(60)'7* = (V= E)'*, (—up)'? = (V= E)'

with the natural “positive” branches of the square and quartic roots.
It follows that

(¢i1)1/2 = 70 ( — E)1/4 jrEL Oeim/“(E V) in Xy,

where (E — V)Y denotes the branch which is > 0 on ]a, 5[ when V, E are
real. Thus for j = +1,

i1 =1 E0FTYE V)Y in Yy (7.2.41)

134



Similarly,
birg =i =0T HE — V)T in S, (7.2.42)

It follows that

f1(h) = g1 exp (—% /j(E — V)I/Qdy> : (7.2.43)

fa(h) = g1exp (% /j(E - V)Wdy) :

where, g = a1/b_1, g_1 = a_1/b; have complete asymptotic expansions in
powers of h, with leading terms

ai,0 Z'—V170+1/71,o€—i7r/4—z‘7r/4 Z'—V1,0+V71,0—1
- - s
b_1p

o a/_]_,o — /L'—V,170+V1’0€7;7F/4+i7r/4

(7.2.44)

V1, 0—V—1,0+1

From dﬁ, (i?i%h) and the analogous relations for v; with coefficients
B; = a; + O(h), we get

Uy = &lul + &_1u_1, Vo = Blvl + 5_11)_1, (7245)

aé/j = _aj/a07 g] = _6]'/607 aj = B; + O(h’) ==+l+ O(h) (7246)

From this and dﬁ, we get

Wr (Uo, ’Uo) = 52131WI‘ (Ul, 'U1) —+ &,1§,1Wr (u,l, Ufl)
= a1 1 fiWr (v, v1) + a1 B foaWr (v, v-1)
= (fifi —a 1B af1)Wr(v_y,v1).
Here &jgj = 14 O(h) has a complete asymptotic expansion in powers of h

(as well as similay qugntities below) and Wr (v_y, yp) = 2i"=* + O(h) # 0 by
the analogue of . Using also %.2.45]), 2.44)), we get

W (g, v9) = 281 (14 O(R) )i ¥1otv-10- 1 L (EB-V)!/2dy
— (14 O(R))iro—v-rotlei JIE-V)!2dy)

Here v1 9 —v_19 + 1 is odd,

Wi (g, v) = 2(1 + O(h))ir—+vo—v-rotle=i [ (E=V)! 2dy
(e HEDPB L om) - 1),
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2
and using (@W we get

W (1, o) = 2(1 + O(h))e™ i Ja E=V)!/2dy (e%U(E;h)—ﬂh) - 1) o (7.2.47)

where
B(E)
I(E;h) = Ii(E) + O(h?), Iy(E) = 2/ (E—V(y)Y2dy.  (7.2.48)
a(E)
We have

I0(E) = / Cdz,

where 7 C p~!(E) is the closed curve which is the concatenation of 7, and
~_, where

{%(t) = (1 =t)a+18,(E = V({1 —t)a+15))"?), , te[0,1].

F-(t) = (1 =1)B + ta, —(E = V((1 =ty + 15)))'/?)

When V and E are real, 7 is the real energy curve p = E with the
orientation of the Hamilton field, and from Stokes’ formula, it follows that

I(E) = volgxr p (] — o0, E).
It is classical (and rather easy to show) that
OpI(E) = T(E) > 0,

is the primitive period of the real energy curve p~'(E) as a closed H,-
trajectory. In the non-real case, one can still give a sense to and establish
the same formuyla, where now R7'(E) > 0 and |[ST(F)| < 1.

From we see that the eigenvalues of P near Ej are given by

ein(IER)=mh) _ 1 (7.2.49)
or equivalently by the Bohr-Sommerfeld quantization condition,
1
I(E;h) =27(k + E)h’ ke Z. (7.2.50)
From the construction it follows that I(F;h) is a holomorphic function of F
in a fixed neighborhood of Ejy in C and has a complete asymptotic expansion
in powers of f; in the space of such functions with the two leading terms

given in . Moreover, OgI(E;h) = T(E) + O(h?) # 0, so I(-;h) is

136



biholomorphic from neigh (Ey, C) onto neigh (I(Ey), C) and @D gives a

sequence of eigenvalues

Ey=1" (27r (k + ) h; h) =" (27r (k + %) h) + O(h?),

all situated on the curve given by the condition that I(E;h) € R, which is
an O(h?) deformation of the curve I,(E) € R. Notice that the reality of
Iy(E) is equivalent to the condition that a(F) and S(F) are connected by a
Stokes line.

It is not hard to show that the eigenvalues F are simple, either by de-
formation of P to the harmonic oscillator or by appealing to general Fe%to aSi15
about Gl",glo i{]Bproblems. The latter argument has been carried out in
(see also bT . Under suitable assumptions on the behaviour of V near +o0,
the spectrum of —(hd)? + V as a closed ope is still given by
a Bohr-Sommerfeld quantization condition, Fﬂ%ﬁmd for the proof we just
need to complement the yments above with a completely analogous
study near infinity. ( See)%{TUU or etails.)

There is a large literature on the complex WKB-method with lots of very
sophisticated and deep considerations, far O}é?nd the scope of this book. Let
us nevertheless mention the lecture notes [I51] by André Voros from whom
we have learnt the basic principle of complex WKB analysis, namely to follow
the solutions in the directions of growth.
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Chapter 8

Review of classical
non-selfadjoint spectral theory

The first sectio og %1%18 Chapter deals with E eglb%lm eé)r&%n the spirit of
Appendix A in G‘Z]J*see also an appendix in TDZI}_an IZLZI]_The remaining
sections give a brief account of the very beayt 10@11 classical theory of non-self-
adjoint operators, taken from a section in 1'30 which is a l%:r giccount of
parts of the classical book by I.C. Gohberg and M.G. Krein ]]%!7

8.1 Fredholm theory via Grushin problems

Most of this section follows Appendix A in H%ezs]]%%ite closely. For simplicity
we only consider the case of (separable) Hilbert spaces. Let Hi, Ha be two
such spaces. Recall that a bounded operator P : H; — Ha, (P € L(H1,Ho))
is a Fredholm operator if N'(P) is of finite dimension, R(P) is closed of finite
codimension, where codim R(P) := dim R(P)*. Equivalently, P is Fredholm
if there exists Q € L(Hs, H1), such that PQ =1+ R, QP = 1+ L, where
L:Hy — Hi, R:Hy — Ha are compact. If P is (a) Fredholm (operator),
we define its index by

ind P = dim NV (P) — codim R(P). (8.1.1)
Let €2 C C be an open connected set (or an open interval in R) and let
N>z P, € L(H1,Hs) (8.1.2)

be a continuous family (i.e. continous for the operator norm; uniformly con-
tinuous).
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Proposition 8.1.1 If P, is Fredholm for some zy, then there is a neighbor-

hood V- C Q) of zy such that
P, is Fredholm,

ind P, = ind P,

for every z € V.

Proof. Let n% = dimN(P,,), n® = codim R(P,,) and define

RS :Hy — C™, R :C™ — H,,

by

n?
REu(j) = (ulej), j=1,2,..,n%, R_u_= Zu_(j)fj,
1

where ey, ..., €,0 and f1, -y [0 are orthonormal bases for N'(P,,) and R(P,,)*.

Put

P. R 0 0
Pz:<z ):H x C"= — Hy x C™+.
Rg_ 0 1 2

Using the orthogonal decompositions

Hy :N(PZO)J_ 69N(P)7 Ho = R(‘PZO) @R(P)J—7

we see that P,, is bijective with bounded inverse. By continuity, P, has the
same property for_ all z in a neighborhood of zy and the proposition follows

from Proposition below.

(8.1.3)

(8.1.4)

(8.1.5)

|

Proposition 8.1.2 Let P € L(H1,Hs) and let R, : H; — C™+, R_ : C"-

be bounded linear operators of mazimal ranks n,,n_ € N. If

P R_
— . n— n4
P—<R O)HGC — Ha x C

15 bijective with a bounded inverse, then P is Fredholm of index ny — n_.

(When ny = 0, then Ry, C™ are absent as well as the last line in the

matrixz for P, and similarly when n_ = 0.)
Proof. Let

EF FE
E = <E E++> : HQ x C™ — Hl x C"-
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be the inverse of P, so that the system

Pu+ R_u_ =wv,
Riu=vy,

has the unique solution

u=Fv+ Eyv, € Hq,
u=FE v+ E v, € C'

for any given v € Hay, v, € C™+.
The equation, Pu = v can be written Pu+ R_0 = v and if we introduce
the unknown v, = R u, we get the equivalent system

u=FEv+ E vy,
0 = E_'U + E_+U+.

Thus,
R(P)={veHy v € C™, ELv=—-E_Lv,}, (8.1.6)
N(P) == {E+U+; E_+U+ == O} (817)
The fact that £ = P~! is equivalent to the following two systems of
equations
PE+R FE =1, PE,+R FE . =0,
R+E - O, R+E+ - 17
EP + E+R+ — ].7 ER_ — 07
EFEP+F R, =0, EER =1.
From the last equation, we see that F_ is surjective and 1;:’;:!]-;} shows that

R(P) is closed and that codim R(P) = codim R(E_,). (8.I.7) shows that
N (P) is finite dimensional and

%ere we also used the injectivity of E, provided by the last equation in

(8.1.8)

(8.1.9)

Thus P is a Fredholm operator and
ind P =dimN(E_,) —codmR(E_.)=ny —n_,

where the last equality is a general fact for the index of any n_ x n,-matrix.
O

Thg following result can be proved by straight forward computations (cf.

&Ly,
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Proposition 8.1.3 Let P, R, R_, P be as in Proposition% and assume
that P is bijective with a bounded inverse £ as in the beginning of the proof
of that result.

e [f P is bijective, then E_ is bijective (necessarily P is of index 0 so
ny =n_) and

E~l =—-R,P'R_. (8.1.10)
o [f E_. 1is bijective, then P is bijective and
P'=E-E.EE. (8.1.11)

i13
See also Proposition 4.1 in f‘f?)S] for a characterization of the invertibility of
P.

We next review analytic Fredholm theory. Assume that the family P,
in @ is not only continuous but holomorphic (for the operator norm
topology) and that P, is Fredholm for every z € 2. Then we know that
ind P, is constant and we assume that it is equal to 0.

Proposition 8.1.4 Assume in addition that P, is bijective for some w € ().
Then
= {z € Q; P, is not bijective}
is discrete.

If z0 € X, then z — P! has a pole of order Ny < oo at zy:

-1

P =Y (2 —20) 45+ Q(2), (8.1.12)

—No

frgr.10

frgr.11

where Q(z) € L(Ha, H1) is holomorphic in a neighborhood of zy and A_n,, ..., A_1 €

L(Hz,H1) are of finite rank.

Proof. If z; € Q, we can define

21
P — (P R—) L Hy x G s 3y x Cole)

with Ry independent of z, such that P?' is bijective for z in a connected
neighborhood of z; in €. Let

o= () £.0)

be the inverse, so that EZ', (z) is a holomorphic function of z € V(z;) with
values in the ng(z1) X ng(z;) matrices. Now, ¥ NV}, coincides with the set
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of zeros of the holomorphic function V,, 3 z + det E*, (z) which is either a
discrete set or equal to V,. Covering €2 with such V,,, we conclude that X is
either discrete or equal to all of €2. But the latter possibility is excluded by
the assumption that w & 3 for some w € €.

Now, let zg € ¥ and choose P,, £, as above with z; = 2. Then

P'=FE(x)—E.(2)E_(2)'E_(2), z€ V,,.

z

Here E_, (z)~! has a pole at 2:

Tl T A1 ol (z
E——l—(Z) - (Z —Zo)NO +...+ (Z _ Zo> + h 1( )7

1< E%i <,30, rank R_; < ng. Using that E(z), E4(z) are holomorphic we
j )

get where A_y,,...,A_1 can be expressed in terms of Ry, ..., R_1
and E’(z), EY(z), for 0 < j < Ny, O

Let P : H — H be a closed densely defined operator with domain D =
D(P). With Q as above, we assume that

P —2:D — H is Fredholm of index 0 for z € )

8.1.13
and bijective for some z, € ). ( )

If p(P) denotes the resolvent set of P we then know from the above discussion,
that p(P)NQ = Q\ 3, where ¥ = o(P) N Q is discrete.

Proposition 8.1.5 Write the Laurent series in (% as
(z—=P) = (2—2) A N+ (2—20)TTALHQ(2) in L(H, D), (8.1.14)

where @) is holomorphic near z = zy and A_; are of finite rank.

m_1 = A_q is a projection which commutes with P. This implies that the
finite dimensional space R(m_1) is contained in the domains of all powers
P* k€ N and is invariant under P.

The restriction of zo — P to R(w_1) is nilpotent. Indeed,

Aj=(P—z)y 'rq, 1<5< N, (8.1.15)
(P — zo)Nomr_; = 0. (8.1.16)

Let v = v, = 0D(20,7) be the oriented boundary of the disc D(zy,r) for
0 <r <1 small enough. Then

1 1
T1= 5 ’Y(z — P)dz, (8.1.17)
1 .
A= gm 7 %) 7!z — P)dz. (8.1.18)
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fror 16 rer 17
Proof. (B I.T7), (B-I.I8]) are s %ndard formulas for the Laurent coefficients,

obtained by multiplying by (2 — 29)?~! and then integratipg al BE 7.
Knowing that 7_y : H — D, we apply P — zy to the left in and
integrate:
1
pP— =— [(P- — P) 'dz.
( 20)T-1 = o V( 20)(2 )" dz

Here the first P in the integral can be replaced by z, since the corresponding
difference of integrals is

1
— [ (P - —P)
5 7( z)(z — P)"dz

which is zero, since the integrand is holomorphic near zy. Thus,

(P —zp)m_1 = % 7<Z —20)(z — P) " ldz = A,.
By the same argument, we see that the_rang 50f m_1 is contained in the
domain of P* for all £k € N and we get . Of course, if u € D, then
m_1P = Pn_q, so m; and P commute.
Let us finally recall why 7w_; is aprojection. Let 0 < r; < r9 < 1 and use
the resolvent identity, to get with v; = 7,,:

dz d
= / / (w—P)}(z—p) 2
o I 21 271

L dz dw P! dz dw
o S W 27rz 211 W 211 2me
=1+ 1I.
Here,
1 d d d
L)t [ e
n \Jy W— 22m0 271 " 271
1 d d
II:—/(w—P)l(/ —Z.>—w.:0
o oy W — 22w ) 27
Hence 2, = 7_;. O
One éo!)]%w multiplicities through Grushin reductions, and we
refer to%ﬁ [ and many other papers for such discussions. Under

the assumptlons of the last proposition, the (algebraic) multiplicity of the
eigenvalue zy of P is by definition,

m(P, zp) = dim R(m_1). (8.1.19)
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Similarly, if

P(z) = (PR:’Z %) D x C™ — H x C"o

is bijective for z € neigh (zp) with inverse,

£(z) = ( 5_ <(Zz)) J:j?_i((zz))) ’

we let m(E_4, z9) be the multiplicity of 2z as a zero of z — det(E_(2)).
Proposition 8.1.6 Under the above assumptions, m(P, zg) = m(FE_, z).

Proof. Anticipating on the treatment of traces later in this chapter, we have

m(P, z) = trm_q = tr /EJr(z)EJr(z)lE(z)%
= /tr (Ei(2)E_1(2)'E_(2)) %
= /tr (E_4(2)"E_(2)E+(2)) ;—;

since E_, is a finite rank.

From

0.E(z) = —E(2)0.P(2)E(z2),
we get

_(E E; 10 E E,

=g 22) o) (e £)
and hence,
0.E_(2)=E_(2)E ().

Thus,

(P o) = [ (B1(2)710.81() o

2m
/82 det E_(2) dz.
L det E_y(2) 2mi

m(E_4, z).
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8.2 Singular values

From now o' 6t9his chapter we give a brief account of non-self-adjoint theory
and follow%g%osely.

Let H be a separable complex Hilbert space. If A € L(H,H) is compact,
we let s1(A) > s9(A) > ... \( 0 be the eigenvalues of the compact self-adjoint
operator (A*A)Y/2. They are called the singular values of A. We notice that
s;(A*) = s;(A). In fact, this follows from the intertwining relations:

A(A*A) = (AAM)A, (ATA)A* = A*(AAY).
The singular values appear naturally in the polar decomposition: If A €
L(H,H), then
[Aul® = (Au|Au) = (A" Aulu) = ((A"A)2ul(A*A)Pu) = || (A" A) 2l
The operator
U:R((A*A)Y?) 5 (A*A)V?u — Au € R(A)

is isometric and bijective. It extends to a unitary operator, that we also
denote by U, from R((A*A)'/2) to R(A) and to a partial isometry if we put
U = 0 on the orthogonal space (R(A*A)Y/2)t = N((A*A)Y/?) = N(A). We

get the polar decomposition:

A=U(A A2, (8.2.1)

This leads to the Schmidt decomposition of A: Let ey, es, .. be an orthonormal
family of eigenvectors of (A*A)/2 associated to the eigenvalues s;(A), s3(A), ..

that are > 0. Then
Au=""s;(A)(ule;) f;, (8.2.2)

where f; = Ue; is also an orthonormal family. oKr69
Recall the mini-max characterization of the the s; (}fz;q , D- 25):

) A* A2y
si(A) = L nf - sup w (8.2.3)
e wepvo ull
of codimension <j—1
From that we get the f g characterization of the singular values which
is due to Allahverdiev ( p 28,29):

Theorem 8.2.1 Let A € E(H,’H) be compact. Then
Sns1(A)= min [J[A- K|, n=0,1,...

KeL(H,H)
K of rank <n

The minimum is realized by an operator K for which s1(K) = s1(A),..,s,(K) =

$n(A), $pe1(K) =0, 81(A — K) = sp41(A), $5(A = K) = s,29(A),.. .
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Proof. If K is of rank < n, then N(K) is of codimension < n and

A A—K
sa(d) < sup AUl NA= Bl
oo el oo

To get the minimizing operator write the polar decomposition A = U(A*A)
and take K = U(A*A)Y/2P,, where P, is the orthogonal projection onto the
space spanned by ey, ..,e,. Then

A—K=U(A*"A)Y*(1 - P,),
(A=K) (A= K) = (1= P,)(A"A)PUU(A"A) 2 (1= P,) = (AA)(1 - B,),

and we get the statement about the singular values of A — K. Especially
snt1(A) = ||A — K||. The statement about the singular values of K can be
obtained similarly. O

The following corollary is due to Ky Fan:
Corollary 8.2.2 Let A, B € L(H) be compact. Then for n,m > 1:
Sman-1(A+ B) < s (A) + s,(B) (8.2.4)
Sman—1(AB) < s (A)s,(B). (8.2.5)

Proof. Let K, Kp be operators of rank < m — 1 and < n — 1 respectively,
such that
sm(A) = |A = Kal, su(B) =B — Kgl.

Then

Smin-1(A+B) < [[A+B—(Ka+Kp)|| < [A=Kal[+[[B=Kp| = sm(A)+su(B).

The proof for AB is essentially the same. O

Corollary 8.2.3 We have |s,(A) — s,(B)| < ||A — B].
Proof. Let K be an operator of rank n — 1. Then
sn(A) < [A- K[| =||B-K+A-B| <|B-K[|+][A-Bl.

Varying K, we get s,(A) < s,(B)+||A— B||, and we have the same inequality
with A and B exchanged. O

We now Weyl 1nequahtles and start with the following result of
H. Weyl (see p
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Theorem 8.2.4 Let A € L(H,H) be compact and let \1(A), \a(A), .. be the

non-vanishing eigenvalues of A arranged in such a way that |A\1| > [Aa| > ...
and repeated according to their multiplicity (which by definition is the rank
of the spectral projection). Then for every n > 1 for which \,(A) is defined,

we have
A (A) - A (A)] < s1(A) - .. s, (A). (8.2.6)

Proof. Forn =1, 'J7ust says that |\ (A)| < ||A||. Approaching A by a
sequence of finite rank operators, we can assume that A is of finite rank and
replace H by the finite dimensional space R(A) + (N (A))+, that we denote
by ‘H from now on. (Indeed, A\; and s; depend continuously on A.) Introduce

the space
NH=HN. . H (8.2.7)

generated by n-fold exterior products of vectors in H. A"H is a Hilbert space
with a scalar product that satisfies

(ur Ao Auglog A A wy) = det((ug)or)), uj,v; € H. (8.2.8)

Further, there is a linear operator A"A : N\"H — A"H which is uniquely
determined by the condition,

(A"A)(ur A oo Auy) = Aug Ao A Auy, uj € H. (8.2.9)

Using a basis of generalized eigenvectors, we see that the eigenvalues of
A"A are the values \j, - .-\, , with j, # j,, for v # pu. The eigenvalue of
greatest modulus is then A; - ..- A,. On the other hand the adjoint of A" A is
A" A*. We also have (A" A)(A"B) = A"(AB). Then (A"A)*(A"A) = A" (A*A)
and this operator has the eigenvalues s3 (A) - .. - s;,(A)?, out of which the
largest one is

(s1(A) - sa(A)2 = AT ALP 2> M- A
The proof is complete. ]

- . . oKr69
In the same spirit we have the inequality of A. Horn (see H;ZIQ , D- 48):

n

[T 5:(AB) < [](s5(A)s,(B) (8:2.10)

1

Proof. As before it suffices to treat the case when H is of finite dimension.
The largest eigenvalue of

(A"AB)*(A"AB) = A"((AB)*AB)

147



is equal to (s;(AB) - .. s,(AB))?. On the other hand,

(A"AB)*(A"AB)ulu) = [(\"AB)ul|* = [[(\"A) o (A" B)u|®
< A" AP A" BIPul® < (51(A) - .- $a(A)"(51(B) - .. - s0(B))?||ulf?,
and taking the supremum over all normalized u, we obtain the required
inequality. O

geed a convexity inequality, due to Weyl and Hardy, Littlewood,
Polya ( F , p- 37).

Lemma 8.2.5 Let ®(z) be a conver function on R, which tends to 0, when
r— —o00. Leta; > .. > ay, by > .. > by be real numbers with

Then,

Proof. Approaching ® by a sequence of smooth functions, we can reduce
the proof to the case when ® € C*°. Then &' > 0,

P'(z) = 0, 2 = —o0. (8.2.11)
Letting y — —oo in the identity
b =) + [ ¥l (8.2.12)
Y

we get

From the convergence of the last integral, we conclude that fyo d'(t)dt < C,
y < 0, implying that |y|®’(y), is a bounded function for y < 0, which tends
to 0 when y — —o0.

Integration by parts in @%‘iges
B(r) = ¥(p) + (- VO, — [ (-0 @
= 0y) + (- 9)¥) + [ (o= D0



Letting y tend to —oo, we get

O(z) = /w (x —t)®"(t)dt = /(x — 1), D" (t)dt.

Hence
> 0a) = [ (0 - 00 W)

for every t. Let k(t) < k be the largest k < k with az > t. Then

Slaj =t =D (a =) <3 -1 < Db

j=1 j =1 j=1 j=1

Hence Y5 @(a;) < 3% ®(by). O
. oKr69
As a consequence we get the following result of H. Weyl (}%[9 , p- 39, 40):

Theorem 8.2.6 Let A : H — H be a compact operator, and f(z) > 0 a
function on (0,00 with f(0) = 0 such that f(e') is convex. Let \; and s;
be the eigenvalues and singular values of A, arranged with |A\1| > [A2| > ...,
S$1 > 89 > ... Then for every k >1 :

k

k
YNCYIED SN (82.13)
1

1

Proof. We know that

k k
Zlog I\ < Zlogsj,
1 1

and it suffices to apply the preceding convexity lemma. O

Corollary 8.2.7 For every p > 0, we have

D OINAP <D (A

For every r > 0, we have

n

H(1+r|/\ ﬁ (14 7rs;(A)).

1
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Let A, B be compact operators. With <I>'(t) = e, a;, = logs;(AB), b =
log(sj(A)s;(B)), we get from Horn’s inequality @ﬁnd Lemma ;
Corollary 8.2.8 > 7' s;(AB) < > 7 s;(A)s;(B).

Let C, C L(H) be th ] u@gpaee of compact operators. The following
Lemma, is due to Ky Fan (?2[9 , p- 47).

Lemma 8.2.9 Let A € Cy. Then for every 1 < n € N, we have

> si(A) = max Z(UA@'W;'),

1

where the maximum is taken over the set of all unitary operators U and all
orthonormal systems ¢1, .., Oy,.

69
For the next result, see fzfg . p- 48:

Corollary 8.2.10 If A,B € S, then

n

D si(A+B) <) si(A)+ > si(B).

1 1

8.3 Schatten - von Neumann classes
We are no ready to discuss the Schatten—von Neumann classes.

Definition 8.3.1

Definition. For 1 < p < oo, we put

Cp={A€Cx; > sj(AP < oo}.
1

Theorem 8.3.2 C, is a closed two-sided ideal in L(H,H) equipped with the
norm

[Allc, = 11(s;(A))3% -

If p1 < pa, then C,, C C,,. The space of finite rank operators is dense in C,
for every p.
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We will only recall the proof of the fact that || - ||c, satisfies the triangle
inequality. Let A, B € Cy. and put & = s;(A + B), n; = s;(A) + s;(B).
According to Corollary we have > 7& < > 7 n;, Vn and hence,

HA + BHCI < ||A”C1 + ||BH017

by letting n tend to oo.
It remains to treat the case p > 1. §; and 7; are both decreasing sequen-
cies. It suffices to show that

1€ller <7 ler- (8.3.1)

We have
1§ 1ler = sup (&),

HC“M -1

by Hélder’s inequality, where ¢ € [1,4o00] is the conjugate index, given by
p '+ ¢ ' =1 and (-|-) denotes the real scalar product on ¢*({1,2,..}). We
also know that the supremum is attained by a ¢ = (% of the form CJQ =

(Const. > 0)5;7/ “ and in particular ¢ is a decreasing sequence. We use
partial summation with Z; = > 1 &, Zo = 0:

(€]¢o) Z@CO Z:-—EHK?

n—1
= Z_]CO Z:J 1 Hngo‘i_Z“J CO J+1
n—1 7
Zﬁk <0+j21;§k jH

>0

The last expression is < the same expression with £ replaced by n and running

the same calculation backwards the latter expression is equal to (n|¢%)™ 14

Hence (£[¢%)™ < (n|¢°) < ||nlle. Letting n tend to infinity, we get ,
and this completes the proof of the triangle-inequality for the C),-norms. O

We notice that [|Al| = s1(4) < ||A|lc,- The space C; is the space of
nuclear or trace-class operators, and Cj is the space of Hilbert-Schmidt op-
erators. We have the following Holder type result:

Theorem 8.3.3 Let p,q € [1,00] be conjugate indices; p~* +q~ 1 = 1. If
AeC,, BeC,y, then AB € Cy and ||AB||c, < ||Alle, || Blle, -
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Proof. We know that

n

D si(AB) <) si(A)si(B)

and letting n tend to oo, we get from the usual Holder inequuality:

[e.9]

> si(AB) <) si(A)s;(B) < lls.(Allerlls.(B)ller = 1Al c, | Bl

8.4 Traces and determinants

We next discuss the trace of a nuclear operator. If A € L(H,H) is of
finite rank, we choose a finite dimensional subspace H' C H such that
N(A)*F, R(A) C H'. We then define the trace of A, tr A as the trace tr 4},
of the restriction of A to H’. We check that this does not depend on the
choice of H’ and that tr A is the sum of the finitely many non-vanishing
eigenvalues of A (each counted with its algebraic multiplicity). We see that

A—trA (8.4.1)

is a linear func;ional on the space of finite rank operators. Moreover, by
Corollary i

Al < 37 ()] < Al (3.4.2)
We can then extend (@'—% a continuous linear functional on C and we
still have
[tr Al < [[Al|e, - (8.4.3)
In the case of finite rank operators, we also have
tr AB = tr BA. (8.4.4)

Let now A € C,, B € C,, where p, ¢ € [1, 00] are conjugate indices and choose
A,, B,, v =1,2,.. of finite rank, so that |[A - A,||c, = 0, ||B — B,||c, = 0.
Then
|AB — AyB,|lc, = [[(A = A))B + Ay(B — B))l|c,
< A= Alle,IBllc, + [ Avlic,IB = Bulic, = 0, v — oc.

.18
Using this also for B % and tilge cyclicity of the trace @_ﬁr finite rank

operators, we obtain also in the case A € C,,, B € C,, where p,q €
[1,00] are conjugate indices.
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Remark 8.4.1 One simple way of extending most of the theory to the case
of operators A : Hi — Hs, where Hq, Ho are two different Hilbert spaces, is
the following. Consider the corresponding operator

(81 8) FHL O Ha = Ha © Ha, (8.4.5)

. . .19 ..
and say that A belongs to C), if the operator in (@Hﬁes, The cyclicity of
the trace still holds in this setting, namely if A : H; — Ho, and B : Hy — H;
belong to C, and C, respectively, where p and ¢ are conjugate indices.

We next discuss determinants of trace-class perturbations of the iden-
tity operator. Let first A € L(H,H) be of finite rank and chose a finite
dimensional Hilbert space as above. Then we define

det(1 — A) = det((1 — A)y,,,) = [[ (1 As(4). (8.4.6)

J

where \A;(A) denote the non-vanishing eigenvalues, repeated according to
their multiplicity. We remark that

|det(1 — A |<H1+|)\ <H1+3] < XinA),

where the the second inequlity follows from Corollary %‘ We want to
extend the definition to the case when A € (4. Let first I be a compact
interval and let I > t + A, be a C! family of finite rank rank operators,
with N(Ay)+, R(A;) C H', for some finite dimensional subspace H’ which is
independent of ¢. We first assume that 1 — A; is invertible for all £ € I, or in
other words that 1 — \;(A;) # 0 for all £ and j. Then det(1 — A;) # 0 and
by a classical formula,

%logdet(l — Ay) = —tr ((1— At)_lg(/lt)) = —tr ((%At)(l —A)7).

Hence,

Q - det(1 —

m 2 logdet(1 — A)| < (1 - 4" 5 Atucl

In particular, if I = [0,1], Ay = tA; + (1 —t) Ao, we get
| log det(1—A;)—log det(1—Ap)| < Os<u£)1 (1= (tA+(1—t) Ag)) || A1 — Ao ||y -
<t<
8.47)
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Now let A € €. If 1 — A is not invertible, we put det(1—A) = 0. Assume
then that 1 — A is invertible. Let A, be a sequence of finite rank operators
which converges to A in Cy. For v, u large enough, we have [|[(1—A,) || < Cp
for some fixed constant Cy and more generally ||(1 — (tA, + (1 —1)Ag)) || <
Cy. Then

|logdet(1l — A,) —logdet(l — A,)| < Co|lA, — Aulle,
and consequently lim,_,, logdet(1 — A,) exists. We then put
det(1 — A) = exp yh_g)lo logdet(1 — A,). (8.4.8)
Notice that
| det(1 — A)| < JJ(1+ s;(4)) < el (8.4.9)
Using approximation by finite rank operators, we also see that
det((1— A)(1 — B)) = det(1 — A)det(1 — B). (8.4.10)

By the same argument, we can extend o general trace class operators
for which 1 — (tA; + (1 —t)Ap) is invertible.

We now add a complex variable z € C and consider the function det(1 —
zA). If A is of finite rank, then this is an entire function of z. If A € Cf,
let A, — A be a sequence of finite rank operators. Then |det(1 — zA,)| <
el#lAvlier Tf 2X\;(A) # 1, Vj, then det(1 — zA,) — det(1 — zA) with locally
uniform convergence in C \ U;{1/\;}, and it follows that det(l — zA) is a
holomorphic function on this set, which verifies

|det(1 — zA)| < ellAllerll, (8.4.11)

It follows that det(l — zA,) converges to an entire function f(z) locally
uniformly on C. If z = 1/);(A) where \;(A) is of multiplicity m, then exactly
m eigenvalues of A, will converge to \;(A) while the others will stay away
from a neighborhood of this point (when v is large enough). Considering the
argument variation (Rouché), we conclude that f(z) vanishes to the order m
at 1/)\;(A) and in particular we have f(z) = det(1 — zA) also at that point.
In conclusion, we have

Proposition 8.4.2 Let A € Cy. Then Ds(z) = det(1 — zA) is an en-
tire function whose zeros counted with multiplicity coincide with the values
1/A(A),1/Xa(A), .. counted with the multiplicities of A\i(1), A2(A), ...
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Observe that
DA(0) =1 (8.4.12)

Also observe that D4(z) is of subexponental growth in the sense that for
every € > 0 there exists a constant C, > 0 such that

|DA(2)| < Ceedl?. (8.4.13)

In fact, by a limiting argument, we have
N
1

Here the prefactor is of polynomial growth for every fixed N and for a given
e > 0, we can always choose N > 0 so large that the exponent is < €|z].

The next observation is that W(z) := [[7°(1 — 2);(A)) is also an entire
function of subexponential growth. This follows by the same argument, if we
recall that ) ° \)\j% 4 is convergent. We now use a special case of a theorem
of Hadamard (see [4]): Since D4(z) and W (z) have the same zeros (counted
with multiplicity), we have

Da(z) = W(z)eg(z),

where g(z) is an entire function. It is also clear that we can choose g with
g(0) = 0. The function

Reg(z) :=log|Da(2)| — Zlog 11— Az (8.4.14)
1
is harmonic. Let R > 2. For |z| < R/2, we have
Reg(z) :/ Pr(z,w)Re g(w)|dw|, (8.4.15)
lw|=R

where Pr(z,w) = R7'Pi(z/R,w/R) is the Poisson kernel for the disc of
radius R and |dw| denotes the length element on the boundary of this disc.
It is easy to see that

1
R < Pr(z,w) <
where C' > 0 is independent of R. Using the subexponential growth of D4(z),
we get

R
, when |z| < bx lw| = R, (8.4.16)

= Q

c
/ Pa(z,w)log|Da(w)[dv| < ZeRR < CeR, (8.4.17)
|w|=R
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for R > R, large enough. On the other hand,

=1
<> 7 [ foglt=nullidul
1 w|=R
(8419

If |\|R < 4, WE write | log |1 — Ajw|[ < C[A;|R and the sum over the

/ Pr(z,w) Zlog 11— A\ jw]||dw|
|w|=R 1

corresponding j in can be bounded by

> %27r|)\j|RR—27TC’R > Nl =0(R), R . (8.4.19)

1 1
IXjl<zR INil<sR

If % < |N|R < T, where T > 1 is independent of R, then by straight
forward estimates,

1
= log |1 — Ayuw|||dw| < Cr.
|lw|=R

Let us estimate the number of A; in this case:
Y 1<2R Y |NI=or(R).
S <INIRST s <INI<SE
Hence

1
S Vsl Auldul = or(R), R oo (8420

$<|N|RST

It remains to consider the case |\;|R > T'. Here log |[1—\,;R| ~ log(|\;|R).
Hence, with constants C' and Cj that are independent of T"

1
> [ fesn-aullan<C 3 tos(lR)

I\j|R>T |\;|R>T

<Cs Y INIPR =GR DY N

T T
N> % N> %

Put § = 1/p, 1 < p < oo, and let ¢ be the conjugate index. Then, if N
denotes the number of A\; with |\;| > T/ R, we get from Holder’s inequlity:

S nlE <Ny v (8.4.21)

IA1>% IX1>%

156



34
Here NT/R < > || < C,s0 N < CR/T and the expression @_IS
bounded by CRY4/T"/4. Hence

C’R

(1

/ [log 1 — Ayl ldu| < CR¥*H /T — (8.4.22)
|lw|=R

I\ \R>T
Combining the three cases, we find

CR
| Pr(z,w Zlog|1—)\w|)|dw||<oT(R)+ - =0(R), R— o0
p—

|lw|=R
(84.23)
28
Combining this with d%bﬁ @%%D*and @7 we get

Reg(z) < o(R), on |z| <

SR=~

Now we can apply Harnack’s inequality to the function Re g — o(R), which
is <0 on the disc |z| < R/2 and > —o(R) at 0 and conclude that

Reg > —o(R) on the disc |z| < %

Since ¢ is harmonic, it follows from the last two estimates that Reg = 0.
Hence ¢ is constant and since we have chosen g with ¢(0) = 0, we get g(z) =0
Vz € C. We have then showed

Theorem 8.4.3 Let A : H — H be a trace class operator with exactly N
non-vanishing eigenvalues A\1(A), A2(A), .., 0 < N < oo repeated according to
multiplicity, 0 < N < 4+o00. Then Da(z) = det(1 — zA) satisfies

N

DA(Z) = H(l - /\jz)a z€C, (8424)

j=1
where the product is defined to be =1 when N = 0.

: . R oKr69
From this we get the important Lidskii’s theorem as a corollary (see %9 . P-
101):

Corollary 8.4.4 If A € C; we have
N
WA= (A (5.425)
1

16
where \;(A) are the non-vanishing eigenvalues as in Theorem@.‘
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Proof. We know the result when A is of finite rank. In this case, we also
know that

D, 0 B 1
D. 0: logdet(l — zA) = —tr ((1 — zA)" A),

away from the zeros of z — det(1 — zA). In particular,

— —trA, (8.4.26)

when A is of finite rank.

When A € (4, let A, be a sequence of finite rank operators converging
to A in the €1 norm. Then Dy, (2) — Da(z), D) (2) — D;(z), when
v — 00, uniformly for z in a neighborhood of 0. Since D4(z) # 0 in such a
neighborhood, we have also

D, (0)  Dy(0)
D, (0) " Da(0)’

39
By @7 we know that the right hand side of the last relation is equal to
géld we also know that this quantity converges to —tr A. Consequently
(8.4.200 remains valid for general trace class operators. In view of Theorem
R.4.3, we know on the other hand that

D40)
DA(O) - _XI:A]'(A)’

and the Corollary follows. O
The last proof also shows that

N

Diy(z) 0 B L
Dj(z) = alogDA(z) = —tr(l1—zA)TA= _zl:

Ai(A)
1—2);(A)

(8.4.27)

for all z with 1 — 2X;(A) # 0, Vj.
The blue part of this chapter has not been revised yet. Some
may be skipped.

Proposition 8.4.5 Let Hg, H1, Ho be complex separable Hilbert spaces. Let
Q2 C C" be an open set and let Q > z — K(z) € C1(H1) be a holomorphic
function. Then det(1 — K(z)) is a holomorphic function on Q2 and if zo € Q
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is a zero of order m > 1 of this function, and A(z) € L(H1,Ha), B(z) €
L(Ho, H1) depend holomorphically on z € Q, then

rank ( / A(2)(1 = K ()" B()dz) < m, (8.4.28)

if v is the positively oriented boundary of a sufficiently small circle centered
at zgp.

Proof. We know that 1 is an eigenvalue of K (zy) of a certain multiplicity
Ny, defined to be the rank of the spectral projection

1 _
where « is the positively oriented boundary of a small disc centered at A = 1.
For z close to zy, we put

I(z) = L /()\ — K(2))tdA,
2m [,

and we notice that this is the sum of the spectral projections corresponding
to the Ny eigenvalues Aj (%), Njo+1(2), .., Ajo+ny—1(2) (repeated according to
multiplicity) that are close to A (20). m is then also the order of vanishing
of (1=X;(2)) .. (L = Njysno—1(2)) (if we note that det(1 — K(z)) = det(1 —
K(z)II(z))det(l — K(2)(1 —II(2))) ). The range of II(z) is of constant
dimension Ny and we can find a basis e;(2),..,en,(z) of this space which
depends holomorphically on z (possibly after restricting z to a new even
smaller neighborhood of z.

Define R, : Hy — CNo by Ry (2)u(j) = a;(u, z), where TI(2)u = 37 a;(u, 2)e;.
Define R_(z) : CNo — H, by R_(2)u_ = 31" u_(j)e;(z). Then

1-K(z2) R_(2)\ No No
(a) 07) e amxe

is bijective with inverse

(20 £40)

where E_ is the matrix of the restriction of K (z)—1 to R(II(z)) with respect
to the basis €;(2), .., en,(2). Hence det E_, (2) = [0 (1 — Ay (2))...(1 —

v=0
Njo+No—1(2)) has the same order of vanishing at z = 2z as det(1 — K(z)). It
then suffices to apply Lemma [[... som skall ingaa i en foersta del av detta

kapitel daer vi behandlar Fredholm teori med hjaelp av Grushin problem]].
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We end this section by recalling Jensen’s formula and the standard appli-
cation to getting bounds on the number of zeros of holomorphic functions.
Let f(z) be a holomorphic function on the open disc D(0, R) with a contin-
uous extension to the corresponding closed disc. Assume that f(0) # 0 and
f(z) #0 for |z| = R.

Assume first that f(z) has no zeros at all. Then log |f(z)| = Re log f(z) is
a harmonic function in the open disc which is continuous up to the boundary,
and the mean value property of harmonic functions tells us that

1%mw=%41%W&mw

We now allow f to vanish and let 21, .., 2y be the zeros repeated according
to their multiplicity. Since f is not allowed to vanish at 0 or at the boundary
of the disc of radius R, we have 0 < |z;| < R. Then

is holomorphic in the open disc, continuous up to the boundary and has no
zeros in the closed disc of radius R. Moreover |F(z)| = |f(z)| when |z| = R,
so according to the preceding paragraph, we have

1 27 )
1%WW:%AI%W&WM

Expanding the left hand side, we get Jensen’s formula :

N

R 1 [* .
MWW{ZMEFEJ;mmmWw (8.4.29)
]

1

A standard application of this formula is to notice that if N(R/2) is the
number of zeros z; of f with |z;| < R/2, then we get

N(R

I :
5)10g2 < %/0 log | f(Re™)|dd — log | f(0)]. (8.4.30)
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Part 11

Some general results
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Chapter 9

Quasi-modes in higher
dimension

a99

The background is the same as in Section @: E.B. Davies %T}'showed that
for the one-dimensional Schrodinger operator we may construct quasimodes
for values of the spectral par meter that may be quite far from the spectrum
of the operator. M. Zworski %r% 156] observed that this r 11(]3‘55 can, D viewed as
a special case of a more general result of L. Hormande jﬁ ]Wt‘ﬁe context
of linear PDE.

Recall that if a(x, &) are two C!-functions on some domain in Rifz, then
we can define the Poisson bracket to be the C°-function on the same domain,

{a,0} = a; - b, — a, - by = H,(b).

Here H, = a’g -0y —al, - O deno%% 1the Hamilton vector field of a. The
following result is due to Zworski [150] who obtained it via a semi-classical
reductio fo. %1]1064above mentioned result of Hormander. A direct proof was
given in [39] and we give a variant below.

psi| Theorem 9.0.6 Let

. 10
P(z,hD,) = Y ao(z)(hD,), D, = - (9.0.1)

|a|<m

have smooth coefficients in the open set Q C R". Pul p(x, &) = )74 < @a()E™.
Assume z = p(zo, &) with +{p,p}(x0,&) > 0. Then I u = w;, € C*(Q2), with
lul| = 1, ||(P = 2)u|| = O(h*), when h — 0. Moreover, u is concentrated
to xo in the sense that if W C € is any fized neighborhood of xq, then

[ull 2@y = O(h™).
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More generally, the result remains valid if a, depend on h in such a way
that

Ao = Qo3 h) ~ Zaa,k(x)hk in C*(Q),
0

now with p(z,§) = ngm Aa0(2)E%.

In the case when the coefficients are all analytic near To we can replace
“poo7 by “e~VC for some C' > 0”. See for instance [120).

This implies that if P has an extension from C§°(2) to a closed densely
defined operator P : L2(Q) — L2(€), © D Q, and the resolvent (P — z)~!
exists for the value z as above, then its norm is greater than any negative
power of h when h — 0 (and even exponentially large in the an?é@gzcase).

In the case n > 2, we noticed by A. Melin and the author [T03] that if
z = p(p) and Rp, Sp are independent at p, then %{p,ﬁ} times the natural
(non-vanishing) Liouville differental form (of maximal degree 2n — 2) on
p~!(z) is equal to a constant times the restriction to p~'(z) of o™~ which is
a closed form. Here

o= d¢ Adz;
1

is the symplectic 2-form on T™().

If T is a compact connected component of p~'(2) on which dRp and dSp
are pointwise independent, it follows that the average of %{p,ﬁ} over I with
respect to the Liouville form has to vanish. Hence if there is a point on I’
where the Poisson bracket is # 0 then there is also point where it is positive.
In the case n = 1 we have a similar phenomenon, explained in the remarks
after Proposition .

Example 9.0.7 P = ~h*A + V(). p(r.6) = & + V(x). (.5} = ¢
V' (x).

K. Pravda-Starov foog}E has generalized the theorem above by adapting
a more refi dognasi-mode construction of R. Moyer (in 2 dimensions) and
Hormander [[83] Tor adjoints of operators that do not satisfy the Nirenberg-
Tréves condition (V) for local solvability.
Proof of Theorem 9.0.6, We will first treat the case when p is analytic in
a neighborhood of (zg,&p) and use the same notation for analytic functions
defined in a real neighborhood of some point, and their holomorphic exten-
sions to a complex neighborhood of the same point. If ¢ is analytic near x
such that ¢'(zg) = & € R", and

S¢" (20) > 0, (9.0.2)
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then we can define the complex Lagrangian manifold

Ay = {(z,¢'(2)); = € neigh (zo, C")}. (9.0.3)

o71b
As observed by Hoérmander HISZ],_the positivity assumption @} can be
formulated equivalently by saying that

Here:

%U(t’ L(t) >0, 0# t € Tiag0)(Ag). (9.0.4)

T(wo.c0)(Ag) denotes the tangent space of Ay as a smooth real submani-
fold of C?". The corresponding tangent vectors t = t, - 9, +1t, - Oz + t¢ -
Oe + t¢ - O split into a “holomorphic” component tyo = t, - 9, + t¢ - Ok
and an “anti-holomorphic” one, tanel = thol = t; - Oz + t¢ - Oz

I Ty,60)C" = Tlag,60)C™ is the unique antilinear map which is equal
to the identity on T, ¢)R*".

o denotes the symplectic 2-form >} d¢; Adz; on C*"* (now a differential
form of type (2,0)), here viewed as a bilinear form on the complexified
tangentspace of the cotangent space at (zg,&p). In other terms we have
the identification and identity

o(t,s) = (ot A's) = (0|thel A Shol)
and more explicitly,
o(t,s) =te- Sy —ty - Se,

when s is represented similarly to ¢ above. In practice we identify
tangent vectors with their holomorphic parts, and define zt = zty +

zt ahol-

Writing the = &, - Or + te - O¢ as above, we have (I't)yo = t, - 0; +
te - 0. From now on we identify tangent vectors and vector fields in
the complex domain with their holomorphic parts, and by (very small)
abuse of notation we write t = I't.

More generally, let A C C?"* be a complex Lagrangian manifold, i.e.
a complex manifold such that o, = 0 of maximal complex dimension
with, this property; dim (A) = n. Assume that (zo,&)) € A and that
@}%D holds with Ag4 replaced by A. Then T, ¢,)A cannot contain any
non-zero tangent vector (with holomorphic part equal to) t¢ - Oc and it
follows that A = Ay with ¢ as above.
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Let z,p, (xg,&) be as in the theorem. Then we observe that

Lottt ) (= 1o, T () ) = 17} > 0.
Moreover, the real set ¥ := p~!(z) is a smooth symplectic manifold near
(x0,&) and using the Darboux theorem, we can identify it locally with
R?™=1D and hence find a Lagrangian submanifold A’ in its compexifica-
tion, passing through (xo, &), that satisfies the positivity condition aﬁb
Viewing the complexification of ¥ as a submanifold of C?", we can take
A = {expsH,(p); s € neigh (0, C), p € neigh ((xo,&), C*")}. Using that H,
is symplectically orthogonal to the tangent space of ¥, it is then quite easy
to verify that A is a complex Lagrangian manifold, contained in the complex
characteristic hypersurface {p € neigh ((zo, &), C*"); p(p) = 0} and satisfy-
ing the positivity condition (1.0.4)). Hence, A is of the form A, for an analytic
function ¢ as in , (9.0.3)), which also fulfills the eikonal equation

p(x, ¢ (x)) = 0. (9.0.5)

We normalize ¢ by requiring that ¢(z¢) = 0. Then the function e**®/" is
rapidly decreasing with all its derivatives away from any neighborhood of xg.
By a complex version of the standard WKB-construction we can construct an
elliptic symbol a(z; h) < ag(x)+hay(z)+..., by solving the suitable transport
equations to infinite order at xy, such that if y € C3°(neigh (zo, R")) is
equal to 1 near zg, then u(z; h) = x(2)h™*a(z; h)e*®/" has the required
properties.

Now, we drop the analyticity assumption and assume merely that p is
smooth as in the statement of the theorem. Let p(*) be the 1st order Taylor
polynomial of p at (z, &), so that

p(z,€) = (@, &) + O((z — 20,€ — &)*), (2,€) = (z0,&)-

Then the arguments above apply to p(*) and noticing that XV := (p))~1(2)
is affine linear, we can find A’ in the complexification of X! as above, also
affine. Then A, defined similarly to A above, is an affine linear Lagrangian
space of the form A® = Ay, where #»? is a 2nd order polynomial, with

¢(xo) =0, 0, (x0) = &, %33@5(2) > 0, p(l)(x,amgzﬁm(x)) =0,

SO
p(x,0,0P (x)) = r, where r = O((z — x0)?).

Look for ) = O((z — x¢)?) such that
p(,0:(6"% + 1)) = O((z — x0)?).
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This leads to a linear transport-type equation,
Pe(a,0:0) - 01p = —r + O((x — x0)%),

which is easy to solve, using that p;(zo,&o) # 0. Write YB3 = 4. Tterating
the construction, we can find ¥V) = O((x — x¢)?), j = 4,5, ... such that if
¢ = @ 4+ B 4+ p™® 4+ in the sense of formal Taylor series, then in the
same sense,

p(x,0,0) = 0.

Again we can find a WKB solution u = uj with the required properties. O
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Chapter 10

Resolvent estimates near the
boundary of the range of the
symbol

10.1 Introduction and outline

In this chapter, which closely follows ff’??z%ﬁ we study bounds on the resolvent
of a non-self-adjoint h-pseudodifferential operator P with leading symbol p
when h — 0, for when the spectral parameter is in a neig beosrthl%od of certain
points on the boundary of the range of p. In Chapter% we have already
described a very precise result of W. Bordeaux Montrieux in dimension 1.
Here we consider a more general situation; the dimension can be arbitrary
and we allow for more degenerate behaviour. The results will not be quite
as pre igg.%% 0141 the 1-dimensional case.

In [39] we obtained resolvent estimates at certain boundary points in the
following two cases:

(1) under a non-trapping condition,
(2) under a stronger “subellipticity condition”.

eSjZw04

The case (1) was studied in ?Q]Jm general and simple arguments related
to the propagation of regularity and the treatment in case (2) was ]Eiao% %501“
Hormander’s work on subellipticity for operators of principal type ('SS%fIn
this case the resolvent extends and has temperate growth in 1/h in discs of
radius O(hln1/h), centered at the appropriate boundary points. In case (2)
we have an extension up to distance O(h*/(*+1)) where the integer k > 2 is
determined by a condition of “subellipticity type”.
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In this chapter we concentrate on points of type (2) and obtain resolvent
estimates by studying an associated semi-grou as7% Fourier inte a]7 gperator
with com ex. péjase in the spirit of Maslov [[96], WK enko% ehn—
Sjostrand TUZ]_ (See also A. Menikoff-Sjéstrand TDB]]_O Matte 97]' It
turned o £ o be ke, é:é)nvement to use Bargmann-FBI transforms in the
spirit of [I26] and [[62]. The semigroup method leads to a stronger result:
The resolvent can be extended to a disc of radius O((h1In 1/h)* *+1)) around
the appropriate boundary p n&g as in dimensjon 1 X\éhen k = 2 in the result
of W. Bordeaux MontrieuXCﬁF 15], cf. Theorem [6.1.4] In that case Bordeaux
Montrieux also constructed quasi-modes for Values of the spectral parameter
that are close to the boundary points.

We next state the results.

Let X denote either R™ or a compact smooth manifold of dimensio

Section at for some Cy, Ny > 0,

m(p) < Colp — w)™m(u), p,n € R*", (10.1.1)

where (p — p) = (1 + |p — p|?)¥/2. Let P = P(x,&;h) € S(m), meaning that
P is smooth in z, £ and satisfies

05 P2, & h)| < Com(z,§), (2,6) € R*, o € N*", (10.1.2)
where C,, is independent of h. We also assume that
P(z, & h) ~ po(z,§) + hpi(z,€) + ..., in S(m), (10.1.3)

and write p = pp for the principal symbol. We adopt the ellipticity assump-
tion

Jw € C, C > 0, such that [p(p) —w| > m(p)/C, ¥p € R*.  (10.1.4)
As in (@, let
P = P¥(x,hD,;h) = Op(P(x,h&; h)) (10.1.5)

be the Weyl quantization of the symbol P(z,h{;h) that we can view as a
closed unbounded operator on L?(R™).

In the second (compact manifold) case, we let P € ST(7™X) (the classi-
cal Hérmander symbol space ) of order m > 0, meaning that

0507 P(w,&h)| < Cap(&)™ 1, (2,6) € T*X, (10.1.6)
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In the first case, let m € C>(R?";[1,+00[) be an order function (cf. Z[U]J_
i%lf ) SO th
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where C, g are independent of h. Similarly to @D, assume that there
exist p; € STy 7 (T*X) such that

P(z,&:h) Zh pi(z,&) € NS N(T*X), N=1,2,... (10.1.7)

and we quantize the symbol P(xz,h&;h) in the standard (non-unique) way,
by doing it for various local coordinates and paste the quantizations together
by means of a partition of unity. When m > 0 we make the ellipticity
assumption

3C > 0, such that |p(z, )| > <£> , ¢l = C. (10.1.8)

Let X(p) = p*(T*X) and let X (p) be the set of accumulation points of
p(p;) for all sequences p; € T*X, ] télaztw Otfnd to infinity. The
main result of this chapter is taken from [[T34 '

Theorem 10.1.1 We adopt the general assumptzons above. Let zy € 0X(p)\
Yoo(p) and assume that dp # 0 at every point of p~*(z0). Then for every
such point p there exists 0 € R (unique up to a multiple of ) such that
d(e ™ (p — z)) is real at p. We write = 0(p). Consider the following two
cases:

(1) For every p € p~Y(z0), the mazimal integral curve of Hgyy(e—i000)) through
the point p is not contained in p~*(z).

(2) There exists an integer k > 1 such that for every p € p~'(z), there
exists j € {1,2,..,k} such that
HI(B)(p)/ (1) £0.
Here Hy, = p; - 0, — p,, - O¢ is the Hamilton field, viewed as a differential
operator.

In case (1), there exists a constant Cy > 0 such that for every constant
Cy > 0 there is a constant Cy > 0 such that the resolvent (z — P)™! is
well-defined for |z — z| < C’lhln , h < 2, and satisfies the estimate

_ C, C
|(z—P)71| < fexp(fk—zob. (10.1.9)

In case (2), there exists a constant Cy > 0 such that for every constant
Cy1 > 0 there is a constant Cy > 0 such that the resolvent (z — P)™! is
well-defined for |z — zo| < Cy(hIn £)M*+D p < L o, and satisfies the estimate

Co C
Itz = P)7H| < -

k+1
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SiZw04
We i ound O(1/h) 1nhwas obtained for |z— 20] < h/O(1), a

a Well as a less precise polynomial bound for |z—z| < CihIn 3. The condltlon
in case (2) was formulated a little differently, but the two formulations lead
to the same microlocal models and are therefore equivalent.

Let us now consider a special situation of interest for evolution equations,
namely the case when

2 € iR, (10.1.11)
Rp(p) > 0 in neigh (p~'(20), T X). (10.1.12)

Theorem 10.1.2 We qdopt the gegeral assumptions above. Let zy € 0% (p)\

Yoo (p) and assume (10.1.11), (10.1.13). Also assume that dp # 0 on p~'(z),
so. that d3p # 0, dRp = 0 on that set. Consider the two cases of Theorem

(1) For every p € p~*(z), the mazimal integral curve of Hs, through the
point p contains a point where Rp > 0.

(2) There exists an integer k > 1 such that for every p € p~'(z), we have
HE Rp(p) # 0 for some j € {1,2, ..., k}.

Then, in case (1), there exists a constant Cy > 0 such that for every
constant Cy > 0 there is a constant Cy > 0 such that the resolvent (z — P)~!
1s well-defined for

1 -1 1

|%(Z—Z())|<EO CO <§Rz<C’1hlnh h<52,

and satisfies the estimate

) §RZ - 7
Itz = P)7H < {'%Z'

10.1.13
0 exp(S2Rz), Rz > —h. ( )

In case (B), there ezists a constant Cy > 0 such that for every constant
Cy > 0 there is a constant Cy > 0 such that the resolvent (z — P)™! is
well-defined for

1Sz — 20)| < (; ci <Rz < Cy(hIn h) bohe< c% (10.1.14)
and satisfies the estimate
1(z— P! < R < hm’i . (10.1.15)
N h% exp(%(%z)i ), Rz > —hw,
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The proofs in the two cases ar gg@%ﬁ in spirit and the case (1) follows
from an inspection of the proof in [39F.

From now on we concentrate on the case (2). Away from the set p~!(zo)
we can use ellipticity, and we then need to obtain microlocal estimates near
a point p € p~!(z). After a factorization of P — z in such a region, we will
reduce the proof of the first theorem to that of the second one.

The main idea of the proof of Theorem is to study exp(—tP/h)
(microlocally) for 0 < ¢ < 1 and to show that in this case

k+1
Ch)

for some constant C' > 0. Noting that that implies that || exp —%|| = O(h™)
for t > h® when 6(k + 1) < 1, and using the formula

||eXp——|| < Cexp(— (10.1.16)

e /OO exp(E= )y (10.1.17)

h h
leads to dﬁb

The most direct way of studying exp(—tP/h), or rather a microlocal

version of that %Qe;gto&_/lf to Qg’l%" it a Fourier integral operator with
complex phase ([90 S0, 102, 97[) of the form

1 i
Ut)uta) = s [ [ €0 att i hyuty)dydn, (10.1.15)

where the phase ¢ should have a non-negative imaginary part and satisfy the
Hamilton-Jacobi equation:

100 + p(x, 0,0) = O((S¢)™), locally uniformlyll] (10.1.19)
with the initial condition
o(0,z,m) =x-n. (10.1.20)

The amplitude a will be bounded with all its derivatives and has an asymp-
totic expansion where the terms are determined by transport equations. This
can indeedR]P c?errled out in a classical manner for instance by adapting the

method of h(ﬁ Sase of non-homogeneous symbols following a reduc-
tion used i 111 . 1t 1s based on making estimates on the fonction

_ / £(s) - da(s)) — RE(1) - S (t) + RED) - 3(0)

"'Without assuming p to be analytic, we here need to take an almost holomorphic
extension of p.
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along the complex integral curves v : [0, T] 3 s = (2(s),£(s)) of the Hamilton
field of p. As in , we need an almost holomorphic extension of p.
Using the property (B) one can show that S¢(t,z,m). > C~'**! and from
that we can obtain (a microlocalized version of) quite easily.

The following variant seems more practical: Let

Tu(z) = Ch % /ei‘f’(w’y)u(y)dy,

be an FBI — or (generalized) Bargmann-Segal transform that : dreat in the
spirit of Fourier integral operators with complex phase as in [I26]. Here ¢
is holomorphic in a neighborhood of (x¢,y0) € C* x R", and —¢, (zo,%0) =
n € R™, S¢,(v0,90) > 0, det ¢y (zo,50) # 0. Let s, be the associated
canonical transformation. Then, T is bounded L? — Hg, := Hol () N
L*(Q, e 2%/ " [(dz)) and has (microlocally) a bounded inverse, where € is

a small complex neighborhood of xy in C™. The weight &, is smooth and

strictly pluri-subharmonic. If Ag, := {(z, 2220); & € neigh (x0)}, then (lo-

74 Oz
C&Hy) A@O = HT(T*X)

aSi82
The operator P = TPT~! can be defined locally modulo O(h*) (cf. HJSS]])_

as a bounded operator from Hy — Hg when the weight ® is smooth and
satisfies ® — @ = O(h®) for some § > 0. (In the analytic frame work it
suffices that &' — @} is small.) Egorov’s theorem applies in this situation, so
the leading symbol p of Pis given by pokr = p. Thus (under the assumptions
of Theorem [10.1.2)) we have §R]’5‘ Ao, > (). This in turn can be used to see that

for 0 < t < RS, we have e~t/h = O(1): He, — Hs,, where &, < P is
determined by the real Hamilton-Jacobi problem

o0,
ot
Now the bound 1@} follows from the estimate

+ %ﬁ(fﬁ, ;—x) = 0, (I)t:() = (I)O- (10121)

tk+1
P < Do — (10.1.22)

where C' > 0. To get @D we represent the I-Lagrangian manifold Ag,
as the image under k7 of the I-Lagrangian manifold Ag, = {p+iHg,(p); p €
neigh (po, 7% X)}, where Hg, denotes the Hamilton field of G;. It turns out
that the G, are given by the real Hamilton-Jacobi problem

oG,

L+ Rl + iHe,(p)) = 0, Go =0, (10.1.23)
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and there is a simple minimax type formula expressing ®; in terms of G, so
it suffices to show that
G, < —t"1/C. (10.1.24)

This estimate is quite simple to obtain: QLL.i“ 23) fiyst implies that G, <0,
so (VGy)? = O(Gy). Then if we Taylor expand (0.1.23), we get
0G,

9t + Hagp(Gy) + O(Gy) + Rp(p) =0

and we obtain from a simple differential inequality and an estimate
for certain integrals of Rp.

The us of the representation with G} is here very much taken from the
joint work G‘Z]Jﬁth B. Helffer.

In Section we discuss some examples.

10.2 IR-manifolds close to R?" and their FBI-
representations

This is an adaptation of the Isgyssion in %ZS .86 ne difference is that we use
simple FBI-transforms from [I26], rather than the Nore. elaborate variant
that was necessary to treat the resonance theory in W%D

We work locally. Let G(y,n) € C*(neigh ((yo,10), R*")) be real-valued
and small in the C* semi-norms. Then

0G0 0G0
on dy Oy On

is an /-Lagrangian manifold, i.e. a Lagrangian manifold for the real symplec-
tic form So. Here o denotes the complex symplectic form >} dij; A dy;. We
reserve the notation (y,7n) for the real cotangent variables and let the tildes
indicate that we take the corresponding complexified variables.

Ag can be representrﬂ% means of a nondegenerate phase function in
the sense of Hormander [81] in the following way:

Consider

Ag ={(y,n) +iHa(y,n); (y,n) € neigh ((yo0,70))}, Ha =

V(. n) = —n-Sy+ G(Ry,n)
where ¥ is complex and 7 real according to the convention above. Then

vn¢(?77 T]) - _%g—i_ V’?GGR@/J 77)7

%7 ces d%ﬁ are linearly independent and

by definition, this means that 1 is nondegeneratef’

and since G is small, we see that d

2We neglect some other properties in Hérmander’s original definition, related to homo-
geneity.
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Let
Cy = {(¥,n) € neigh ((yo,m0), C" x R"); V¢ = 0}

and consider the corresponding I-Lagrangian manifold

Ao = (G255 @) o) € G}

Here denotes the holomorphic derivative:

0 _1(0 10
gy 2\ Ry i03y)

We first check that that A, is I-Lagrangian, using only that ¢ is a non-
degenerate phase function: That Ay is a submanifold with the correct real

dimension = 2n is classical since we can 1dent1fy Wlth Vxgog. Further,
2 81# ~
Cy
20 200 = 0 0
——( ¢dy+—,—zﬁdy) ( @Ed +—¢y>
) ay ] 6y o 8 83/ C’w
- dwlcw

which is a closed form and using that So = d3(7 - dy), we get
_G —
SO, 0.
We next check that 1 that Ay, = Ag: If (7, %g—%@, n)) is a general point
on Ay, then Sy = V,G(Ry,n) and

2 b

20 ) = 21( 0 +li~)<—n-%§+G<%@,n»

oRy 103y
= — i-kzi (=n-Sy+ G Ry,n))
=n—1V,G(Ry,n).
Hence,

_ 20 .
(7252 ) = ) + itia(wn)

if we choose y = Ry. O
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Now consider an FBI (or generalized Bargmann-Segal) transform

m@mhM/”W%@mwm@m

where ¢ is holomorphic near (zo,y) € C" x R", 3¢, , > 0, det ¢}, # 0,

Bi; =1 € R", and a is holomorphic in the same neighborhood W1th a ~
ao(x,y)+hay(z,y)+... in the space of such functions with ag # 0. We regard
T as a Fourier integral operator with complex phase and with the associated

canonical transformation,

(@:9)) = (2, 5 (2,1)

K=rkp: (y,——

from a complex neighborhood of (yg, 10) to a complex neighborhood of (xg, &),
where & = a¢> (x0,0). Complex canonical transformations preserve the class
of I- Lagranglan manifolds and (locally),

209

R(R™) = Aoy = {(z, 275 =(2)); @ € neigh (zo, C")},

where ®( is smooth and strictly plurisubharmonic. Moreover, we can choose,

Qy(z) = sup —S¢(x,y), (10.2.1)
yGR”

where the premum is attained at the nondegenerate point of maximum
ye(x). ( Se(j%1

Proposition 10.2.1 We have k(Ag) = Ag,,, where

Qg(z) = v.cy — So(x,y) —n - Sy + G(Ry, 1), (10.2.2)

and the critical value is attained at a unique nondegenerate critical point,
close to (yo,mo). By v.c.y,(...) we mean “critical value with respect to y,n of

Proof. At a critical point we have
Sy = V,G(Ry, ),
a—% ¢(z,y)+n=0,
0

~ 555 3000 3) + (V,G)(RG. ) = 0.
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If f(2) is a holomorphic function, then

R TIIN) R NRNC) |
552 =50 e S = S0

so the equations for our critical point become

(10.2.3)

%?j = an(%ga T])?

0
77 = _é}%a_g/(xu A/)7
- 0
Y, G(RT. ) = —%a—f’;,

or equivalently,

@, —g—gu,m) — (Rn) + iHo(RF ),

which says that the critical point (y,7) is determined by the condition that
Kk maps the point (7,7) € Ag to a point (x,§), situated over z. We next
check that the critical point is nondegenerate. G is small, so it suffices to do
this when G = 0: Then the Hessian matrix of —S¢(z,y) —n - Sy + G(Ry, n)
with respect to the variables Ry, Sy, n is

S¢,, B0
‘B c -1
0 -1 0

which is nondegenerate independently of B, C
If ®(z) denotes the critical value in , it remains to check that

202 — ¢ where { = %(z,@, (y,n) denoting the critical point. However,

since ® is a critical value, we get

200 20, 9
T Z%(—\Séb(%@) = ax(%v-

O
When G = 0, we notice that the formula @D produces the same

b
function as d@ .

Write y = y + 0 and consider the function
f(z3y,m;:0) = =Sd(x,y + i) —n - 0, (10.2.4)
which appears in d@b
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Proposition 10.2.2 f is a nondegenerate phase function with 6 as fiber
variables, generating a canonical transformation which can be identified with

RT.
Proof. 5 96
207 = _%a_g(m’ y+ib) —n,
so f is nondegenerate. The canonical relation has the graph
20f af of B
{<y7 i 81}’ y,n, aya 67’]>’ aef(‘r7y7n70) - 0}
. 90, O 0 o) p— 2 »
= {(z, 559, ayw(w,yﬂe),@), n= %ag(m,yﬂﬁ)}
T T PRSRT J
= {5 (@ y +ib)y. ?Rag(w, y + i), “337(”3’ y+i0),0)}.

Up to permutations of the components on the preimage side and changes of
signs, we recognize the graph of k. O

Proposition 10.2.3 Let f(z,y,0) € C*(neigh (x¢, Yo, 0p), R" x R"xRY) be

a nondegenerate phase function with (xg,yo,6) € Cy, generating a canonical
transformation which maps (yo, n0) = (Yo, —Vy f(20,%0,60)) to (xo, Va f (20, vo,60))-
If g(y) is smooth near yo with Vg(yo) = no and

k(z) =v.cyof(z,y,0)+9(y)

is well-defined with a nondegenerate critical point close to (yo,0y) for x close
to xg, then we have the inversion formula,

9(y) =v.cpp — flz,y,0) + k(2),

for y € neigh (yo), where the critical point is nondegenerate and close to
(Io,eo).

Proof. This i VELY much a routine statement in Fourier integral opera-
tor theory (cf. [I26]) and we only give some hints. Let x be the canon-
ical transformation and introduce Ay = {(y,V,9); v € neigh(yo)}. The
assumption is equivalent to the fact that x~'(7 R™) is transversal to Ay at
(Y0, m0). Defining Ay similarly to A,, we have A, = k(A,) and obviously Ay
is transversal to s(T, R") at (z9,&). Now —f(z,y,0) generates x~ and
writing A, = k1(Ag), we get the associated critical value formula for g(y)
in the proposition. O

Combining the three propositions, we get
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Proposition 10.2.4
G(y,n) = v.c080(x,y +1i6) + 1 -0 + (). (10.2.5) |ir.6

S (&D, QT) is a second pair of functions close to ®g, 0 and related through

(10:2.2)), (10.2.5)), then

G<Giff <. (10.2.6) [ir.7

Indeed, if for instance & < <T>, introduce ®, = td + (1 — t)®, so that
0P, > 0. If G, is the corresponding critical value as in (I0.2.5)), then
0,Gy = (0yDy)(x¢) > 0, where (x4, ;) is the critical point.

10.3 Evolution equations on the transform side

Let P(z,&; k) be a smooth symbol defined in neigh ((xg, &); Aa, ), With an
asymptotic expansion

P(z,& h) ~ B(x, &) + hpi (2, ) + ... in C*(neigh (0, &), Aay))-

Let P also denote an almost holomorphic extension to a complex neighbor-
hood of (zg, &p):

f)(l‘,f, h) ~ ﬁ(xa 5) + hﬁl(l‘vg) +..1n Coo(nelgh ((fﬁo,fo), C2n)7
where p, p; are smooth extensions such that
9. By = O(dist ((z,€), Aa,)).

. LaSis2 . MeSi02 ' o '
Then, as shown in HJSS]Jﬁld later in Wmﬁf u = uy, is holomorphic in a neigh-
borhood V' of 7 and belonging to Hg, (V') in the sense that [|u|| 12y c—220/n f,(42))

is finite and of temperate growth in 1/h when h tends to zero, then Pu =

P(z,hD,;h)u can be defined in any smaller neighborhood W & V' by the
formula,

_ 1 . _
Pute) = o [[[ et B pimutanas. (103
T I'(x)

i32
where I'() is a good contour (in the sense of ff%]) of the form § = 2980 (2204
&(x =), lr —yl <1/Cy, C1,Cy > 0. Then 0P is negligible, i.c. of norm
O(h™): He,(V) — L3, (W), and modulo such negligible operators, P is in-
dependent of the choice of good contour. By solving a d-problem (assuming,
as we may, that our neighborhoods are pseudoconvex) we can always correct
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P with a negligible operator such that (after an arbitrarily small decrease
of W) P = O(1) : Hey(V) — Hao(W). Also, if & = &)+ O(hlnl) in
C2, then P = O(h™™) : Hy(V) — He(W), for some Ny. By means of
Stokes’ formula, we can show that P will change only by a negligible term
if we replace @y by ® in the definition of I'(x), and then it follows that

P=0Q1): He(}) = He(W).
Recall ([I03]) that the identity operator He, (V) — He, (W) is up to a
negligible operator of the form

Tu(z) =h™ //ei%(”"’y)a(x,@; h)u(y)e_%%(y)dydg, (10.3.2)

where Wo(x,y), a(x,y; h) are almost holomorphic on the antidiagonal y ==
with Wo(z,7) = ®o(2), alz,y;h) ~ ao(z,y) + hai(z,y) + ..., ao(x,T) # 0.
More generally a pseudodifferential operator like P takes the form

Pu(z) =h™" / / er " Dg(z,7; hyu(y)e”+ ™0 dydy

(e, 7) = B, 0 (@), ),

(10.3.3)

and where gq denotes the first term in the asymptotic expansion of the symbol
q. In this discussion, ®; can be replaced by any other smooth exponent &
which is O(h?) close to @y in C*° and we make the corresponding replacement
of Uy. A well-known consequence of the strict pluri-subharmonicity of ®, is
that

2RV (z,7) — ®(z) — ®(y) < —|z — y/?, (10.3.4)

so the uniform boundedness Hy — Hg follows from the domination of the
modulus of the kernel of e=®/" o P o ¢®/" by a Gaussian convolution kernel.
Now, we study the evolution problem

(hd, + P)U(t) =0, U(0) =1, (10.3.5)

where t is restricted to the interval [0, h%] for some arbitrarily small but fixed
0 > 0. We review the approximate solution of this problem by a geometrical
optics construction: Look for U(t) of the form

Ult)u(x) =h"" // e%%(m’?)at(a:,y; h)u(y)e 22 W/ dydy, (10.3.6)

where a; depend smoothly on all the variables and Wy—q = W¢, a;—¢ = ag
in (10.3.3), so U(0) = 1 up to a negligible operator.
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Formally U(t) is the Fourier integral operator
Utyu(z) =h™" // e%(\pt(m’e)_%(y’e))at(x,9; h)u(y)dyde, (10.3.7)

where we choose the integration contour 6 = y. Writing 2V(z, 0) = i¢(z, 0)
leads to more standard notation and we impose the eikonal equation

i0,¢ + Pz, d.(w,0)) = 0. (10.3.8)

We cannot hope to solve the eikonal equation exactly, but we can do so to
infinite order at t =0, x =y = 6. If we put

A¢t('79) = {<x7¢;(t>x79))}a (10-3-9)

then ~
Agu0) = exp(tH15)(Agy(.0)), (10.3.10)

to oo order at t =0, § = x. Here f[]g = Hz+ H3 denotes the real vector ﬁeléi
associated to the (1,0)-field Hj, and similarly for H 15 (As in Chapter ﬁ%‘ﬂe
sometimes drop the distinction between a vector field of type (1,0) and the
corresponding real vector field 7 = v +7.) At a point where dp = 0, we have

Hy = HY? = H3?, Hy=—HY = Hy?, (10.3.11)

Sp s N7

where the other fields are the Hamilton fields of Nigﬁ M&é’ hoiespe t tq the
real symplectic forms Ro and Jo respectively. See 120 hus
can be written

Agu(0) = exp(tHgs ") (Ago-0))- (10.3.12)
A complex Lagrangian manifold is also I-Lagrangian (i.e. a Lagrangian man-
ifold for So) and (10.3.12)) can be viewed as a relation between I-Lagrangian

manifolds. It defines the 1—Lagrangian manifold Ag,(.¢) unambiguously, once
we have fixed an almost holomorphic extension of p. Locally, a smooth I-
Lagrangian manifold A, for which the z-space projection A 3 (x,&) — x € C”
is a local diffeomorphism, takes the form A = Ag where ® is real and smooth

and 200
Ag = {(x, Z%)’ x € Q}, Q C C" open.

With a slight abuse of notation, we can therefore identify the C-Lagrangian

manifold Ag, with the I-Lagrangian manifold A_gg,,, since 220 = 2 9(=S¢o)

- ox i Ox 7
at all paints where 0,¢y = 0.
3. shows that

o(z) + Po(0) — (—S¢o(,0)) < |z — 0. (10.3.13)
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Define
Ag, = exp(tHyy ") (Aay), (10.3.14)

and fix the t-dependent constant in this defintition of ®, by imposing the
real Hamilton-Jacobi equation,

200
0,®; + Rp(x, —_a—t) =0, &g = Dy. (10.3.15)
] Xz

The real part of 1' i)gg gives a similar equation for —S¢y,

O(—S6) + Rp(x, %%(—%@) 0. (10.3.16)

implies that Ag, and A_gg, (. ¢) intersect transversally at (zo(6), £0(0)),

vvvvv

where (2,(0),&(0)) = exp(tHg;7)(0,25922(0)). (103.14), (I03.12) then

74 Oz

show that Ag, - apd A o4 (g intersect transversally at (z4(6,&(6)). Then
10.3.13), (10.3.15), ([10.3,10) imply that ®,(z) — (=S¢i(z,0)) = O(|lz —
74(0)]?) and again by (T0.3.13) and the transversal intersection, we get

Oy (z) + Do(0) — (=Sy(x,0)) < |z — 2,(0) . (10.3.17)

Determining a; by solving a sequence of transport equations, we arrive at
the following result:

Proposition 10.3.1 The operator U(t) constructed above is O(1) : Hyy (V) —

He, (W), (W € V being small pseudoconvex neighborhogds of a fixed point

2RV, (2,7) — ®(x) — Po(y) < —|z — 24(y)|*. (10.3.18)
Using % we get up to negligible errors that

and examining this evolution problem, we conclude that the Fourier integral
operator [P, U(t)] is negligible. In particular,

hU) +UP =0, 0<t <k, (10.3.19)

up to negligible errors.
ot briefly recall alternate approach, leading to the same weights ®,
(cf [T03]):
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Consider formally:
(e_tp/hu|6_tp/hu)Hq>t = (ut|ut)Hq>t7 u € H@oa

and look for ®; such that the time derivative of this expression vanishes to
leading order. We get

0 ~ h@t/utﬂte_wt/hL(dx)

~ ~ 0P
= — <(Put|ut)H¢t + (ue| Put) gy, + QTJ(x)]u\Qez@t/hL(dx)) :

Here
(Pulus)ig, = [ B, + O e L (ds),

and similarly for (u,|Pu,) Hy,» 50 we would like to have

) _
0~ /(2% + 23%p|%t + O(h))|ug|?e 22/ L(dz).
We choose @, to be the solution of dﬁ) Then the preceding discus-

sion again shows that e=**/" = O(1) : Hy, — Ha,.

Rp is co%?t%lt along the integral curves of H@;‘\m. Therefore, the second

term in is > 0, so
P, < Dy, t >0, (10.3.20)

under the assumption that
%5\/\4) > 0. (10.3.21)
0

Recall that we limit our discussion to the interval 0 < t < h°.
To get a more detailed understanding, we can work with the correspond-
ing functions G; as follows:
Let p be defined by p = pokr and define G up to a t-dependent constant
by
Aq;t = KT(AGt)-

Then we also have Ag, = exptH,(Ag), where Ay = R*". In order tq fix
tkfe %—dependent constant we use one of the equivalent formulae (cf ,

):

®y(x) = v.cyu(=So(x,y) —n - Sy + G(Ry, ), (10.3.22)
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Gi(y,n) = v.cr o(SP(x,y +10) + - 0 + Oy(x)). (10.3.23)
Denoting by (z(t,y,n),0(t,y,n)) the critical point in the last formula, we get

0G, 0P, 2 9P,
t =% — . 10.3.24
S W) = (@t ym) = =Rple, 550 o ( )
v_3 v 4 o
The critical points in (ﬁ'UTK.ZQl), d%DTS.QSD are directly related to xr, so
leads to 9G
att(y n) + Rp((y,n) + iHe, (y,n)) = 0. (10.3.25)

ey 2 8

Notice that Gy < 0 by (ITU_Z 6)), (10.3.20)).

Now G, and its gradient are small and we can Taylor expand
and get

a;t (y,n) + Rp(y,n) + R(iHe,p(y,n) + O(VGy)?) =0, (10.3.26)

which simplifies to

0§t (1) + HopGi + O((VG1)*) = =Rp(y, ). (10.3.27)

Now, G; < 0, so by a classical inequlity for C? functions of constant sign,
(VG)? = O(Gy) and we obtain

0

This is a differential inequality along the integral curves of Hg,, leading to

— Gy(exp(tHsyp)(p)) x/o Rp(exp sHsy,(p))ds, (10.3.29)

for all p = (y,n) € neigh (po, R*"), po = (y0, 10)-
Now, introduce the following assumption corresponding to the case (2) in

Theorem i
=0, 7<k-1

, , (10.3.30)
>0, 7=k

H (Rp)(po) {

where k£ has to be even since 2tp > 0. We will work in a sufficiently small
neighborhood of pg. Put

J(t,p):/o Rp(exp sHsy,(p))ds, (10.3.31)
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so that 0 < J(t, p) € C*(neigh (0, py), [0, +0o[xR?"), and

, (10.3.32)
>0, =k

071 J(0, po) = HL,(Rp)(po) {

Propositjion 10.3.2 Let 0 < J(t,p) € C*(neigh (0, po), [0, +0o[xR*") sat-

isfy for some k > 1. Then there is a constant C' > 0 such that
tk+l
J(t,p) 2 5, (¢, p) € neigh ((0, p), 10, +oo[xR*"). (10.3.33)

Proof. Assume that @D does not hold. Then there is a sequence
(t,, p) € [0, +00[xR?" converging to (0, po) such that

J(ty, py)

Hh+1 - 0’
v

and since J(t, p) is an increasing function of ¢, we get

J(t, py)
tZ’f"‘l

sup — 0. (10.3.34)

0<t<t,
Introduce the Taylor expansion,
J(t,p,) = a® + aMt + . 4 oFFIEH L O,
and define

Then by m,

On the other hand,

J(t,s, py)

T , 0<s< 1.
12

u,(s) =

sup u,(s) = 0, v — 0.
0<s<1

a'(JO) al(/l) k+1) k-+1 k-+2
u,,(s) = W+t—ks++a,(j+ )S + +O(tl,8 + ),
—pu(s)

SO

sup p,(s) = 0, v — oo.
0<s<1

The corresponding coefficients of p, have to tend to 0, and in particular,

1
a,(jkﬂ) = m(@éﬁ_lj(o, py) —0

which is in contradiction with d@b O

e 0
Combining and Proposition @, we get
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Proposition 10.3.3 Under the assumption m there exists C > 0
such that

tk’Jrl

Gi(p) < e (t, p) € neigh ((0, py), [0, co[xR*™). (10.3.35)

We can now retyn to the evolytion equgtion for P and the t-dependent
weight &, in % From (T0.3:35)), (10.3.22)), we get

Proposition 10.3.4 Under the assumption (@, we have

By(2) < Do(a) —

< Nl (t, ) € neigh ((0, o), [0, c0[x C"). (10.3.36)

10.4 The resolvent estimates

Let P be an h-pseudodifferential operator satisfying the general assumptions
of the introduction. .

Let zp € (02(p)) \ Xoo(p). We first treat the case of Theorem @ SO
that,

2 € iR, (10.4.1)
Rp(p) > 0 in neigh (p~ (), T*X), (10.4.2)
Vp € p~'(20), 3j <k, such that H%pé)?p(p) > 0. (10.4.3)

Proposition 10.4.1_3Cy > 0 such that VCy > 0, 3Cy > 0 such that we have
for z,h as in . h<1/Cy, u e CF(X):

[Rellull < Coll(z = Pull, when Rz < —h#7,
k+1

PR C Tk
W |Ju)) < Cy eXp(TO(%Z)f )Nz = P)ul], (10.4.4)

. 1\ 71
when RNz > —h¥1 < Rz < O(1) <h1n ﬁ) )

Proof. The required estimate is easy to obtain microlocally in the region
where P — z, is ellipticf] so we see that it suffices to show the following
statement:

15399
3 in the sense that with x as in (@b, then by standard calculus (P[%LU i, we have
(1= x)u| < OM)||(z — P)ul| + O(h*>°)||u|| for small values of |z — zg],
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For every py € p‘l(zE% %e;ﬂ:e exists y € Cg°(T*X), equal to 1 near p,

such that for z, h as in and letting y also denote a corresponding
h-pseudodifferential operator, we have

Rz||Ixull < Coll(z — Pul| + Cxh¥||u|l, when Rz < —ht,

h#5llxul < Coexp | S2R) ) Gz = Pl + Cwh™ ul
xull < Coexp { —=(R2), =T Ul IR q0.4.5)

k+1

1
when — hF1 < Rz < o) (hln E) ,

where N € N is arbitry.
When Rz < —h*/ &+ this is an easy comseduence of the semi-classical

sharp Garding inequality (see for instance [40]), so from now on we assume
that Rz > —pk/ B+
Let T : L? — Hg,(neigh (9, C")) be an FBI transform as in, Section @

with (yo,70) = po. We then have a conjugated operator (cf. fTZE]) P as in
, with (20, &) = r7(Y0,m0) € Aey, and Ag, = kr(T"X), p=po Ky

near (xo, &), where p denotes the leading symbol of P, such that
1T Pu — PTul vy < Oh)|[ul] 2, (10.4.6)

where V' is a small neighborhood of zo. When supp x is small enough, we

also have
Icull < OW)Tullrgy ) + Ol 2. (10.4.7)

It suffices to show that

k kt1 ~
WW%wméh”“%emé%%@f)WP—@MM%%VHWWWWM%%»
(10.4.8)
u € Heg,(V3), where V) € Vo @ Vj are neighborhoods of g, given by (z, &) =
kr(po) € Ay

From Proposition [T and the fact that U(t) : He,(Va) — Hs,(V1), we
see that

uﬁmmm%MJSOfW”ﬂwm%%y (10.4.9)
Choose § > 0 small enough so that 6(k + 1) < 1 and put
~ 1" L~
R(z) = E/o enU(t)dt. (10.4.10)

Before verifying that Ris an approximate left inverse to P z, we study
the norm of this operator in Hg,. We have in L(Hpg (va) Hig, (1)):
tk—‘rl

Hﬁ@ﬂKCmpW&—?ﬁ (10.4.11)
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It can be checked that the right hand side is O(h™) for t = h?, since §(k+1) <

1 and Rz < O(1) (h1n(1/h))F/ Y.

We get
- c [t 1 th+1 Cir O
<~ —(tRr — ——)dt = ——1T
IR < T [ exppems = Syt = — 1)
where

I(s) = / e .
0

Lemma 10.4.2 We have

I(s) = O(1), when |s| <1,
I(s) = O|(’1), when s < —1,
s

- k
I(s) < 0(1)57% exp <Wskzl) , when s > 1.
1) %

(10.4.12)

(10.4.13)

(10.4.14)

(10.4.15)

(10.4.16)

Proof. The first two estimates are straight forward and we concentrate on
the last one, where we may also assume that s > 1. A computation shows
that the exponent f,(t) = st — t**! on [0, +o0o[ has a unique critical point

t =t(s) = (s/(k +1))"* which is a nondegenerate maximum,
k-1
k

Fr(t(s)) = —k(k+1)Fs T,

with critical value

Now

s

SO ft?j) 12 est=""" dt satisfies the required upper bound.
On the other hand we have

kbl
F(H(s)) — fo(t) > S(; L for0<t< @ s> 1,
SO
t(;) 1 1 S%
/ < Ok esp(f(1(5) — "),
0

and follows.
Applying the lemma to @, we get
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Proposition 10.4.3 We have

~ C k
1B < . [zl < 0=, (10.4.17)
C
I < Gy ~1 < Rz < —hF, (10.4.18)
k+1 _k_
~ o 1Y\ &+1
IR < ew@ T, wet << () 09
R+t

Erom the beginning of the proof of Lemma , or more directly from

1@) we see that
tz =2 C E+1
lex U@l < Cexp—(%) ©,

which is bounded by some negative power of h, since Rz < O(1)(hIn ; )k+1
Working locally, we then see that modulo a negligible operator,

where the last equivalence follows from an integration by parts and the fact
that e*/"U(t) is negligible for ¢ = h°. Combining this with Proposition
. we get , which completes the proof of Proposition . O
We can now finish
Proof of The @ Using standard pseudodifferential machinery (see
for instancel%m]])_we first notice that P has discrete spectrum in a neighbor-
hood of 2z and that P — z is a Fredholm operator of index 0 from D(P) to L?
when z varies in a small neighborhood of 2. On the other hand, Proposition
10.4.1 implies that P—z is injective and hence bijective for Rz < O(hln %)%ﬂ
and we also get the corresponding bounds on the resolvent. O

Proof of Theorem @ We may asume for simplicity that zp = 0 and

consider a point py € p~1(0). After conjugation with a microlocally defined

unitary Fourier integral operator, we may assume that py = (0,0) and that .
dén. Then from Malgrange’s preparation theorem (cf. Section

and %I We get near p = (0,0), z =0,

p(p) — 2 =q(x,§,2) (& +1(2,£,2)), £ = (51,...,51171), (10.4.20)

where ¢, r are smooth and ¢(0,0,0) # 0. As in H) We notice that either
Sr(x,&',0) > 0 in a neighborhood of (0,0) or \sr(x,g’, 0) < 0 in such a
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neighborhood. Indeed, otherwise there would exist sequences pJ , pj in R™ X
R, converging to (0, 0) such that j:\sr(p ) > 0. It is then easy to construct
a Closed curve ; in a small nelghborhood of pg, passing through the points
(pf, 0), such that the image of ; under the map (z,§) — &, + r(z,£,0) is
a simple closed curve in C \ {0}, with winding number # 0. More precisely,
we can arrange so that the image curve is confined to the boundary of the
rectangle, [Rw| < ¢;, Sr(p;) < Sw < I7(p)). Then the same holds for the
image of v; under p, and we see that R(p) contalns a full neighborhood of 0,
in contradiction with the assumption that 0 = zg € 0X(p).

In order to fix the ideas, let us assume that Sr < 0 near py when z = 0, so
that R(i(&, + r(z,¢,0))) > 0. From ([0.4.20), we get the pseudodifferential
factorization (cf. Section

1 ~
P(z,hDy;h) — z = =Q(x,hD,, z; h) P(x, hD,, z; h), (10.4.21)
i

microlocally near pg when z is close to 0. Here ) and P have the leading
symbols ¢(x,&, z) and (&, + r(x, £, 2)) respectively.

We can now obtain a microlocal apriori estimate fo P as before. Let
us first check that the assumption in (2) of Theorem amounts to the
statement that for z = z5 = 0:

H3\SP(po) > 0 (10.4.22)

for some j € {1,2,...,k}. In fact, the assumption in Theorem @ (2) is
invariant under multiplication of p by non-vanishing smooth factors, so we
drop the hats and assume from the start that p = p and Sp > 0. Put p(t) =
exptHy(po), r(t) = exptHypy(po) and let j > 0 be the order of vanishing of

Sp(r(t) at t = 0 From p(t) = Hy(p(t)), 7(t) = Hypy(r(t)), we get

SO
t
plt) = 1) = | O(T3p(r(s))ds.
0
If po = l(p p*) is the almost holomorphic extension of Ip, we get

P (p(t)) = ipa(p(t)) =
Zpa(T(t))Hsz( (1)) (p(t) = (1) + O(p(t) — r(1))*) =

ipa(r (1)) + iV pa(r( / O(Vpa(r(s)))ds + O(1)( / O(Vpa(r(s)))ds)>

4 Here, we also denote by p and almost holomorphic extension and define exptH, :=
exptH,, H, = H, —|—Fp.
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Here, Vps(r(t)) = O(pa(r(t))'/?) = O(t72), s0 p* (p(t)) = ip2(r(t)) + Q(t211),
and we get the equivalence of the assumption in (2) and the property (10.4:22)
with the same minimal j in each.

Then, if we conjugate with an FBI-Bargmann transform as above, we can

construct an approximation U(t) of exp(—tﬁ /h), such that

IT(E)] < Coel o=zl o

when |z — 29| = O((hIn %)k/(k—&-l)).

From this we obtain a microlocal apriori estimate for P analogous to the
one for P — z in Proposition [I[0.4.1], and the proof can be completed in the
[0.1.2

O

same way as that of Theorem [10.1.2]

10.5 Examples

Consider
P=—-hA+iV(z), Ve C®X;R), (10.5.1)

where either X is a smooth compact manifold of dimension n or X = R".
In the second case we assume that p = €2 +iV () belongs to a symbol space
S(m) where m > 1 is an order function. If V' € C°(R?) then we can take
m =1+ &% and if 9°V(z) = O((1 + |z|)?) for all @ € N™ and satisfies the
ellipticity condition |V (x)| > C~!|x|? for |z| > C, for some constant C' > 0,
then we can take m = 1 + £2 + 22,

We have ¥(p) = [0, 0o[+iV (X). When X is compact then ¥, (p) is empty
and when X = R", we have ¥ (p) = [0, co[+iX(V), where (V) is the
set of accumulation points at infinity of V.

Let 2o = zo + iyo € 0X(p) \ Yo (D).

e In the case zyp = 0 we see that Theorem @ (2) is applicable with
k = 2, provided that g, is not a critical value of V.

e When xy > 0, then yq is either the maximum or the minimum value
of V. Assume that V~™!(y) is finite and that each element of that
set is a non-degenerate maximum or minimum. Then Theorem
(2) is applicable to +iP with £ = 2. By allowing a more complicated
behaviour of V' near its extreme points, we can produce examples where
the same result applies with £ > 2.

Next, consider the non-self-adjoint harmonic oscillator
Q = _d_yQ + 1y (10.5.2)
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on the real line, studied by Boulton HaZUu]_and Davies %‘Z]._Introduce a large
spectral parameter E = i\ + g where A > 1 and |u| < A. The change
of variables y = v/ Az permits us to identify Q with Q = AP, where P =
—h2(g‘i—22 +.37 and h = 1/X — 0. Hence Q@ — E = AP — (1 +i4)) and
Theorem (2) is applicable with k& = 2. We conclude that (Q — F)™! is
well-defined and of polynomial growth in A (which can be specified further)
respectively O(A™!) when

< Cy(A"'In A)3 and

>=
>I=

< (] respectively,

for any fixed C; > 0, i.e. when

< Cl)\%(ln )\)% and p < Ci A% respectively. (10.5.3)

d2
Actually, we are here in dimension 1 with k& = 2, so Theorem E I .i;gives an

even more precise result.
Finally, we make a comment about the Kramers—Fokker—Planck operator

1
P=hy-0,—V'(x)-ho, + §(y — hdy) - (y + hdy) (10.5.4)

on R** = R} x R}, where V is smooth and real-valued. The associated
semi-classical symbol is

ple,ys€om) = ily €~ V(@) n) + 567 + )

on R*", and we notice that ®p > 0. Under the assumption that the Hessian
V"(z) is bounded with all its derivatives, |V'(z)| > C~! when |z| > C for
some C > g %nd that V' is a Morse function, F. Hérau, C. Stolk and the

€595t0 . . . .
author H%? showed among other things that the spectrum in any given strip
z[c%, (1] + R is contained in a half strip

1o h2/3 )

for some Cy = Cy(Cy) > 0 and that the resolvent is O(h~%/3) in the com-
plementary halfstrip. (We refrain from recalling more detailed statements
about spectrum and absence of spectrum in the regions where |3z| is large
and small respectively.)

The proof of this uses exponentially weighted estimates, based on the

act that ngpl > 0 when py < 1, p; < 1. This is reminisce gsog;glgeorem
(2) with k£ = 2 or rather the corresponding result in [39], but more
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complicated, since our operator is not elliptic near co. Moreover, iR\ {0} is
not in the range of p but only in 3 (p). It seems likely that the estimates
on the spectrum of the KFP-operator above can be improved so that we can
replace h by hln(1/h) in the confinement of the spectrum of P in
the strip i[1/C, C1] + R and that there are similar improvements for large
and small values of |Jz|.
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Chapter 11

From resolvent estimates to
semi-group bounds

11.1 Introduction

estgd

In Chapter @Sﬁ%aw a concrete example of how to get resolvent bounds
from semi-group bounds. Naturally, one can go in the opposite direction and
in this chapter we discuss some abstract results of that type, Including the
theorems of Hille-Yoshida and Gearhardt-Priiss-Hwang- areiner. As for the
latter, we also give a result of Helffer and the autﬁqgg %3 at provides a
more precise bound on the semi-group. We refer to [[63] for the discussion of
some examples.

11.2 General results

. nNaO7
We start by recalling some general results and here we follow H‘:ZM . Let B be
a complex Banch space.

Definition 11.2.1 A map [0,4+00[> t — T(y) € L(B,B) is a strongly con-
tinuous semi-group if

{T(t +5)=T(HT(s), t,s>0,

) 1 (11.2.1)

and the orbit maps

[0,+c[2t— T(t)z € B (11.2.2)

are continous for every x € B.
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Example 11.2.2 Let A € Mat (n,n) (the space of complex n x n matrices)
and put T'(t) = exptA : C" — C™. This is a uniformly continuous semi-
group: ||T(t) —T(s)|| = 0, t — s for every s > 0.

Example 11.2.3 Translation semi-groups: Let B = L?([0,+oo[), 1 < p <
+oo and define T'(t) : B — Bby T'(t)u(xz) = u(z+t). Then T'(t), 0 <t < 400
is a strongly continuous semi-group which is not uniformly continuous.

Example 11.2.4 Let B = L*(R") and let T(t)u = U(t, z) € C*([0, +o0[; H*(R"),
be the solution of the heat equation

U (t,x) = AU(t,z), U(0,z) = u(x).

Then T'(t) is a strongly continuous semi-group and also a contraction semi-
group in in the sense that ||T'(¢)|| < 1 for all £ > 0.

Let (T'(t))o<t<oo be a strongly continuous semi-group. The Banach-Steinhaus
theorem implies that M, > 1 such that || 7(¢)|| < M, for 0 <t < 1.

Proposition 11.2.5 If (T(t))o<t<oo 5 a strongly continuous semi-group, then
there exist M > 1, w € R such that we have have the following property

(P(M,w)):
IT(t) < Me**, t > 0. (11.2.3)

Proof. If t > 0, let [t] € N be the integer part of ¢, so that ¢ = [t] + s where
0 < s < 1. Then with M, as above, we get

1T = ITANAT ()| < ITONPIT ()] < MY < My x M.
Thus we have @ with M = My and w = In M. O

Definition 11.2.6 Let (T'(t))o<t<oo be a strongly continuous semi-group. The
growth bound wy € [—00, +00[ is

wo :=inf{w € R; IM = M, < +o00 such that |T(t)|| < Me**, Vt € [0, +00l[}.

IfT(t) = exptA: C" — C", A € Mat (n,n) we see that wy = maxye,(a) FA.

The generator

Definition 11.2.7 Let T(t), t > 0 be a strongly continuous semi-group. We
define the generator A : B C D(A) — B to be the linear operator with domain

D(A) ={z € B; lin% e Y (T(e) — 1)z = emists in B},
e—
and when x € D(A) we define Ax = lim._,qe (T(e) — 1)z.
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Theorem 11.2.8 The generator of a strongly continuous semi-group is closed
and densely defined

One can show that if z € D(A), then for every t > 0, T'(t)(D(A)) C D(A)
and 0,T(t)x = AT(t)xr = T(t)Axz. A general problem is to characterize
the generators of semi-groups. The following result gives some necessary
conditions.

Theorem 11.2.9 Let T(t), t > 0 be a strongly continuous semi-group with
generator A and let M > 1, w € R be such that (P(M,w)) holds.
If A € C and

0o T
RNz = / e™MT(s)xds = lim e T (s)xds

0 T—4o00 0
exists for all T € B (as a limit of vector valued Riemann intergrals), then
A € p(A) and R(\) = (A — A)~L. In particular, if R\ > w, then A € p(A)

and
M

A < )
IO = A7 <

Corollary 11.2.10 Under the assumptions of Theorem% let wy be the
growth bound of T'(t). Then the spectrum of A is contained in the half-plane
éR)\ S wo-

The Hille-Yoshida theorem characterizes generators of contraction semi-
groups (when taking w = 0):

Theorem 11.2.11 Let w € R and let A : B D D(A) — B be a linear
operator. The following properties are equivalent:

(a) A generates a strongly continuous semi-group T(t), t > 0, which satis-

fies (P(1,w)).
(b) A is closed, densely defined. For every A > w we have A € p(A) and

1
A=A < :
I = A7 < =
(c) A is closed, densely defined. For every A € C with R\ > w we have
A€ p(A) and
1
A=A < :
O = A <
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Example 11.2.12 Let —A = —(hd,)? + z'gz : L2 — L[? with domain B?
defined in the beginning of Subsection . The numerical range of A is
contained in the third quadrant and in particular in the half-plane R\ < 0,
so we know that [[(A — A)7!|| < 1/RX when RA > 0. Consequently A
generates a contraction semi-group.

The following theorem of Feller, Miyadera and Phillips characterizes gen-
erators of general strongly continuous semi-groups:

Theorem 11.2.13 Let w € R, M > 1 and let A : B D D(A) — B be a
linear operator. The following properties are equivalent:

(a) A generates a strongly continuous semi-group T'(t), t > 0 which satisfies
(P(M,w)).

(b) A is closed, densely defined. For every A > w we have X € p(A) and
M
A—A)7"|<—— VneN.
[0 = A)" < s v e

(c) A is closed, densely defined. For every A\ € C with R\ > w we have
A€ p(A) and

IO — A)™|| < Vn € N.

M
RN —w’
A draw-back with the Hille-Yoshida theorem is that it is essentially lim-
ited to the special case of contraction semi-groups. The Feller-Miyadera-
Phillips theorem gives a general characterization of generators of strongly
continuous semi-groups but it may be less clear how to verify the conditions
of that theorem in concrete applications.

11.3 The Gearhardt-Priss-Hwang-Greiner the-
orem

In this sggtion we first re B]ge Gearhardt-Priiss-Hw. g rﬁi% theorem
niNa fia al

(see [44], Theorem V.I.11, E?IS , Theorem 19.1 as well asaWTSZ], FTS and then

we give a variant with e}gli%t bounds on the norm of the semi-group due to

Helffer and the author %ﬁhe GPHG-theorem reads:

Theorem 11.3.1

(a) Assume that B =H is a Hilbert space and that ||(z— A)~Y|| is uniformly
bounded in the half-plane Rz > w. Then there exists a constant M > 0
such that P(M,w) holds.
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(b) If P(M,w) holds, then for every a > w, ||[(z — A)7Y| is uniformly
bounded in the half-plane Rz > «.

The part (b) follows from the more precise statement in Theorem .

The idea in the proofs that we have seen, is basically to use that the
resolvent and the inhomogeneous equation (0 — A)u = w in exponentially
weighted spaces are related via Fourier-Laplace transform and we can use
Plancherel’s formula. This is why we need to work in a Hilbert space. Vari-
@111]%% ogetlgéﬁ isdgnp;ﬁ &g],easélhaoxée alnso been used in more Conqete situations. See
12314768, [II7]. Before stating the more explicit version we make some
simple remarks.

We can improve slightly the conclusion of (a). If the property (a) is true
for some w then it is automatically true for some w’ < w.

Lemma 11.3.2 If for some r(w) > 0, |[(z — A)7|| < T(L) for Rz > w, then

for every w' €|w — r(w),w] we have

Iz = 4)7)| < R

rw) = (w—=w)

Proof. If z € C and Rz > ', we ¢an find z € C with Rz > w, and the
lemma follows from Proposition % O

Remark 11.3.3 Let

wy =inf{lw € R; {z € C;Rz > w} C p(A) and sup ||(z — A) 7| < oo}

Z>w

For w > wy, we may define r(w) by

1
—— = su 2 — A7
o= S = A

Then r(w) is an increasing function of w; for every w €Jwi, oo, we have
w—71(w) > w; and for W’ € [w — r(w),w] we have

rw) >rw) — (w—u).

We may state all this more elegantly by saying that r is a Lipschitz function

on wy, +oo[ satisfying

dr
o< —<1.
=5 =

Moreover, if wy > —oo, then r(w) — 0 when w \ w;.

197



Remark 11.3.4 By Theorem , we already know that ||(z — A)7!|| is

gpb5

uniformly bounded in the half-plane Rz > 3, if § > wy where wy is the growth
bound for (T'(t))o<t<oo- If @ < wp, we see that ||[(z — A)7Y| is uniformly
bounded in the half-plane Rz > «, provided that

e we have this uniform boundedness on the line ®z = «a,
e A has no spectrum in the half-plane Rz > «,

e ||(z— A)7!|| does not grow too wildly in the strip a < Rz < 8: ||(z —
A7 < O1) exp(O(1) exp(k|Sz])), where k < 7/(8 — ).

We then also have

sup [|(z — A)7H| = sup [[(z — A)7. (11.3.4)
Rz>a Rz=«
This follows from the subharmonicity of In||(z — A)™!||, Hadamard’s theo-

rem (or Phragmén-Lindel6f in exponential coordinates) and the maximum
principle.

Si10
The following result of B. Helffer and the author %S]Jﬁves explicit bounds
on the semigroup in the GPHG-theorem.

Theorem 11.3.5 We make the assumptions of Theorem (a) and
define r(w) > 0 by

1 -1
o= S = A7

Let m(t) > || T(t)|| be a continuous positive function. Then for allt,a,a > 0,
such that t = a + a, we have

ewt

IT(@®)] < (11.3.5)

(W)l Ele=er2qo,a | le==-22(0;a0)

Here the norms are always the natural ones obtained from H, L2, thus for
instance ||T(t)[| = ||T(t)|| z¢z,20), if w is a function on R with values in C or in
H, ||u|| denotes the natural L? norm, when the norm is taken over a subset
J of R, this is indicated with a “L?(J)”. In (TT.3.5) we also have the natural
norm in the exponentially weighted space e L*([0, a]) and similarly with @
instead of a; || fle-w-z2(o.apy = € ()l L2 ((0.a)-

Notice that we_only need the bound m(t) for small ¢, say 0 < ¢ < 1 and
that we have with m(t) replaced by m(t)1j1(t) + 0olj1 1o Thus
from the given bound m(t) for small times and the resolvent bound, we get a
global bound m(t) on ||T'(t)||. We can then replace m(t) by min(m(t), m(t))
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and reapply the theorem. It is an interesting problem to understand what
would be the optimal bound that w can, get from such an iteration. Some
steps in that direction were taken in [[63].

The following variant of the main result could be useful in problems of
return to equilibrium.

.3.9) holds. Let w < w and assume that A has no spectrum on the line
Rz = w and that the spectrum of A in the half-plane Rz > W is compact
(and included in the strip © < Rz < w). Assume that ||(z — A)~| is uni-
formly bounded on {z € C; Rz > w} \ U, where U is any neighborhood of
0+ (A):={z € 0(A); Rz > W} and define r(w) by

’][‘h%grem 11.3.6 We make the assumptions of Theorem % so that

5= S = A7

Then for every t > 0,
T(t) =TI, + R(t) = T(OIL, + T(t)(1 —11,),
where for all a,a > 0 with a +a = t,

ewt

IR < II-TL).  (1136)

T(&)H%||e*‘7"L2([0,a])||niz||e*‘7"L2([Oﬁ})
Here 11, denotes the spectral projection associated to o4 (A):

1
I, = — — Al
T o av(z )7

where V' is any compact neighborhood of o, (A) with C* boundary, disjoint
from o(A)\ o, (A).
11.3.1 Proofs of the main statements
Proof of Theorem @ We shall use the inhomogeneous equation
(0 — A)u = w on R. (11.3.7)

Recall that if v € H, then T'(t)v € C°([0, 00[; 1), while if v € D(A), then
T(t)v € CH([0,00[; H) N CY(]0, 00[; D(A)) and

gp.4

AT(t)w =T(t)Av, (0 —A)T(t)v=0. (11.3.8)

199



Let CY(H) denote the subspace of all v € C°(R;H) that vanish near
—o0. For k € N, we define C*(H) and C*(D(A)) similarly. For w € C%(H),
we define Ew € CY(H) by

¢
Fuw(t) = / T(t — s)w(s)ds. (11.3.9)
We to see that E is continuous: C*(H) — C%(H), C*(D(A)) — C*(D(A))
and if w € CL(H) N CY(D(A)), then u = Ew is the unique solution in the
same space of . More precisely, we have

(0 —A)Ew=w, FE0 —Au=u, (11.3.10)

for all u,w € C(H) N CY(D(A))

Recall that we have P(M,wy) for some M,wy by Proposition L If
w1 > wp and w € CY(H) N e L*(R;H) (by which we only mean that w €
CY(H) and that ||w|ler 2 < o0, avoiding to define the larger space
e“' L*(R;H)), then Ew belongs to the same space and

”EwHer'LQ(R;H) = ||/ eiwlsﬂs)eiwl(ﬂ)w(' - 5)”
0

( / ewltuw)udt) —

M

W1 — Wo

IN

< ||w||e“’1'L2(R;'H)'
Now we consider Laplace transforms. If u € e¥"S(R; H), then the Laplace

transform
—+oco

i(r) = /_ Tult)dt

[e.9]

is well-defined in S(T',; H), where
I, ={r€CRr =w}

and we have Parseval’s identity

L.

%HUH%Q(F“}) = ||u||e“"L2- (11311)
Now we make the assumptions in Theorem @ define w and r(w) as

there, and let M, wy be as above. Let w € ¢Sy (D(A)), where S (D(A))

by definition is the space of all u € S(R;D(A)), vanishing near —oo. Then

w € eSSy (D(A)) for all wy > w. If w; > wy then u := Fw belongs to
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1S, (D(A)) and solves @ Laplace transforming that equation, we
get
(1 — A)u(r) = w(r), (11.3.12)

for RT > wy. Notice here that w(7) is continuous in the half-plane 7 > w,
holomorphic in #7 > w, and wjr, € S(I'y) for every w > w. We use the
assumption in the theorem to write

u(r) = (1 — A~ tw(r), (11.3.13)

and to see that u(7) can be extended to the half-plane 7 > w with the same
properties as w(7). By Laplace (Fourier) inversion from I',, we conclude that
u € S (D(A)). Moreover, since

N ISP
[u(T)lln < —— llw(T)lln, 7€ Lo,

r(w)

we get from Parseval’s identity that

1
[ul|ew 12 < ——[Jw]|ew L2 (11.3.14)

r(w)
Using the density of D(A) in H together with standard cutoff and reg-
1&@

ularization arguments, we see that ) extends to the case when w €

e’ L*(R; H) N CY(H), leading to the fact that u := Ew belongs to the same
ﬁmi

space and satisfies (
Consider u(t) = T'(t)v, for v € D(A), solving the Cauchy problem

(8t—A)u=0,tZO,
u(0) =v.

Let x be a decreasing Lipschitz function on R, equal to 1 on | — oo, 0] and
vanishing near +oco. Then

(0= A1 = x)u=—x'(t)u,

and

+o00
Xl 2 2/0 X @) [[u(®)][*e™" dt

< Xm0l

where we notice that x'm is welldefined on R since supp x’ C [0, ool.

201

gp.9



Now (1 — x)u, x'u are well-defined on R, so
1 = x)uflew 2 < r(w) X ullewr2 < r(w) 7 Ix'mllewre [Jv]] - (11.3.15)

Strictly speaking, in order to apply , we approximate x by a sequence
of smooth functions. Similarly,

Ixulles 2y < lIxmlles 2y [0l]

SO
||u||ew'L2(R+) < (T(w)_IHX/mHe“"L? + ||Xm||ew‘L2(R+)) ”UH :
Let us now go from L? to L*. For t > 0, let y,.(s) = X(t — s) with

X as x above and in addition suppx C| — 00o,t], so that x,(t) = 1 and
supp x+ C [0, 00[. Then

(05 — A) (x+(s)u(s)) = X (s)u(s),
and

wult) = [T = ) ) ulds.

—00

Hence, we obtain
e u)]| = e Ix+(H)u(t)]]

< [ e tmt— R - 9)lluls)]| ds
/—oo (11.3.16)

t
< [ e m = )[Rt - 9] e uls) | ds

—0o0

< flmX w22 ulles L2(suppxs) -

Assume that

x = 0 on supp . . (11.3.17)
en u can be replaced by (1 — y)u in the last line in and using
we get
e Nu@®)| < (@)™ mx|lew p2llmX [l 2|01 (11.3.18)
Let
supp x C|] — 00, a], supp Y C|] — o0, al,a+a =1, (11.3.19)

so that @D holds.
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For a given a > 0, we look for y in such that ||my/||ewr2 is as

small as possible. By the Cauchy-Schwarz inequality,

“ 1
1= [ Wl < [xmllsal e 2o
0 m

SO
1
X[ 2 > 1
I e 2200
We get equality in if for some constant C,
1
IX'(s)|m(s)e ™" = C’m(s)e“’s, on [0, al,
ie. ]
X' (s)m(s)e ™ = —Cmews, on [0, al,

where C' is determined by the condition 1 = [* |x'(s)|ds.

We get

C— 1

|| = ||e w L2(]0,a[)
Here x(s) =1 for s <0, x(s) =0 for s > a,

¢ 1
S):C’/ e*?do, 0< s <a.
s m(o)?

With the similar optimal choice of Y, for which
1
15 e 22 o)

X' mlew 2 =

we get from :

e lu(®)] <
.

[v]]

(s llee 22 qo.ap s e 22 o.a)

)

(11.3.20)
(11.3.21)

(11.3.22)

provided that a,a > 0, a +a = ¢, for any v € D(g :: Recalling that D(A) is
(]

dense in H, this completes the proof of Theorem

Proof of Theorem “ We can apply Theorem @ to the restriction
S( ) of T'(t) to the range R(1—11,) of 1—1II,. The generator is the restriction

A of A so we get

I < —

(@)l % “e*“NJ'LQ([O,a]) | % He*@'LQ([O,Ei]) '

ewt

Then follows from the fact that R(t) = S(¢)(1 — IL,.).
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Chapter 12

Counting zeros of holomorphic
functions

12.1 Introduction

In this chapter we will generalize Proposition % of Hager about count-
ing the zeros of holomorphic functions of exponential growth. In 55]J_W6
obtained such a generalization, by weakening the regularity assumptions on
¢. However, due to some logarithmic losses, we were not quite able to re-
cover Hager’s original result, and we still had a fixed domain I" with smooth
boundary.

In many spectral problems, the domain should be allowed to depend on
h, for instance, it could be a long thin rectangl - Bk d the boundary regularity
should be relaxed. In this chapter, base%a%nOEIBS we revisit systematically
the proof of the counting proposition in [55] and obtain a general and quite
natural result allowing an h -dependent exponent ¢ to be merely continu-
ous and the h-dependent domain I' to have Lipschitz boundary. The result
generalizes the two earlier ones. By allowing suitable small changes of the
points z; e also get rid of the logarithmic losses. In comparison to the re-
sults in ﬁT?)B]bwe relax a subharmonicity assumption about the exponent in
the exponential bounds.

We next formulate the results. Let I' € C be an open set and let v = oI’
be the boundary of T'. Let r : v —]0, oo[ be a Lipschitz function of Lipschitz
modulus < 1/2:

1
[r(2) —r(W)| < 5le —yl, 2,y €. (12.1.1)

We further assume that ~ is Lipschitz in the following precise sense, where r
enters:
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There exists a constant C such that for every x € v there exist new affine
coordinates § = (J1, J2) of the form § = U(y — z), y € C ~ R? being the old
coordinates, where U = U,, is orthogonal, such that the intersection of I and
the rectangle R, := {y € C; |y1| < r(x), |y2| < Cor(x)} takes the form

v € Re; 2> fo(n), [l <r(2)}, (12.1.2)

where f,(v1) is Lipschitz on [—r(xz).7(z)], with Lipschitz modulus < Cj.
Notice that our assumption remains valid if we decrease r. It will
be convenient to extend the function to all of C, by putting

1
r(z) = inf(r(y) + s lz —yl). (12.1.3)
yey 2
The extended function is also Lipschitz with modulus < %:
1
(@) = r(y) < 5o —yl, 2,y € C.
Notice that 1
r(z) > §dist (x,7), (12.1.4)
and that 5
ly —z| < r(r) = @ <r(y) < réx) (12.1.5)

For convenience, we shall also assume that I' is simply connected. The
general version of our zero counting result is:

Theorem 12.1.1 Let I' € C be open, simply connnected gnd have Lipschitz

cz 1

bounda&y ~ with an associated Lipschitz weight v as in (12.1.1)), (12.1.9),

. Put For = UgeyD(z, ar(x)) for any constant o > 0. Let Z;-) € 7,
J € Z/NZ be distributed along the boundary in the positively oriented sense
such that
P/ S 2 — 2 < r()/2

J — 17j+1 Jl = J :

(Here “}” can be replaced by any fized constant > 2.) Then for every constant
C\ large enough; > CY depending only on the constant Cy in the assumption
around (%, there exists a constant Cy > 0 such that we have the follow-
ing for any z; € D(2],r(29)/(2C1)):

Let 0 < h <1 and let ¢ be a continuous subharmonic function defined
on some neighborhood of the closure of 7, and denote by the same symbol a
distribution extension to I' U~,.. If u is a holomorphic function on I' U7,
satisfying

hln|u| < ¢(z) on 3, (12.1.6)
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hinlu(z)] = ¢(z) — €, for j=1,2,...,N, (12.1.7)

where €; > 0, then the number of zeros of u in I' satisfies

1

#u )N -

p)] <

v (12.1.8)
a6+ 10 =0 )
h M’y’f’ 1 ] D(ZJ r(z) ,LL .

r(25)

Here 1 :== A¢ € D'(I' U7,) is a positive measure on 7, so that p(I') and
w(3y) are well-defined by

pT) = sup  x(x)A6(2)L(d2)

x€Co(I3[0,1])

1cy)

and similarly with T replaced with ~,. .
As a matter of fact, we can relax the subharmonicity assumption.

Remark 12.1.2 The preceding theorem remains valid if we drop the sub-
harmonicity assumption and assume instead that ¢ is continuous in a neigh-
borhood of 7, and has the property that p := A¢L(dz) is a finite Radon
measure. Let = py — p— be the Jordan position of p into the differ-
ence of two positive Radon measureg seeﬂﬁ:eﬁ%n Then in the conclusion, we

replace p in the right hand side of Wlth ty. We now define u(F)
the left hand side as the limit of [ x,(z ), where Co(T;[0,1]) > x», M 1r,
v — 00.

|w—2z;|

By observing that the average of |In )
J

| with respect to the Lebesgue

0
measure L(dz;) over D(z9, TQ(zfl)) is O(1), we can get rid of the logarithmic
terms in Theorem , to the price of making a suitable choice of z; = z;,
and we get:

Theorem 12.1.3 Let 1’ € C be simply connnected and have, Lipschitz bound:
ary v with an associated Lipschitz weight r as in (12.1.1), (12-1.3), (12-1.5).
Let z}) € v, J € Z/NZ be distributed along the boundary in the positively
oriented sense such that

r(25)/4 < |25 — 7| < r(25)/2.

(Here “}” can be replaced by any fized constant > 2.) Then for every constant
C, large enough; > CY depending only on the constant Cy in the assumption
around , there exists a constant Cy > 0 such that we have the follow-
mg:
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Let 0 < h <1 and let ¢ be a continuous subharmonic function defined
on some neighborhood of the closure of 7, and denote by the same symbol a
0
distribution extension to T'U7,. Then 3Z; € D(2Y, 2(03)> such that if u is a
holomorphic function on I' U7, satisfying

hln|u| < ¢(z) on 3y, (12.1.9)
and
hInfu(3)| = 6() — & § = 1,2, V, (12.1.10)
instead of (%, then
1
—1 o
[#w(0)NT) = o) < h )+ 6) (12.1.11)

Furth, s this result can be extended to the non subharmonic case as in Remark
%_by using the Radon_decomposition p = py — p— and replacing p in
the right hand side of with iy .

Of course, if we already know (in the subharmonic case) that

/D( e !m'“;(gj”'!u( w) = O(l)u(D(zj,Tigl))), (12.1.12)

ZJ 40)

~ . A 8 i 0 - .
then we can keep z; = z; in (@ and get @ This is the case, if we

assume that p is equivalent to the Lebesgue measure L(dw) in the following
sense:

pldw) L(dw) '(2)
Gy ey Ot Pl e
,LL(D(Z], ac, ) L(D(Z], ic, ) 1 (12.1.13)
uniformly for j =1,2,..., N.

Then we get,

Theorem 12.1.4 Make the assumplions of Theorem] . s well7a8 (@
or the stron Eassumptz'on . Then from . 1.0]), (ﬁ%? 1), we con-

clude (i%né 2 ;% . In the non—subhcw‘mom'hcﬂgcruge,1 Joe h@g_g@ tfz,; same statement
pmﬁided thébt W 1s replaced with py in (12.1.13), (12.1.13) and to the right

m

In particular, we recover Proposition %, where I', ¢ are independent of h,
7 of class C and ¢ € C?(neigh (v)). Then |u| < O(1)L(dz) and it suffices
to choose r = /e, €; = ggl%sto notice that we can replace ¢ by ¢ 4+ €. The
counting proposition in [55] can also be recovered.
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There has been a considerable activity in the study of the zero set of
random holomorphic functions where the Edelman Kostlan formula has sim-
ilarities with the above results (and the earlier ones by Hager and others

mentioned 138"6) and where many fuyther results have been obtained. See
M. Sodin , Sodin, B, Tsirelson }_S Zrebiec T55 B. Shiffman,
S. Zelditch, S Zreblec TZT he two last papers deal Wlth holomorphic

functions of several variables and it would be interest to see if our results
also have extensions to the case of several variables. Our results are gbmllar
in spirit to classical results on zeros of entire functions, see Levmifr

The outline of the chapter is the following:

In Section we consider thin neighborhoods of the boundary where the
width is variable and determined by the function r. We verify that we can
find such neighborhoods with smooth boundary and estimate the derivatives
of the boundary defining function. Then we develop some exponentially
weighted estimates for the Laplacian in s }g (}ﬁmams in the spirit of what
can be done for the Schrodinger \89}139%01]5 g BTU]i)fand a large number of works
in thin domains, see for instance [42[119]. From that we also deduce pointwise
estimates on the corresponding Green kernel.

In Section% we prove the main results‘ -Pa% f&yowmg the general strategy
of the proof of the corresponding result in [b5] and carry out the averaging
argument that leads to the elimination of the logarithms.

In Section we consider as a simple illustration the zeros of sums of
exponentials of holomorphic fﬂ)l%%tl%%qapgh%? rggglts can also be obtained
with more direct methods, cf [34] I3, 72

This chapter is a slightly improved version of fTESF where a last section
— not included here — establishes a connection with classical results on zeros
of entire functions.

12.2 Thin neighborhoods of the boundary and
weighted estimates

Let I', v = OI', r be as in the introduction.
Using a locally finite covering with discs D(z,7(z)) and a subordinated
partition of unity, it is standard to find a smooth function 7(z) satisfying

1 1

o(@) <F(@) <r(e), [Vile) < 5, 0°7(z) = OF ), (12.2.1)

where C' > 0 is a universal constant.

i 1
rogl n5 we replace r(x) by.ax% %nd the drop the tilde. d%

remain valid and remains valid in the weakened
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form:
dist (z,7), (12.2.2)

where C' > 0 is new constant.
Consider the signed distance to v:

_)dist(z,7), v €T
glw) = {—dist (z,7), e C\T (12:2:3)

P.ossibl¥ after replacing r by a small constant multiple of r we deduce from
that for every = € 7 there gxists a normalized constant real vector
field v = v, (namely 0y, cf. (I2.1.2]) such that

y@)zégan C=(1+C3H72 (12.2.4)

In the set U,e,R,, we consider the regularized function

()= | (GT&Wx<frzj>g<y>L<dy>, (12:25)
where 0 < x € C°(D(0,1)), [ x(z) = 1. Here € > 0 is small and we

notice that r(z) = r(y), g(y) = C’(T( )% when x((z —y)/(er(z)) # 0. It
follows that g.(z) = O(r(z)) and more precisely, since g is Lipschitz, that

ge(x) — g(z) = O(er(x)). (12.2.6)
Differentiating @, we get
Vege(x) = (Vig)e +2 / ZZ&E;)X(Z@?)/)%;L(dy) (12.2.7)
L =y 2y o \y9W)
+ [t (S o) D )

where (V,g). is defined as in @ with g replaced by V,g. It follows that

el
yED(z,er(x)) 74(1;)

Vage(x) = (Vg)e(z) = O(1) (12.2.8)

In particular, V,g. = O(1) and with v = v,

1
v(ge)(y) > 20 when y € R,, and  sup |g(2)| < r(y). (12.2.9)

|z—y|<er(y)
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Differentiating @ further, we get
9°ge(z) = On((er(x))71N), |af > 1. (12.2.10)
Let C' > 0 be large enough but independent of ¢. Put
Jecer = {2 € Uyer Ry |ge(2)| < Cer(z)}. (12.2.11)

. . . . . i 2
If C' > 0is sufficiently large, then in the coordinates associated to (@
Ye.cer takes the form

fo ) <% < £ @), 1] <r(@), (12.2.12)
where fF are smooth on [—7r(x),r(x)] and satisfy
0% fo = Op((er(z)'™), k> 1, (12.2.13)

0< ft — fo, fu— fr < Cer(z). (12.2.14)

Later, we will fix ¢ > 0 small enough and write
Yr = Ye.cer and more generally, Yo, = Ve Cear- (12.2.15)

We shall next establish an exponentially weighted estimate for the Dirich-
let Laplacian in ~,:

Proposition 12.2.1 Let C' > 0 b&suﬁﬁciently large and € > 0 sufficiently

small in the definition of v, in . Then there exists a new constant

C > 0 such that if v € C*(7,) and
| < — (12.2.16)
o -
we have
1,1
¥ Dull + Sl -evul < Clre* Aul, we (HyNH) (), (12:2.17)
r
where ||w]| denotes the L* norm when the function w is scalar and we write

(v]w) = / S v (@) () L(da), (o]l = /(o).

for C"-valued functions with components in L*. H and H* are the standard
Sobolev spaces.
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Proof. Let ¢ € C*(¥,;R) and put
_A'll) =e¥o (_A) oe ¥ = DQQ: - (1/};)2 + Z(l/}; oDy + Dyo w,z)7

where the last term is formally anti-self-adjoint. Then for every u € (H* N

Hg)():
(—=Agulu) = | Doull® = () ulu). (12.2.18)

We need an apriori estimate for D,. Let v : 7, — R" be sufficiently
smooth. We sometimes consider v as a vector field. Then for u € (H? N

Hg)(7):
(Du|uv) — (wv|Du) = i(div (v)ulu).

Assume div (v) > 0. If v = Vw, then div (v) = Aw, so it suffices to take
w strictly subharmonic. Then

/div ()ul*dz < 2fuv|[|[Dull < [|Dul]® + [luv]®,

which we write

[ v 0) = P s < 1Dl
Using this in d@b, we get
1 1, .
Dl + [ Gldiv () = o) = (0P <
1 1.1 1
I3 (=g yullkal < 313 (=Ag)ul? + 3 kul?,
where £ is any positive continuous function on 7%,. We write this as
1 2 L . 2 12 IN2NL (2 1.1 2
SIDul+ [ (S (div (v) = [o]"=k%) = () |ufdz < Sll2(=Ay)ul”. (12.2.19)
We shall see that we can choose v so that

div (v) > 772, Jo| <O, (12.2.20)

After replacing v by C~!v for a sufficiently large constant C, we then achieve
that

div (v) — Jv|* < r~2 (12.2.21)
3

Before continuing, let us establish (I2.2.20): Let g = g. be the function
in the definition of v, = 3, ce in ([2:2.11)), so that C~! < |Vg| < 1 (with the
new C independent of ¢, C in (12.2.11))), 9%g = O(r(z)*lo). Put

v =V ("), (12.2.22)
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where A > 0 will be sufficiently large. Notice that

9, _Vg gVr
v(Z)y= 2 _J*°
(7“) r r2’
where
Vo1
r
uniformly with respect to € and
gVr gl
CAS D2 = Oe)=
L =0mis = o),

We have

A
v = 6¥AV(Q), lv| < X2
r r

3
so the second part of (@V holds for every fixed value of A. Further,
div (v) = ¥ (V)P +2a(D)).

Here,
g 1 g 1
VR = 5, A) =0

= AL =005),

3
so if we fix A large enough, we also get the first part of @
A We7(:h 00s¢e k= (Cr)~1 for a sufficiently large constant C, we get from
2210, (T22.10)

6 () = [of? — K) — () = 12

xT

Thus, with a new sufficiently large constant C', we get from dﬁ[}:

1 1
1Dl + 5 [ Sl < Clr(-a,ulP, (12.2.23)

Yr

which we can also write as

1,1
|Dull + l=ull < Cllr(~Ay)ul. (12.2.24)

Thus,
1.1
|Devull + —l~evull < [lre Aul
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and by @,

le? Dull < [|De’ul| + [O(1/r)evull < O(1)||re” Aul,

so we get @D with a new constant C. O

If Q € C has smooth boundary, let G, P, denote the Green and the
Poisson kernels of €2, so that the Dirichlet problem,

Au=v, u,y,=f, u,veC™Q), feC0Q),

has the unique solution

u(x) = / Gl y)o(y) L(dy) + / Po(e9)f (9)]dy].

Q

Recall that —Gq > 0, Py > 0. It is also clear that

1
_Gﬂ(xay) < 0—2—ln]x—y], (12225)
T
where C' > 0 only depends on_the diameter of 2. Indeed, let —Go(x,y)
denote the right hand side of (12.2.25) and choose C' > 0 large enough so

that —Go > 0 on Q x €2. Then on the operator level,
GQU = G(ﬂ) - PQ(G0U|8Q),

so that
Gal,y) = Gola,y) — / Po(, 2)Go(2, y)ld].

o0
and hence Go > Gy, —Gq < —Gy. The same argument (replacing G by G
with Q D Q) shows that —Ggq is an increasing function of €2

Ql C QQ = —GQ1 < —GQQ on Ql X Ql-
We will also use the elementary scaling property:

GQ(%, %) = Gio(z,y), 7,y €1Q,t > 0. (12.2.26)

Proposition 12.2.2 Under the same assumptions as in Proposition
there exists a (new) constant C' > 0 such that we have

L o lz—yl r(y)
-Gy (z,y) <C — %ln ) when |x —y| < R (12.2.27)
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7y () 1
L 1at)), when |z —y| > "¥)
v(y) T(t)

where it is understood that the integral is evaluated along vy from 7, (y) € v to
7y (x) € 7, where m,(y), my(x) denote points in vy with |x—m.(x)| = dist (z, ),
ly — my(y)| = dist (y,7), and we choose these two points (when they are not
uniquely defined) and the intermediate segment in such a way that the integral
1 as small as possible.

1
—@ﬂwhﬂ%mFg/

Proof. Let y € 7,, and put ¢t = r(y). Then we can find Q@ € C uniformly
bounded (with respect to y) whose boundary is uniformly bounded in the
C* sense[l| such that 7, coincides with y + tQ =: QU in D(z 2r(y) ),
Q, C D(y, %) and r = r(y) in that disc. In view of (T22.25), (1272.26) we

see that —Gq, (x, ) satisfies the upper bound in (12:2.27). Let X X(=2) be

r(y)
a standard cut-off equal to one on D(y, T(Cy)) with supp x(;75) € D(y, 2T(y)),

and write the identity:

G () =X (1) = G [A X, (p). (12:2.29)

Using that the non-negative function —Gg, satisfies (2.2.27)), we see that
the L?-norm of Gg,(-,y) over the cut-off region (i.e. the support of the -

gradient of the cut-off) is O(r(y)). Ggq, is harmonic with boundary value 0 in
a neighborhood of supp V. From standard estimates for elliptic boundary
value problems, we conclude after scaling, that the L?-norm of V.G, (7,y)
over the same region is O(1). It follows that

1

HMX(@HQM NZWRE%
and hence, by applying @ with ¢ =0 to
u = Gy [ (S 1Ga, (1),
we get .
TG%[A X( (y) )]GQy(’ ) 0(1)7 in L (71“)'

Away from supp [A, X( )] the function G,, [A, X( )]Ggy( ,y) is harmonic
on 7, with boundary Value zero and, appealing as above to apriori estimates

lie. given by an equation f(z) = 0, where f belongs to a bounded family of smooth

real functions with the property that f(z) =0 = |V f(z)| > 1/O(1) uniformly for all f
in the family.
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for elliptic boundary Value problem and scaling, we conclude that inside the
reglon Where X(=- e )) , it is O(1). From ([I2:2.29) we then get the estimate

fzz=).

To‘ get, (12.2.28) ve now apply the same reasoning to (12.2.29)), now with ¢
as in ([12.2.10)), , together wit sgaghdard arguments for exponentially
weighted estlmates for instance as in BT]J_usmg again that |u| < O(r(y))||u||

in a domain (2, where u is harmonic, near a part of the boundary where
u=0. O

We will also need a lower bound on G, on suitable subsets of v,. For
€ > 0 fixed and sufficiently small, we say that M & ~, is an elementary piece
of v, if

e M C Ta-Lr cf. "

1 @
¢ = r(y
e Jy € M such that M =y + r(y)]Tj7 where M belongs to a bounded set

of relatively compact subsets of C with smooth boundary.

In the following, it will be tacitly understood that we choose our elementary
pieces with some uniform control (C' fixed and uniform control on the M).

Proposition 12.2.3 If M is an elementary piece in 7y, then

|z -y
7(y)

Proof. We just outline the argument. First, by using arguments from the
proof of Proposition (without any exponential weights), we see that

— Gy (z,y) <1+ |In |, x,y € M. (12.2.30)

[z =y
r(y)

Next, if M" is a slightly larger elementary piece of the form y+ (1+ %)r(y)ﬁ ,
then from Harnack’ s inequality for the positive harmonic function —G,, (-, y)
on M'\ D(y, 561 Weseeta (2, y) < 1in M\ D(y, 5r(y)), Wthh
together with (12.2.31)) gives (12.2.30)

-G, (z,y) < —In ‘ , when x,y € M, < L (12.2.31)
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cz2

12.3 Distribution of zeros

Let ¢ be a continuous function defined in some neighborhood of 7,.. Assume
that

=y = A¢ (12.3.1)

is a locally finite Radon measure.
Let u be a holomorphic function defined in a neighborhood of I' U7,.. We
assume that
hln|u(z)| < ¢(2), z € ;. (12.3.2)

Lemma 12.3.1 Let zg € M, where M s an elementary piece, such that
hln|u(zo)| > ¢(20) — €, 0 < ek 1. (12.3.3)

Then the number of zeros of u in M is

< %(e + [YT —G., (20, w)p(dw)). (12.3.4)
Remark 12.3.2 The integral in is interpreted as
[ =6 Coontwintin) + | =G, (a0, 0)(1 = (@)1, (watae),
where x € C§°(C) is supported in the interior of v, and = 1 near w = z.

The first integral is by definition what we get from integration by parts, using
that u = A¢L(dw):

[ ~20(G, G wx(w)o(w) Lidu) ~
c
= 6z0) ~ [ (29 (s w) - V(w) + G (20, 0)Ax(w) S(w)L(du).
c
The second integral is well-defined since pu(dw) is a Radon measure and w —

-G, (20, w)(1 — x(w))1, (w) is of class Cy(C)
When ¢ is of class C?, we have pu(dw) = A¢(w)L(dw), A¢ € C° and

[ Gt wlntdu) = ~oz0) + / P, (o w)ow)ldul,  (123.5)

Vr
where P is the Poisson kernel. For a general ¢ as in the lemma, we can make
a standard regulariz 'OE and the first part of the remark, QWS that the
left hand side in passes to the limit and we get in this case
also.
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Proof. Let

1, (dz) Z 21H(z

where z; are the zeros of u counted with their multlplicity. We may assume
that no z; are situated on 0v,. Then, since Aln |u| = n,,

hln|u(z)| =

/ (z,w)hn,(dw) + / P, (z,w)h1n|u(w)||dw]
ovr

<

/ Gy (2w (dw) + /%P%<z,w>¢<w>|dw|

/ G, (2, w)hn,(dw) + ¢(z / G, (z,w)p(dw).

Putting z = 2y in dﬁ[} and using @D, we get

/ —G, (20, w)hny(dw) < e+ | =G, (20, w)p(dw).
Yr Yr
Now by (T2.2:30),

and we get (12:34)). O
Notice that this argument is basically the same as when using Jensen’s
formula to estimate the number of zeros of a hplomorphic function in a disc
and has been used in the proof of Proposition
Let z , zj be as in Theorem [TZ.T.1]. We may arrange so that 7, C 7 C

Y. In partlcular the assum%tm?s of Theorem [12. 1 I imply 1]! 2 Now

we sharpen the assumption (I2.3.3)) and assume as in Theorem [T2..
hin|u(z;)| > ¢(z;) — ;. (12.3.7)
Let M; C 7, be elementary pieces such that

T(é]> , v C UMy, = (1— %)T,
12.3.8)
where C' > 1. Recall that Y = Je.cer Where C € are now fixed (cf ,
and that v, = Yeace- We will also assume for a while that ¢ is smooth.
According to Lemma | we have
Cs
7(6]- + | =G, (2, w)p(dw)). (12.3.9)

Yr

Zj € Mj, dist (Zj,Mk) >

#(u'(0) N M) <
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Consider the harmonic functions on 7z,

U(z) = h(ln|u(z)| + /N -G (2, w)n,(dw)), (12.3.10)

T

D(2) = ¢(2) +/ —G. (2, w)p(dw). (12.3.11)

Then ®(z) > ¢(z) with equality on 977 Similarly, U(z) > hln|u(z)| with
equality on 0vz.
Consider the harmonic function

H(z) =®(2) — ¥(z2), z € ¥ (12.3.12)
Then on 97y, we have by @ that
H(z) = ¢(2) = hn|u(z)] = 0,

so by the maximum principle,

By @, we have

H(z;) =®(2;) — ¥(z)
=¢(2;) — hinu(z;)|

+ /N —G. (25, w)p(dw) — /N —G, (25, w)hn,(dw)  (12.3.14)

T T

H(z) >0, on . (12.3.13)

<+ [ =Gz wn(du).
it

T

Harnack’s inequahtyﬂ implies that

H(z) < (9(1)(6]-—1—/—GW(zj,w)u(dw)) on M;Nys, 7= (1—%)?. (12.3.15)

Now assume that u extends to a holomorphic function in a neighhorhaod
of 'U#,. We want to evaluate the number of zeros of w in I'. Using ([12.3.9
we first have

(4 (0) ) %Z( v [ 6t wpldn) ). (123.10)

Zwhich says that if Q € C is a connected open set with smooth boundary and K C
a compact subset, then there exists a constant C' = Cq g > 0 such that u(z1) < Cu(zz)
for all z1, 20 € K and every non-negative harmonic function u on 2, uniformly if €2 varies
in a family uniformly bounded subsets of C and dist (K,99) > 1/O(1) uniformly,

Y
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Let x € C°(I' Uz [0,1]) be equal to 1 on I'. Of course x will have to
depend on r but we may assume that for all £ € N,

Vix =00, (12.3.17)

We are interested in

/X(z)hnu(dz) = /Ahln lu(z)|Ax(z)L(dz). (12.3.18)

T

Here we have on ~;

hln|u(z2)| = VY(z) —/ —G.y (2, w)hn, (dw)

VF

=®(2) - H(z) — | —G,.(2,w)hn,(dw)

() + [ ~Gr(rwnldn) ~ HE) — [ G evw)hn, (i)
— 6(2) + R(2)

where the last equalit nes R(z).
Inserting this in (I2.3718]), we get
/X(z)hnu(dz) = /X(z)u(dz) + /R(Z)Ax(z)L(dz). (12.3.20)
(Here we also used some extension of ¢ to I' with u = Ag.) The task is now
m»

to estimate R(z) and the corresponding integral in ( . Put
5 = 1 (M; 0 95), (12.3.21)

where © = py — p_ ig the Radon decompos%'tiog 50f i and we define the

(12.3.19)

left hand side in 3.21)) as in Remark Using the exponential
decay property (T2:2.28)) (equally valid for G,.) we get for z € M; N s,
dist (2, 0M;) > r(z;)/O(1):

/~ =G (2, w)p(dw) < / -G (2, w)p4 (dw) + O(1) Z ,ukefcioufk‘,

V7 My k]

(12.3.22)
where |j — k| denotgg the natural distance from j to k in Z/NZ and Cy > 0.
Similarly from , we get

H(z) < O(1)(e; + / Gy (g (dw) + 3 e, (12.3.23)

Mjy ki
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for z € M; N ;.
This gives the following estimate on the contribution from the first two
“

terms in R(z) to the last integral in ( ), where we also use that Ay =

O(r=2):

/% (/7 —Go (2, w)pu(dw) — H(z)) Ax(2)L(dz)

7

—0WY 6+ [ Gl wldw) + 3T ) (1300

j M;tr ki

oy [ G ) ax)Ld:)

Here,

| e - o). (123.25)
M0y
SO @ leads to

(12.3.26)
=0(1) (N-ﬁ-(%*) + Z € + Z/ _G’YF(Z]" w) i (dw)

The contribytion from the last term in R(z) (in ) to the last
“

integral in ( ) is

/ / G- (z, w)hn,(dw)Ax(z)L(dz). (12.3.27)
zE€vp JweYr
Here, by using (%\ate similar to @D with pu(dw) replaced by L(dz),

together with , we get
| euw@oeae:) - o,
zZEYR

so the expression @ is by

O(h)#(u™'(0) N77)

— 0 Y (6 + [ (<G (a5, w)taw)

Jj=1

(12.3.28)
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This is quite similar to . Using Proposition , we have
/ _G%(Zjv w)ﬂ+(dw) <
M0y

|2 — w|

O[T alaw) (010179

and similarly for the last integral in . Using all this in , we

get

[z = [ xeuz)
wl

ROREEED SOEY in( Dl ). (12320

Now we observe that

O NT) = 5 [ X)) < #0) N9

which. can be estimated by means of , and combining this with
qm

), we get
[#( ™ (0)NT) - S )] = (12.3.30)
o) |z; — wl
—\J . ) In 22— —1 d )
3 (H+(7)+;<€]+/w—zj§“éj)l 1 r(z) | (dw))
This completes the proof of Theorem '% O

We next discuss when the contribution from the logarithmic integrals in

@ can be eliminated or simplified. Let r, Cf, z? be as in Theorem

1.1l Using the estimates above, we get

w—z L(dz
ooy Inese) e L(D(20, 52))
lw — 2| L(dz)

/ r(z9) / r(29) |1Il ( ) |M+<dw) (29) =

Dt S TG L(D(0, ")

r(z?)
OW (D, "),
1
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where we changed the order of integrations in the last step and also used
that r(z) < 7(2)) in D(2] ) ). We conclude that the mean-value of

1

r(29) |w — 2|

D(2Y, Sz ]

& %¢,) L TER
4Cy

| b (dw)

is O(1)py(D(25, %1?))) Thus we can find 2; € D(2?, 2(0 ) such that

rG;) (Zj)

4C

This gives Theorem % O

12.4 Application to sums of exponential func-
tions

Z . )y ) = O (DD, (/1))

Consider the function N
h) =) enOM (12.4.1)
1

where N is finite and ¢; are holomorphic in the open set {2 C C and inde-
pendent of h for simplicity. Put

Y;(2) = Ro;(2), (12.4.2)
let I' € Q2 have C'*° boundary v and assume
Vo € v, ¥(z) := max;(z) is attained
J

(12.4.3)
for at most 2 different values of j,

fo ey, V(z)=1;) =), j#F,
then v(z, ;) (¢;(x) — ¥r(x)) # 0,

where v denotes the normalized vector field (say positively oriented) that is

(12.4.4)

tangent to v. We shall see that Theorem allows us to determine the
number of zeros of v in " up to O(1). This res icsc%gbbe further strengthened
by using direct arguments (see for instance [[2]], but the purpose of this

section is simply to illustrate the results above. We also notice that the
results will be valid if u is holomorphic in 2 but with the representation
and the ¢; defined only in a neighborhood of ~.
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apl

150 §bshall es al&]als He ]gollowing result (without any claim of novelty, see
Hfl el as %34 NI or a closely related old result on entire fu tigns,
see HAQU]_Chapter VI, Sectlon 3, Theorem 9, attributed to A. Pﬂugerrﬁfﬂ

Proposition 12.4.1 We have
- AV(z = O(1). 12.4.5 .5
#uOnT) = 5 [ Aw (1) (1245) [ap
Here, in the case when 1; and ¥ are defined only in a neighborhood of 7,
we take any distribution extension of ¥ to a neighborhood of I'. Notice that
near v the function ¥ is subharmonic and AW is supported by the union of
the curves 7;5. On each such curve, A\If = 2 (¢p; — ty,)|dz|, where n is the

unit normal to v;, oriented so that (@bj ¥y) > 0. This can be proved
%&g%help of Green’s formula, cf. the end of the proof of the main result

We shall prove Proposition [T 1| by means of Theorem %

Put N
(z) = hin(>_ ¥ /), = € neigh (), (12.4.6)
1

so that ®(z) = hf(%,.., “¥), where

fl@) =) _e"). (12.4.7) [ap.7
If we define 6; = €% /> e, then 6; >0, 6; + ..+ 0y = 1, and

O, f(x) = 0, (12.4.8) |ap.8

() = diag (6;) — (6;61) - (12.4.9)

For y € RY, we have

) => 0y — O 0y,)%,

which is > 0, since the function ¢ — t? is convex. Hence f is convex.
We apply this to ®(z), now with §; = e¥i)/h /3™ e¥r/h and get

2= Y00y, 0= (Ot ) (12.4.10)
(f"0.0|0) = Zemm? 1> 0;0.05%).  (12.4.11)
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In the last calculation, we also used that v; are harmonic. It follows that ¢
is subharmonic near . Also notice that

Ad(z) = O(h™), (12.4.12)

and that this estimate can be considerably improved away from the union

of the 7;: Assume for instance that ¥(z) = ¢y > max;z ¢); + J, where

d > 0 and notice that we can take § = C~'d(x) with d(z) := dist (z, Uy;x),
1il§ % 3)

by , ‘ﬁ—ll[) Then
® = hln(e/"(1 + O(e™9M))) = oy + O(he /"), (12.4.13)
Further,
0, =1+0("), 6; = O0(e™") for j # 1, (12.4.14)
SO
0,® = 0.9 + O(e™/M), (12.4.15)

e/t eIty = O(eh),
0:0,® = (9(%65/h). (12.4.16)

We will always be able to express the final result in terms of the simpler
function W:

Lemma 12.4.2 We have

/ ADL(dz) — / AWL(dz) = O(h). (12.4.17)

T

Proof. Using Green’s formula, the left hand side of @D can be written

od oV
/’y(% — %>|d2|a

where n is the suitably oriented normal direction. It then suffices to apply
(ﬁb, with ¢ replaced by ¥, in the region where d(z) > h and use that
the gradients of ®, ¥ are O(1). O

We next notice that
hln|u(z; h)| < O(2) (12.4.18)

in neighborhood of 7. On the other hand, for z near v, d(z) > h, we have
hin|u(z; h)| > ®(z) — O(h)e1/(CM), (12.4.19)
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We can now apply Theoremi ?I? with r = Const. h, d(z)) > Ch, ¢; =
O(he_d(zg)/wh)), ¢ = ®. In view of d‘ﬁ%ﬁb, %I), we see that p(75,)
O(h), > €; = O(h), so

#w H0)NT) — Lh/FAcDL(dz) = 0(1),

2

and we obtain Proposition from Lemma . O
If we would like to work directly with ¢ = ¥, we still have with
“

® replaced by ¥, while the upper bound (| ) has to be replaced by
hln|u(z)| < U(z) + Ch,

so we have to take ¢ = W+ C'h and at most places €¢; < h. The effect of that
deterioration can be limited by chosing the z; more sparcely away from the
union of the 7;, but we can hardly avoid a remainder O(In 1) in @
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Chapter 13

Perturbations of Jordan blocks

13.1 Introduction

In this chapter we shall study th spectum of a random perturbation of the
large Jordan block Ay in Section%:‘

0100 ..0
0010 ..0

a_ |00 0T 0] v e
0000 1
0000 0

w02
e M. Zworski ETST] noticed that for every z € D(0, 1), there are associated
exponentially accurate quasi-modes when N — oco. Hence the open
unit disc is a region of spectral instability.

e We have spectral stability (a good resolvent estimate) in C\ D(0, 1),
since || Agl| = 1.

o o(Ay) = {0}.

Thus, if As = Ag+0Q is a small (random) perturbation of Ay we expect the
eigenvalues to move inside a small neighborhood of D(0,1). In the special
case when Qu :%étel)e]v, where (e;) is the canonical basis in CV, we have
seen in Section hat the eigenvalues of As are of the form

oN*THIN | e Z/NZ,

so if we fix 0 < § < 1 and let N — oo, the spectrum “will converge to a
uniform distribution on S'”.
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thl

09
E.B. Davies and M. Hager Wf?asfudied random perturbations of Ay. They
showed that with probability close to 1, most of the eigenvalues are close to
a circle:

Theorem 13.1.1 Let A = Ay+6Q, Q = (g1 (w)) where g, are independent
random variables ~ Nc(0,1). If0 < § < N7, R = 6N, ¢ > 0, then with
probability > 1 — 2N "2, we have o(As) C D(0, RN*N) and

#(o(A5) N D(0, Re=)) < > 4 L.

g a g09
The angular distribution was not treated in H)B"Y}ﬁfexcept for more special
perturbations, and the main purpose of this chapter is to do so following the
Igleral strategy of Hager’s thesis that we have already followed 'u g‘z‘%fﬂ)ter
A result by A. Guionnet, P. Matched Wood and O. Zeitouni W]"Sn(%/jﬁplies
that when ¢ is bounded from above by N=*~Y/2 for some £ > 0 and from

below by some negative power of N, then

% Z §(z — p) — the uniform measure on S,
pea(Ar)
weakly in probability.

The main focus of the chapter is to get probabilistic statements about the
distribution of eigenvalues near the critical radius R = 8"/~ when Q = (g;z),
with ¢;x ~ Ng(0,1) independent. Then we know from Proposition %
that ||Q|las < C1 N with probability > 1 —eV *. We distinguish between the
cases of small and of larger perturbations.

e Small perturbations:

N <§< N3, (13.1.1)

where C, ¢y > 0 are fixed.

e Larger perturbations:
N3 <5< N2

The intermediate case can unbdoubtedly be treated along the lines of the
case of larger perturbations. Vo1a

As an outgrowth of this chapter, Vogel and the author studied in [T40
the expectation densi 09£ eigenvalues inside the critical disc, adapting some
methods from Vogel [149] devoted to Hager’s operator, somewhat in the
spirit of various works on zeros of random polynomials. This is a new and
probably very rich area, but for the present book we finally prefered to limit
the perspective to eigenvalue counting Withﬁ]%g})&bg%% 1Nore recent results
on large Toeplitz matrices can be found in [I41] T42].
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13.2 Main results

Small perturbations We now state our new results and take @ = (g;x),
with ¢jx ~ Nc(0 independent. Then we know from Proposition %
(cf. Proposition %} that ||Q|lus < C1N with probability > 1 — e, We
distinguish between the cases of small and of larger perturbations. We first
consider the case of small perturbations:

e N <F< N, (13.2.1)

where C' ¢y > 0 are fixed. Define a “spectral radius” R = R, > 0 to be the
unique solution in |0, N/(N + 1)[ of

m(R) = 2C, N6, where m(R) := RV (1 — R). (13.2.2)

Then, as we shall see,
e%(lncﬂ—lnN—l—O(l)) <R, < e%(1n6+21nN+O(1)) < e—%((eg-‘r%)lnN-ﬁ-O(l))’ (13.2.3)

and with probability > 1 — e,

o(As) € D(0, R,). (13.2.4)

4
To see the last inclusion, we notice that by @’,

1— 2|V N
I(z— Ag) 'l < < , 0< 2| € ——,
L= J]) = m(l2) N+
and that . N
[(z = Ag) M| < , <2l <1,
m(35) N+l

so when ||Q|| < C1N we get for 0 < |z| < N/(N + 1),
ORI (= — Ao) ™| < CLN/m(|2])

which is < 1/2 for |z| > R,, since m is increasing on [0, N/(N + 1)] The
same holds for [z| > N/(N + 1) by the maximuny principle, and writing

o

z—As=(2—Ag)(1 + (z — Ap)10Q) we get (13.2.4)).

Theorem 13.2.1 Let 0 < 0, < 0y < 271, 0 = 0y — 60y, Q =|r_, r [0l
0<e <1,

LST,SRU—

o) R, +

1
N?
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With probability > 1 — e 2N — N we have

- 30 sr)

Nel—l N%
goww( bl 2+N—eo)

R,—r—  (1—-R,)

N

N
N In N R,\ ©°M 1) °om .
+O(1)N (T + (:) + <R—0> ) . (13.2.5) |mrpj.3.7

i 3.5

In view of @T‘che choice of ry > R, is of no real interest (and the
stronger lower bound for r, is merely a pointer to the proof, where we shall
take 7, = (1 + R,)/2), and we could take ry = R,. For @ﬁo be of
interest when 6 > 0 is fixed, we would like the right hand side to be < N.
This is the case when R, —r_ > N ~! in particular when R, —r_ > N1
for some €3 > €. Then r_/(N(1 —r_)) = N~ in the left hand side. Thus
for any such €3, we have a uniform angular distribution of the eigenvalues in
a N2 lneighborhood of the circle |z| = R,. Choosing 6 = 27, we see that
most of the N eigenvalues belong to such a neighborhood.

Larger perturbations Now assume,

NO—3 <5< N3, (13.2.6)

Then, when ||Q|| < C1N (which holds with proba > 1 — e ™) we have

o(A;) € D(0,1 + C16N) and we observe that N < §Y/2NV4 N1 «
SU2N1/A

Theorem 13.2.2 Let 0 < r_ < 1 — 4(C10)2N4, r. > 1+ C16N. Let
0 < e, < 1. Then with probability > 1 — O(1)e~N" | we have

#(o(A5) NQ) — % (1 - ﬁ) N‘ <

N€o/2 5N% qul
O(O)N <eo<1> + + )

(I—r_)2 1-—r_
+O)N (Nfl—1 In N + 5%Ni) . (13.2.7)

The right hand side in (@ is < N when 1 —r_ > §/2N'/* and
1—7_> N ! Since

1 1 1 ].
1—7r_ > —§2N1 = Nlt>_— Nz-1
~Zom” N = o “om™"

MB

S
N|=

=
ot




the last rquirement on 1 —r_ follows from the first, when €,/2 > €, i.e. when
€1 is chosen small enough. Again we have uniform angular distribution of the
eigenvalues in r_ < |z| < r,, since we also have ﬁ < 1 for r_ in the
range in the theorem. While in Theorem we get uniform distribution
in shells of thickness close to 1/N around the critical circle |z| = R,, we now
need thicker shells that increase with ¢ and now contain the unit circle.

In the remainder of this chapter we prove the two theorems above. In
Section%, we also give an upper bounds on the number of eigenvalues in
discs inside the critical one.

13.3 Study in the region |z| > R

4 .
Let F' and R be as at the end of Subsection @,‘satisfying @D
Recall that det(z — Ag) = 2V. We get the following upper bound:

|det(z — As)| = |det(z — Ap)|| det(1 — (z — Ag)~'6Q)|
< |2M exp (2 = A0) 70Q) |
< |2 exp (F(|2)d1Qlir)) -
For first inequality above we refer to fzfgk]r%% Section @.e_tUsing that by

Y

16z = As) Ml < F(12D (1 = F(|=)sllQIN

when F(|z|)d]|@] < 1 (i.e. when |z| > R) we can permute the roles of A,
and Ag,
z—Ag= (2 — A5)(1 + (2 — A5)'Q),

and get a lower bound:

2 = [ det(z — Ao)| < |det(z — Ag)|exp < FzDol@ll ) |

(1= F(=hallQl)

In conclusion we have under the assumption that |z| > R,

‘Z’Nexp (_ F(|Z|)5’|Q||tr ) < |det(z B A5)| < ‘Z|N€XP(F(|ZD5HQHH)-

1— F(z])o[|Ql] (13.3.1)
3. PJ.

Later, we shall impose the condition (@D, saying that ||Q|lus < C1N
for a certain probabilistic constant C; > 0. Then by the Cauchy-Schwartz
inequality for the singular values of @ we know that ||Q|,, < C;N*? and
&D tells us that
F(|z])6C N3/
1= F(lz))ollQ]

2| exp (— ) < |det(z — As)| < |2[N exp (F(|z])6CLN/?) .

(13.3.2)
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Here and in @]}, the second inequality does not require the assumption
that |z| > R.

13.4 Study in the region |z| <1

. iZwO7 . - .
Following fm},_we introduce an auxiliary Grushin problem. Define R, :
CY — C by
Riu=muy, u=(uy ... uy)" € CV. (13.4.1)

Let R_ : C — C¥ be defined by
Ru =(00..u ) eCV (13.4.2)

Here, we identify vectors in CV with column matrices. Then for |z| < 1, the
operator

_ R+ 0 . N+1 1+N
Ay = (Ao " R) . CNt L C (13.4.3)

is bijective. In fact, its matrix is lower triangular with the entry 1 everywhere
on the main diagonal, the entry —z on the subdiagonal and all other entries
equal to 0. It has the inverse

EY EY
(c:(] = .Ail = ( + ) s
0 B, E°

given by a lower triangular matrix with (&), = 29 " for 1 <k <j < N+1.
Thenfor 1 <j < N,2<k<N-+1,

0 1<k

o _ )Y ’
E = {zj_k, K< (13.4.4)

Moreover,
1
EV=| ° |, E = (M N2 L), (13.4.5)
o

E9+ =N, (13.4.6)

Notice that this is equivalent to the more traditional approach: The inverse

Ag— 2 R_) : (EU EO)

of is ol
( Ry 0 ) \E° E°,
As in Section [2.4] we see that

IE° < G(l2D), B2 < G(I=D7, B2 | < 1. (13.4.7)
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where || - || denote the natural operator norms and

1
G(|z|) := min (N, 1_—|Z|> <14 |z| 4+ 2] + o+ 2|V (13.4.8)
F and G are related by
1 1
F(R)=—=G(=), R>1 13.4.9

and we use this relation to extend the definition of G to ]0, +o0.
Next, consider the natural Grushin problem for As;. If §||Q|G(|z]) < 1,

we see that .
_ + 0
As = (A§ ~ . B (13.4.10)
is bijective with inverse
E E°
55 = < + > ;
ES, E°
where
E° =E° — E%QE" + E°(6QE")? — ... = E°(1 + 6QE°) !,
ES =E% — E°%QES + (E%Q)*EY — ... = (1 + E%Q) ' EY,
E° =FE° — E°SQE° + E° (SQE")? — ... = E° (1 + 0QE®)™*, (13.4.11)

E°, =E°, — E°SQEY + E°6QE°SQE] — ...
=E°, — E°Q(1 + E°5Q) " EY.

We get
G(l2)) G(|2])2
B < B9l <
1= v=5101eq:n 174 = T=51Q160:) (13.4.12)
BB | < S| QIG(|2])
T T 1 6)Q1G()2])

Indicating derivatives with respect to ¢ with dots and omitting sometimes
the super/sub-script d, we have

. eie_  (EQE, EQE
E=—EAE = (EQE+ EQE). (13.4.13)
Integrating this from 0 to J yields
G(lz)*Ql G(l2))29)IQ|
E°—E% < . |IE. = EY < .
1= E = G smane=ne 15~ 5= =506

(13.4.14)
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ni 12 mni 13
Notice that det Ag = 1. Combining (I3.4.12)) and ([3.4.13)), we get

G(lz))
1=dllQlG(=])’

05 Indet A| = |tr (AE)| = [tr QE| < |Q]lul| Ell < |Qllex

and integration from 0 to J yelds

1 det &]] = | In| det A | < — 5ﬁgﬁg(|z\)5”cz”“' (13.4.15)

We now sharpen the assumption that 6||Q|G(]z]) < 1 to

SIQIG(2]) < 1/2. (13.4.16)

Then

1B < 2G(J2]), [1EL] < 2G(J2))2,

13.4.17 j.16
B, — B, | < 251Q|G(J2]). (18.447)

Combining this with the identity E_ + = —E_QE, that follows from ’

we get .
1B, + ECQEY| < 16G(2)% QI (13.4.18)
and after integration from 0 to ¢,
B, = E°, —0EYQE} + O(1)G(|=])*(SllQ)*. (13.4.19)

Using (Fﬁf 5, d%ﬁ%[) we get with @ = (g;),

N
ES =2 =6 ) gV O(G(|2]) (1R, (13.4.20)

jk=1

still under the assumption 1&#76[) More explicitly, the modulus of the
remainder in %3.4.19[), 3.4.20)) is bounded by 8G(|z|)?6%||Q|*

13.5 Upper bounds on the number of eigen-
values in the interior

Let Q = (q;%), <N be a random matrix where the eptries are independent
random variables ~ Ng(0, 1) and recall Proposition which implies that

1Qlus < C1N, with probability >1—e " (13.5.1)
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We assume that
dC1N < 1/2. (13.5.2)

In this section we establish upper bounds on the number of eigenvalues in
discs D(0,r) with 7 not too large. We work in a disc D(0, Ry), where Ry < 1
is the largest number such that

1
JCING(Ry) < 3 (13.5.3)
Then with probability > 1 — e~ we have for every z € D(0, Ry).
We can then apply (I3.2.17) and see that with probability > 1 — eV * we
have

|E° (2)] < |2|N +20CING(|z]), =€ D(0,Ry). (13.5.4)

With the same probability, we have with the explicit bound
8G(|z])262(C1N)? on the modulus of the remainder term and we apply it for
z=0:

|E°,(0) + dgna| < 85%(CiN)2. (13.5.5)

Since ¢,1 ~ Nc(0,1), we know that |g,1] > € with probability > e for
every fixed € > 0. Hence with probability > e — e N we have

|E°_ (0)] > de — 8(C1NG)* = §(e — 8CTIN?). (13.5.6)

For this to be of interest, we strengthen the assumption d@ (working in
the limit NV > 1) to

16C26N? < e < 1, (13.5.7)
and in particular,
§< —1 (13.5.8)
16C2N? -
Then dﬁ[} implies,
)
IES, (0)] > 56 (13.5.9)

Recall that (still under the assumption that ||Q|/ns < C1N) the eigenval-
ues of Ag + 0Q in D(0, Ry) coincide with the zeros of E° , (z) in the same
set and the multiplicities agree (cf. Proposition . Let 0 < R < Ry and

let A1, ..., Ay be the zeros in_D(0 l@ repeated according to their multiplicity.
Then by Jensen’s formula :

1

N
)\|
n| - (0)| 1 . R 2T R

/ W|E,(2)ldz].  (13.5.10)
|z|=R
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Equivalently,

N
R 1 1
In— =1In + / In|E°, (2)]|dz|.
; | Al [E2(0)]  27R Ji. g "

For 0 < r < R, let M(r) denote the number of A; in D(0,r). Then,

N
Zlni > ]V[(r)lnE
=l r

and in view of 1“%.5.4), 1“%55), (Ii%g iO), we get with probability > e —
e

_ N2
)

2(RN + 2C16NG(R))

Oe
(13.5.11)

As we shall see in the beginning of Section @, there is a unique R =
R, €]0,1 — 1/N] such that

M(r)In R < 1115z +In (RN +2C16NG(R)) =In (
r €

RN = 2C16NG(R),

provided that m(1 — 1/N) > 2C,6N, where m(t) =tV (1 —t) for 0 <t <1,
or more explicitly,

s< L (1oAY 2 L (oL
— 20, N2 N)  2C,eN? N))’

We also know from the beginning of Section @ that

RN <2C\0NG(R), 0<R<R,

and that R, obeys the estimate @

Now assume,

1 (1=~
O<5<N_2min<1602,( 207) ) (13.5.12)
1

Then from (@D we see that for every 0 <r < R < R,, € > 0 we have

2

R
M(r)In s In (8CYNG(R)/e), with probability > e~ — eV, (13.5.13)

Summing up, we have

235



O

Theorem 13.5.1 Let As = Ay + 0Q), where QQ = (qj»k)1<j,k<N and, q; 1., @re
independent random variables ~ Ng(0,1). Let & be in the range

and let R = Rs be the_unique solution in ]0,1 — 1/N]| of the equation RN =
2C16NG(R), so that holds:

N¥(2C10)¥ < R, < (1 +0 (%)) N®(2046) %

Then for every (r, R,e) with 0 < r < R < R,, € > 0, we have (@,
where M (1) is the number of eigenvalues of As in D(0,1), counted with their
multiplicity.

We shall next weaken the assumption dﬁb to:

1
§ < . 13.5.14
<y ( )

Then Lemma @ can be applied with z = 0 and we see that if 0 < e < C
for any fixed C' > 0, we have

|E°_(0)] > % and |Q| < C1N, with probability > 1 — O(¢?) — e ",

(135.15)
Recall that Rg < 1 is the largest number satisfying @D and tha 1@’
holds with probability > 1—e¢ —N* " Jensen’s formula now gives ﬁiﬂ} with
probability > 1 — O(e2) — e~ N for every fixed (r, R) with 0 < r < R < Ry.
Recall that we have deﬁned R = R, in [0,1 — 1/N] as the unique solution
in that interval of the equation RN = 2C,0NG(R) when m(1 — 1/N) >
2C 0N (asymptotically equivalent to § < (2C1eN?)"1(1 + O(1/N)). When
m(l —1/N) < 2C16N, we define R, = 1 — 1/N and notice that R, < Ry
also in this case. Again, we have RN < 2C10NG(R) when R < R,.

Theorem 13.5.2 Instead of (@, we assume (@V and N > 1.
When § > (1 — 1/N)N/(2C,N?), we extend the definition of R, by putting
R, =1—1/N. Let C > 0 be fired. Then for0 <e<C,0<r < R<R,,
we have
R
M(r)In - < In(8CiNG(R)/¢), with probability > 1 — O(e?) — e N,
(13.5.16)

13.6 Gaussian elimination and determinants

. . . iZw07b . .
Ve review some standard material, see for instance fm]_and Section 4 in
138]. Let H;, G;, 7 = 1,2 be complex separable Hilbert spaces. Consider a
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bounded linear operator

A= (A“ A”‘) tHy X Hy — Gy X Go. (13.6.1)
Ax Ax
When A is bijective (with bounded inverse) we denote the inverse by
Ey FE
At=e= (7" 2. 13.6.2
<E21 Es ( )

Proposition 13.6.1 1) Assume that Ay is bijective. Then by Gaussian
elimination we have the standard factorization into lower and upper triangu-

lar matrices: p E
0 1 =
A= ("1 11 4712 ) 13.6.3
(Azl 1) (o Ags — Ap A Ay (136.3)

The first factor is bijective since Aqq is, so the bijectivity of A is equivalent
to that of the second factor, which in turn is equivalent to that of Ags —
A21A1_11A12. When A is bijective, we have the formula,

A_l _ (1 a ) (Al_ll O) _. (Ell E12) _. g
0 (Agp — Ap A Arp) ™! b 1) "\En Exn) 7
(13.6.4)
where a = — A7} Ap(Agy — At AT A1) ™Y, b= — Ay AL and in particular,

Eyy = (Ag — AnAj Ap) (13.6.5)

2) Now assume that A is bijective. Then Ajy is bijective precisely when Eoy
1s, and when that bijectivity holds we have

E2_21 = Ay — A21A1_11A12

13.6.6
Aﬁl =Lk — E12E2_21E21 ( )

The first statement is clear. The second statement is also quite simple to
verify, by solving for z; in the first equation in the system,

Anzy + Apzy = 4,
Ag1z1 + Agay = 1o,

and substitution in the second equation.
Let now H; = G;, Ho = Gy be of finite dimension and assume that A is
bijective. From (I3.6.4]), .6.5)) we get

det A™! = (det Ey) det A,
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provided that Aj; is bijective. This can be written
(det A)(det Ey) = det Ay, (13.6.7)

and by a simple perturbation argument, we see that this identity extends to
the case when Aj; is not necessarily bijective.

.11 _
We apply this to A = As in Exmll , or rather to (A‘S & R) with

Ry 0
inverse (5; é?;;), under the assumption %6 . Noticing that Fay =
E? 4+, —Ay =z — Aj in this case and recallinm, gives
|In | det(z — As)| — In|E° || < 2G(|2])8]|Q]]s- (13.6.8)

13.7 Random perturbations and determinants

We now let Q = (gjx(w))Y,—;, where g are independent random variables
with the law Ng(0,1). According to Proposition we have

C x
P(|Q|%s > x) < exp (70N2 _ 5)

and hence if C; > 0 is large enough,
1Ql13s < C?N?, with probability > 1 —e ", (13.7.1)

In particular m holds for the ordinary operator norm of (). We continue
to assume that |z| < 1 until further notice. We choose ¢ > 0 so that

1
Ci6NG(|z]) < 5 (13.7.2)
Then with probability > 1—e~ holds and so does , which

gives B

E° =N 1+6(Q|Z) + O(1) (G(|2])dN)?, (13.7.3)

where A v
Z = (N (13.7.4)
In the following, we often write | - | for the Hilbert-Schmidt norm || - [|us. A

straight forward calculation shows that

N—-1
1 |Z|2N 1 _ |Z|N 1 |Z|N
Z| = § v — = 13.7.5
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and in particular,

Pl < 12) < Gx(el (13.7.6)

where Gs(|2]) = 1+ |2] + ... + 281 = G(l2]) (cf. (ETF). Then (F73)

shows that
|E°, — 2N <SNGx(|z]) (1 + O(1)G(|2])0N),

SO

|E°, — 2N < O(1)NG(|2]). (13.7.7)
From dﬁgb and the Cauchy inequalities, we get
doE? ., = 81Z/(dQler) + O <%) (GNG(2])? (13.7.8)
in CV*, where
e1 = %7. (13.7.9)

Complete e; into an orthonormal basis ey, es, ..., ey2 in CV * and write
N2
Q=0Q +Qer, Q' =) Quex € ()"
2

Then d%:%[), (Fﬁ%[) give

E’, =2V +6|Z|Q1 + O ((G(|2])5N)?) (13.7.10)

doE’ , = 6|Z|dQy + O (N"HG(]2|)6N)?), (13.7.11)

for |Q| < CyN.
It will be convenient to extend @ — E°_(Q) to a smooth function F :
CN’ = C, such that

F(Q) = 2" +0Z|Q: + O (G(|2)dN)?) =: 2" + 4] Z|f(Q)

doF =6|Z|dQ; + O (Nfl(G(’ZDMV)Z) (13.7.12)

and the remainders vanish outside By2(0,2C1N). Indeed, we may assume
that the above estimates hold for |Q| < 2C) N and take

PQ) = ¥ +3121Q: +x (550 ) O (G,
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where the O(...) is the same quantity as in (@D and
X € Cgo(] -1, 1[7 [07 1])a x =1on [_1/27 1/2]

Since I’ will in general not be holomorphic, the last estimate holds in the
space of real-linear mappings: CY” — C. The function f satisfies

f(Q)=Q1+O(NG(|]z])0N), (13.7.13)
dof = d@Q1+ O (G(|z])0N). (13.7.14)

We now strengthen the assumption @ to
G(|z])0N <« 1. (13.7.15)

Then the map C 3 Q1 — f(Q1,Q’) € C is bijective for every @)’ and has an
inverse g = g((, Q’), satisfying

9(¢.Q) =+ O (NG(2])3N). (13.7.16)
de9(C, Q') = dC + O (G(|2])oN) (13.7.17)

Let 11(d¢) be the direct image under f of the Gaussian measure 7~ e~ 1@ I (

We study p in D(0, C') for any fixed C' > 0. For ¢ € Co(D(0,C)), we get
[ @mic) = [ etr@pa e 9 Lag)
= [, wveler < / WlelQﬂ%o(f(@»L(d@l)) L(dQ)
CNZ-1 C
:/ =N —lQ? |:/ 7T_16_g(C’Q/)PgO(C)L(ng)} L(dQ,),
cNZ-t C

where _
L(deg) = L(dQy) = det (agc—%)) L(d0).
We get for ¢ € Co(D(0,C)),
[ e(utao
_ 1 QP 1N | g (V@12 Q1) /
- [ #(© (/CN e o t( D )L(d@)) L(d0),

so that in D(0,C)

p(d¢) = ( /C NLI(7T_1e_‘g(C’Ql”le‘NQe—IQ’P det (%) L(dQ’)) L(d¢).
’ (13.7.18)
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pj1

We conclude that for |(o|,7 < O(1), the probability that |Q| < C;N and
f(Q) € D(¢p, ) is bounded from above by

/ . / ( )W‘le_g(C’Q/)PL(dgg)wl_NQe_Q’|2L(dQ’). (13.7.19)
CN=-1 J¢eD((o,r
From m we infer that

9(¢, Q") — 9(o, Q) = (1 + O(GEN))(C = o),

{9(¢,@); ¢ € D(Go. )} € D(g(G, Q). 7), T

and the last integral is <

/ / 7 le P L(dw)r =N e 1P L(dQ).
CN?=1 J D(g(¢0,Q"),7)

Here the inner integral is

]_ 2 ~2
g/ —e P L(dw)y =1—-¢T. (13.7.20) [pj.46.5
Do) T

Indeed, by rotation symmetry, we may assume that ¢g((p, Q') =t > 0 and by
Fubini’s theorem, we are reduced to show that F(t) < F(0), where

o
F(t) = / e ¥ ds.
t

(1+OBNG))r

T

It then suffices to observe that F” (t) <0.
Thus the integral in is bounded by

1—e ™ <(1+O(GSN)(1—e"

2

).
In terms of E° +» we get under the assumption m:

Lemma 13.7.1 We recall (@ For0 <t < C6G(|2]), |2|Y < CIG(2]),
the probability that |Q| < C1N and that |E° | <t is

< (1+0(G(|z])5N)) (1 _ exp <— (%Z’) )) |

241



Recall that |Q| < C}N with probability > 1 — eV *. Tt follows that for ¢, 2
as in the lemma,

P(|Q| < CiN and |E° | > t)
=P(|Q| < C;N)—P(|Q| < C1N and |E° | <)

>1—e ™ = (14 0(G(|2])0N)) (1 - e(Zt<5)2> .

Assuming

12N, t < CG(|2])6, (13.7.21)

ni

pj2| Lemma 13.7.2 We work in the region |z| < 1 and assume (lla’ / 15), (13. / QZI)
Then

we get

P(|Q| < C/N and |E°,| > 1) >1— O(1) (ﬁ) eV

z|)o

From the bound
QI < 1N, (13.7.22)

that we adopt from now on, and the Cauchy-Schwartz inequality for the
singular values of @, we know that ||Q|s < G N%/2. It is of some interest to
introduce the following strengthening of @D:

G(|z|)6N2 < O(1). (13.7.23)
From (%D we get
|In|det(z — As)| — In |E° || < 2GC, N*/2,

Thus
|det(z — Ay)| > e 2PN ES | N - o0

and Lemma @ gives,

ni 44 pi 47
Proposition 13.7.3 Under the assumptions (13.7.25), (13.7.21), we have

2

P(|Q| < C1N and |det(z — As)| >t) > 1 —0O(1) (%‘)) —e N

If we replace m by the weaker assumption (@/ and keep

we have

P(|Q| < CiN and | det(z—As)| > t6—201G5N3/2) S 1-0 ( 5)
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We sum up the estimates obtained so far.

Theorem 13.7.4 Consider As = Ao + 0Q, where the entries of Q are in-

dependent Nc(0,1) random variables. Then with probability > 1 — e N we
have c1Qllas £ CLN_angd, ye assume this estimate from now on.

Let G(r)E F;%} be defined in and (Z.4.9), (Z.4.10) respectively, so

that by
= Lr (1) - (1)

Then we have

(A) A general upper bound:
|det(z — As)| < |2V exp (F(|z|)C’15N3/2) , 2 #0. (13.7.24)
(B) An exterior lower bound: If F(|z|)C10N < 1/2,

| det(z — Aj)| > |2V exp (=2F(|2])C10N*?) | = # 0. (13.7.25)

(C) Interior upper and lower bounds: If |z| <1 and G(|z])C10N < 1/2,

< (21N + 201N G(

Z|)) 2G(|z])C16N3/2
> ([2]Y = 2016 NG(|2]

|21)) e : :
| det(z — As)]| { E )) o—2G(|2)C1oN?/? (13.7.26)
N .
(D) An interigr probabilistic lower bound. Assume that |z| < 1 and that we
have 24), .7.21)). Then we have

t 2 )
det(z — As)| > t with probability > 1 — O(1 <—> —e N,
det(= — Ay)] 0 (&

| . L (13.7.27)
Replacing (i%l); %.23) by (i% %.13]) and keeping , leads to the

weaker estimate,

" 2
et(z—As “2C1GNIE proba > 1— ) —e ™,
| det(z—Ag)| > te 29N with proba > 1 (9(1)<G )5) N

(I2]
(13.7.28)

Proof. (A) and (B) follow from (B533). (C) follows from the last part
of ([3:412), (I35-8) and the fact that [|Q, < C1N*2. (D) follows from
Proposition [I3.7.3| O
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Remark 13.7.5 Notice that F(1) = G(1
R, >

= N and recall that F' is decreas-

)
ing, while (7 is increasing. Let 7, 0 be determined by the conditions

(cf. ((322))

J— 1 J—
204N

o If N <1/(2C10N), then 0 < R, < 1 < 1, < 400 and from (B), we

conclude that o(A4s5) € D(0,R,) C D(0,1). This is a case of small
perturbations.

G(ro) F(R,).

e If N > 1/(2C16N), the spectrum of As is not necessarily included in
the closed unit disc. This is a case of “larger perturbations”.

e In the limiting case N = 1/(2C10N), we have o(As) C D(0,1).

In the next section we discuss the distribution of eigenvalues in a case of
small perturbations.

13.8 Eigenvalue distribution for small random

perturbations
In this section we study the eigenvalue distribution when the spectral radius
R, in Remark is smaller than 1 with some logarithmic margin. By
we have F(R) = R"VG(R) for R <1 and when R < 1—1/N we have
1
F(R) = , where m(R) := RN (1 — R). (13.8.1)

m(R)
Thus, we are interested in the equation
m(R) =2C16N, 0< R<1-1/N. (13.8.2)

We have

m!(R) = (N + 1)RN! (NLH - R) ,

and hence we have a unique critical point R = Ry.x = N/(N + 1) which is
the point of maximum of m. For N large, we get

1+ 0(%)
Mmax ‘= m(Rmax) = TN

A necessary condition for dm@%]) is of course that myax E 2(;]5]\7 We will

establish simple upper and lower bounds on R = R, in under the
apriori assumption that R, € [0,1 — 1/N] and N is large.
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Clearly RY > 2C\6N, since 0 <1— R, < 1, so
R, > Ry := (2C;0N)~ = en(n2Cid+hN),

Similarly, R, < Rpax =1—1/(N+1),80 1 — R, > 1/(N + 1) and hence

RY/(N+1) < 2C16N, R, < Ry := (2C16N(N+1))/N = (201042 N)+O(N),

We conclude that

en(n2015+nN) < p < oy (In2C16+2lnN)+O(NTH) (13.8.3)

The smallness condition on the perturbation that we first adopt in this section
(to be sharpened later) is that In2C16 +2In N < —¢yIn N for some fixed
€ > 0, i.e.

20,5 < N727<0, (13.8.4)

It is slightly stronger than the one for small perturbations in Remark @
and it implies, as we have just seen, that

cIn N+ O(1)
N

and in particular the apriori assumption that R, <1 —1/N.

In the remainder of this section, we restrict the attention to the disc
D(0,1 — 1/N) where F(|z]) = |2[™N(1 — |2])7' = m(z)™" and G(|z]) =
(1 — |2])~%. The upper bounds in (A) and (C) in Theorem [[3.7.4] become
respectively,

R,<1- (13.8.5)

C16N32
In|det(z — 45)| < Nln|z| + ———————,
|2V (1 = [2])
200N\ 2C,6N3
1 — A <1 N .
n | det(z 5)| < D(M +1—\z\) 1—|z]

We will also assume, for simplicity, that ¢ is at most exponentially decaying;:
dCy > 0 such that
e N < 5. (13.8.6)

As we shall see more precisely below, we may neglect the term 2C,6N/(1—
|z]) in the argument of the last logarithm as long as it is < |z|Y. Now the
two terms are equal precisely when m(|z|) = 2C10N, i.e. when |z| = R, and
therefore |z|Y will be the dominant term in the region |z| > R, + ¢ln N/N
for any fixed € > 0. So in that region, in order to compare the upper bounds
in (A) and (C), it suffices to compare

(2) C.6N3 and (0 2C,6N2
|2V (1 —|2]) 1—]z|
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These two terms are of the same order of magnitude when |z| =1 —1/N,
but when |z| = 1 — ¢(In N)/N the first one dominates over the second one
with a factor which is roughly N€. Though this is not a rigorous proof that
the bound in (C) is sharper than the one in (A) in all parameter ranges, we
choose to use only (C), (D) in D(0,1 —1/N).

Let us first review some general facts about radial subharmonic functions
and about functions of the form In(u + v).

In polar coordinates z = re?, r > 0, § € S', we have

A = (r0,)* + ;.

From this we see that a real continuous radial function, ¢ = ¢(r), defined on
an annulus centered at 0, is subharmonic iff (rd,)%¢ > 0 or equivalently iff
o(e') is convex.

We also recall:

Lemma 13.8.1 Let Q C C be open and let u,v € C*(Q; R) be subharmonic
functions. Then w := In(e* 4 €”) is subharmonic. The statement also holds
after replacing “subharmonic” with “convex”.

Proof. Write 0 = %, 0= a%' Differentiating the relation e = e" + e, we

get e®Ow = e*du+e’Ov. Applying 0 to this, we get after some computations,
00w = """ 00u + """ + "2 (|ou)* + |Ov]* — 2ROudv)

which is > 0 since each of the three terms in the right hand side is > 0.
The proof in the convex case is basically the same. O

Consider again w = In(e* + ¢?), with u,v € C*(€; R). We have
max(u,v) < w < max(u,v) + In 2.

Further, at a point where u > v, we can write e + ¢’ = e%(1 + e~ (")) to

see that
w=1u+Inl+e @) =y 4 e @) L O(e ),
Similarly,
dw = eu(i i Cagoen i —dv=(1=0("™)du+ O™ )dv (13.8.7)

Now, consider the function In (r™¥ 4+ 2C10N/(1—1)), r = || €]0,1],

which is of the form w = In(e" + e¥) with u = Nlnr, v = In 2% where
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r = |z|. wis harmonic and we check that v is subharmonic, i.e. v = In 24X
is convex for t < 0. Thus w is subharmonic by the lemma. For later use we
also notice that 1/(r — 1) is subharmonic for r > 1.

We consider the left-most point r = r(, where u(r) = v(r). This equation
is equivalent to m(r) = 2C1JN, already studied, so ry = R,.

It is clear that u(r) < v(r) for 0 < r < R, with equality precisely for

r = R, and we look for a quantitative statement. We have

N 1 1-—
8T(u—v):7—1_r, U_U:NIHRLU+ID1—£U’ (13.8.8)
and for r < R,, ﬁ < 1—1RU‘ Here, R, = e *, s <In(1/§)/N, so

Inl/é

1_RU>—7

~ O()N

1 N N
O ><< —, forr < R,.

<
1-R, ~“Inl/§ — r

Hence, in the large N limit,

O —v) = (1 + 0(1))% 0<r<R, (13.8.9)

In particular,
u—v=(1401)N(Inr—-1InR,), 0 <r <R,. (13.8.10)
We now restrict the attention to a region

In N
O(N)

. (13.8.11)

In this region we still have

1 <(9(N)<<E
1—r— InN r

mr_ 8 mr_9
and (ii3.8.9|), (ﬁB‘S_IOD remain valid.

Lemma 13.8.2 When (ﬁv holds, we have in the limit of large N,

O — v) = (1%(1))%, w—v=(140o(1)N(nr—InR,). (138.12)

Here,
2C10N

1—7r "

u(r)=Nlnr, v(r) =In (13.8.13)
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Recalling that G(r) = 1/(1 — r) when r <1 — 1/N, we define h(r) by

Nh(r) = T

—r

3
_2C0N: (TN N 20161\/) = N3e"™ 4 In(e¥ 4 ¢v). (13.8.14)

Also, put
U(z) =1In|det(z — As)], _ (13.8.15)

so that U(z) < Nh(|2]) for |2 < 1 — (nN)/O(N) by (B57-35). We have
seen that In (e + ev) is subharmonic and it follows from that discussion, or
by direct computation, that e’ is subharmonic, so we have

Lemma 13.8.3 h(|z|) is subharmonic away from 0 on D(0,1 —1/N).

Comparison of the bounds in
We write the lower bound in (I3.7.26) as

U(z) = N(h(Jz)) - e(|2])), Ne(r) = 2N3e"0) 1 In (e + ¢*) — In(e" — ¢").
(13.8.16)
We saw prior to (@ that

In (eu + @U> =u+ e—(u—v) + 0O (6—2(u—v)) 7

when v > v (i.e. when r > R, for our special functions u,v). Now restrict r
by imposing that

1
> R, + —, 13.8.1
2Ryt (13.8.17)

S0 t%at }%(7‘) > v(r) +1+o0(1) by (@D Then e* > e'+°(Me? and as prior

to , we get
In(e" —e’)=u—e 40 (6_2(“_”)) .
Hence, for R, + 1/N <r <1—InN/O(N),

Ne(r) = %

From @ we have
. ( r >N(1+0(1))
e = =
R, ’

(13.8.19)
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4

. We now work in the region r < R,. Write t = e®. Then
"_[Sm) tells us that if |2|Y, t < CG(|z])d, we have

U(z) > s with probability > 1 — (1 — |2])2e2¢79 —¢=N* (13.8.20)

Notice that |z|V < 2C,G(]z])d, for |z] < R,. Here we have to reconciliate the
wishes to have a large lower bound and a probability very close to 1. Recalling
the upper bound on ¢ with the corresponding fixed parameter ¢y > 0,
we fix a new parameter ¢; with 0 < ¢; < 1 and choose

s=Ind — N. (13.8.21)

Since, 1 — |z| > 1/N we get from @D that
U(z) > Ind — N with probability >1— N~2e2N" — ¢~V (13.8.22)

This estimate can be written

U(z) = N (h(|z]) —e(l2])) ,

where

2015]\/% 1 201N T'N -1

=—+ =1 — N,
() === +Nn<1—r+5 *
Now, restrict r to the region

1
<R, — —. 13.8.2
r<R N (13.8.23)

Then 2C;N/(1 — r) dominates over r¥/§ by a factor close to e or larger, so

QClN TN N
— | < <
1n(1—7’+5> lnl_r_O(lnN),

and we get
206Nz O(N9)
< .
e(r) < T + N

(13.8.24)
Summing up, we have

Proposition 13.8.4 For each z € D(0, R, — 1/N), we have
U(z) > N(h(|z])—€(r)), with probability > 1—N"2e"2N" —¢=N* | (13.8.25)
where €(r) > 0 is a function satisfying (@D
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We also want to study A(h(|z])) = (r~2(rd,)?h)(|z|) and more precisely its
integral over annuli centered at z = 0. We have

/ A(h(|z]))L(dz) = 277/ Oyroph(r)dr = 2w [rd.h(r)];>, (13.8.26)
ri<|z|<ry

T1

where h(r) is given in , so we need to study

r0, In (T’N + 21015N>

”
mr 6 mr 10
an e;cg side of r = R,. We will use (ii3.8.7|), <ﬁ'3_8_1'2|) with u, v as in

For R, <r <1—(InN)/O(N) we get

r0, In (rN + ?ﬂ) = (1= 0(e" )N + O(e~ ) r

- 1—r’
where by dﬁb,

Since = = O(N), we get

u—U:N(l—l—O(l))lnRL.

a

1 206N po\ TeIN
o In <rN +3 ) =(1+0() (R—) . (13.8.27)
r o

For r < R, we also use @ with a permutation of the roles of u and

v:
2C10N
ro, In (TN + €10 > = (1 — O(e”7¥)) T + O(e"Y)N.
1—r 1—r
By , we get as before,

1 2C16N r p\ IHeaON
—rd, In (Y = 1) — . (13.8.2 .26
groen (4 2008 o () (13829

far, we have treated the contributions to rd,.h(r) from the second term
in (I3.8.14)). The contribution from the first term is

QCl(SN% . 2015N% T

T et g (13.8.29)

r0,
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By ([35.4), we have
2C16N 2 )
70, 20N oy Nt (13.8.30) [smr.28

1—1r 1—r

Rather than_distinguishing further between different regions in r, we now
strengthen (I3:84) to
2010 < N7374™, (13.8.31)

for some € (= ¢y — 3) > 0. Then q@%@%b becomes,

20, 6Nz e
r9, 20N oy T (13.8.32)

1—r N1 —r)

which is small compared to the leading terms, 1 and m in @,

Proposition 13.8.5 Under the assumption @, we have

ro.h(r) =
1+0 ))N InN
2015]\[7 1+0(1)(r/R,)™ R, <r<1- oI
(1_7”) xay T OW)(R/r)” (5ot N 0<r<R,.
O(N 6newNufr))

(13.8.33)
The derivative of the first term to the right is O (5N%(1 - 7’)_3).

Estimates of the subharmonic measure of small discs. We next esti-
mate the integral of Ah(z) over small discs contained in D(0, 1—(In N)/(O(1)N)).

As a prepargfion (and this will also be used directly), we shall study the in-
tegral % over the annulus D(0,71,72) = {z € C; r; < |z] < r}. We

shall assume for simplicity that

ry > o0y (13.8.34)

We have directly from @D and Proposition @L

Propgsition 13,8.6 Let I(ry,72) be the integral in /@) and assume
8.31), (13.5.34).
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a) If ro < R,, we have

27 T9 — T R, ~(Fo(I)N 1 To — T
I = — O(1 — ON
(7“1,1"2) N(l—Tl)(l—T’Q)_'_ ( )(<T2> + 2

where the last term in the remainder is < SN=t3 = O(N1=%™).
b) If R, <r; <ry <1—(InN)/(O(1)N), we have

) o — 11 r —(14+o0(1))N
1 =0(1 Nz — .
(7‘1,7“2) O( ) 0 (1 — 7“1)(1 — 7"2)2 * (Ra)

c) If r1 < R, <19, we have

2mry

I =27 - —
(rire) =21 = G0

(1 — Tl)(l — 7"2)2) ’

_ —(1+o(1))N R\ ~(Fe)N
1) (one— 21 T2 flo ‘
+O<)< T—mi-nP  \R, 5

Consider open discs D(z, p) with |z| =7, r 4+ p =1y, r — p = rq1, so that
p = (ro —r1)/2. Then, since h is a radial function,

/ AR(2)L(d=) < O(1)I(r1,72)p (13.8.35)
D(z,p)

We first concentrate on the case a) in the last proposition and assume in
addition, that
p<6y(R,—1) (13.8.36)

for some fixed 6y €)0, 1], so that R, —r, R, — r1, R, — o are all of the same
order of magnitude. The same holds if we replace R, with 1.
Then we get

I(ry,re) = O(1) (%(1 _pr)2 + (RJ/T)—N/O(D) :

z)L(dz) = 1_»r - N/O)
/D(Z’p) Ah(z)L(dz) = O(p) (N(l — + (Ry/7) ) (13.8.37)

If 7 is a “band” of the type, {z € C; dist (z,7) < p}, where v is a Lipschitz
curve passing through z, then we define the Ah-density along 7 at z € v by

1
Ah-dens (z, p) = —/ AhL(dz), (13.8.38)
P JD(z,p)
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which under the present assumptions satisfies

L p _N/O(1)
Ah-dens (z,p) = O(1) <N(1 ) + (R,/7) . (13.8.39)
Next, recall that under the same assumptions, €(r) is given by :
2016NY2  O(Ne) N4
< < 1 .
e e

Here we also assume @ In both cases a) and b), we define the e-
density by
e(lz])

e-dens (z, p) = ,
p

so in the present case a), we have

Net
Np’
We want to choose p in @ making (Ah-dens + e-dens )(z, p) as small
as possible. The minimum of p — N—(l%)Q + over R, is attained at

p = N/2(1 — r) which is too large for 1@} to hold, so we choose
P = pmin = Oo(R, — r) and get the corresponding value,

e-dens (z,p) < O(1) (13.8.40)

(e-dens + Ah-dens )uin(2) = O(1) (N< Ne

=N/
ey (a0

(13.8.41)
We next do the same estimates in the case b) of the proposition, now
under the additional assumption

p<6y(r—Ry), 12 < (1+Ry)/2, (13.8.42)

with 6y as before. We get

5N1/2
Ah-dens (Z, p) = 0(1) (ﬁ + (T/RJ)N/O(I)) 5 (13843)
and by (F5.19).
1) (6NY2 1
e-dens (z,p) = O; ) (15_ . + (T/Rg)_N/O(l)) . (13.8.44)
Restrict p further by imposing
1
> —. 13.8.4
P~ (13.8.45)
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Then

(5N1/2,0 5N1/2 N
N ] _on /omY
(A-dens +e-dens)(z, p) = O(1) ((1 “R,)? + o= 1) + (r/R,)

Without the condition @ the optimal choice of p would be p =1— R,

which is too large however, so we settle for p = pyin = 0(r — R,) and get

SN2 _
(T — )(1 — ) + (T/RU) N/O(1)

(13.5.46)

We shall next combine our estimates with Theorem @, with “1/h”
there replaced by N and "¢” by “h”. Let

(Ah-dens + e-dens )nin(2) = O(1) (

Q={z€C; 6 <argz < by, r_ < |z| <ri}, (13.8.47)
where 1/0(1) < r_ < R, —1/N, R, £ 1/N, < r; < (1+ R,)/2. Let
@ = 0, — 6;. The main term in Theorem is
N ,
— [ Ah(z)L(dz) = NO[ro,h(r)] ",
27 Q -
which according to dﬁ[} is equal to
~o 1 2015N%7“+ B 2015]\[%7“_ B r_
(1-ry)?  (A-r)* Nl-r)

oG (9))
— NO (1 - ﬁ +O(1) (N—ESGW + (T—i)_% + (%) _O%))) .

(13.8.48)

In Theorem %We choose the local radius r = r(z), z € 0Q of the
form r(z) = max6p||z| — R,|,2/N), where we recognize p = p(|z|) above,
= 6o||z| — R;|. We let 2 in that theorem avoid a 1/N-neighborhood of the
circle |z| = R,. The remainder term is

O(l)N (/ (e—dens + Ah-dens )min(2>|d2| + 0O <l>) ,
{z€00||2|-Ro|> %} N

(13.8.49)
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where the last term corresponds to {z € 99Q; ||z|]—R,| < 1/N}, more precisely
to the integral of Ah over a N l-neighborhood of that set. The boundary
integral can be decomposed into 4 terms, Bi., Bir, Bea, Ber. where i stands
for interior, e for exterior, a for arc and r for radial. From , we get

B = O (i + (o).
po=ow [ (0, =y el <)

NIln N 1 NIn N

From we get

Then the remainder dﬁb is < O(N) times

N N

g N, SNz NeInN  (R,\ " °0  (r,\ o0
Ro—r i —mRy0-Ry TN T T\ &, '

. (13.8.50)
Combining this with @D and Theorem % we get

Theorem 13.8.7 Let N < § < N~27% for some €2 > 0, so that

R, is,bounded from above in and bounded from below by 1/O(1) in
. Let
L<r <R—i R—I—i<r <(1+R,)/2
on- "~ N T NT T o

Define Q by (@, 0 = 6y — 01 and let e, > 0 be small and fized. Then

with probability v e
>1—e —e NV, (13.8.51)
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lar

we have

0 r_
- = E————
o) 09 = ¥ (1= 5= )1 <
Ne-l SN2 new
O(1)N (0}% —+ 9(T+ R0 R TONTO 4+ (13.8.52)

NN | (R\TE ot
N r_ R, '

The eigenvalues of A sit in D(0, R,), so we are free to choose 7, conveniently.
We choose 7 = (1 + R,)/2. Then d%b gives:

oA ) - 5N (1= =) | <

Ne—l SN2 new
O(1)N <0Ra — 6(1 “R.)? +ON (13.8.53)
NN R\ TIo
N r_ 7 '

From this we get Theorem % with €y there equal to V.

13.9 Eigenvalue distribution for larger ran-
dom perturbations

When § is larger we cannot exclude eigenvalues outside the unit disc. In
addition_to,the upper bound on In|det(z — Ag)| fhat follows from the first
part of 3%, we shall use the one given by . However, in order to
have some simplifications, we sacrifice the maximal sharpness and consider
these estimates only in the regions |z| < 1 and |z| > 1 respectively, and
in order to simplify further, we replace G and F' by their upper bounds
1/(1 —|z]) and 1/(|z] — 1) respectively.

Our first problem, is then to study the largest radial subharmonic function
h(r) = hq(r) on ]0, 00| such that

1
19 (N o 201Ny | 2C16N2 _.
h(r) < {Nln(r 4 SO 4 = = f(r), 0< 7 < 1, (13.9.1)

Inr + —20;5_]\{1/2 =:g(r), r> 1.

Here we replaced the (' in by 2C} to get more symmetric expres-
sions. To simplify the expressions, we will introduce 0,y = 2C16 and drop
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the subscript “new”. Putting r = €' and subtracting the linear function
Nt, we get the equivalent problem of studying the largest convex function
h(t) = ho(t) on R (slightly abusing notation, by denoting functions of r and
of t = Inr with the same letters) such that

1 Nt | 6N\, N3
h(t) < {fo(t) = §VN111;12(6 + 1)+ o — 1 <0, (13.9.2)

go(t) = i1 t>0.

The functions fy, go > 0 are convex, as we have already seen.
The problem is invariant under addition of a linear function of ¢, so we
can replace fy, go by

1 Ne | ON SN/
fs(t)—ﬁln(e +Tet)—(1—$)t+1—€t,t<0,

1/2

gs(t):st—i—et , >0,

where we let the real parameter s vary in a small fixed neighborhood of 1/2.
(Thus, f = fi, 9= gl)
Let f™" and ¢g™" denote the minima of f, gs, attained at i, (fs) < 0

and tmin(gs) > 0 respectively. If we can choose s, so that [™0 = g™in then
the desired largest convex function h = hg, satisfying with (f,g)

replaced by (fs, gs), is given by

fs( ) t < tmln( )
hs<t) = fmm( mm)’ mln(fs) <t< mln(gs)a (1393)
98<t>> t> Zfmln( )

The desired function h = h; is then given by

f( ) for ¢t < tmm(fs)

F(tuin(fo)) Ol (i (g)) Lminl)
h t = mm gs) mln(fs) mm(gs) mm(fs) 1394 1 .4
(t) for tmin(fs) <t < tmin(gs), ( )

g(t), for t > tmin(gs)-
In the following, we assume that for some fixed ¢y > 0,

Neo—5/2 << N—3/2 (13.9.5)

We start with the study of g5 and see that t = ¢,,1,(gs) is given by

6N1/26t
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This leads to a second order equation for r = e’ which has the solutions:

SN2 /5 52N\ V2
r=1+— i<N1/2+—) :

S S 452

We choose the solution which_is > 1, that is the one with the plus sign.
From the upper bound in and (recalling that s varies in a small fixed
neighborhood of 1/2) we know that §N'/2 = O(N~') and we get by Taylor

expanding,
r=1+(0/s)?NY* + O(SN'?).

Consequently,
tmin(gs) = (8/5)2NV* 4+ O(EN'?).

A direct calculation gives,
g;nin _ (1 + 0(51/2]\71/4))2(58)1/2N1/4.

Also,

Dsg™™ = toin(gs) = (14 O(YV2NY4))(5/s) /2 N4,

Another direct calculation shows that

1
9. = dNzet(el +1)
tJs (et . 1)3 ’

which implies that for ¢ < ty,(gs) < 6/2NV4,

3395 = §I2NVA < 1/tmin(gs)-

(13.9.6)

(13.9.7)

(13.98)

(13.99)

In order to do the same work for f,, we consider two simplified functions:

a) The much simplified function

~ SN1/2
Jslt) = 1—et

- (1 - 8)t7

b) The less simplified function

As we shall see, eN' < §N/(1 — e*) near the critical points ¢y (fs) and

tmin(fs), SO f: is an excellent approximation to f, there.
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From the symmetry relation
Fo(—t) = SN2 4 g1, (D), (13.9.10)

the calculations for g, give corresponding results for jz:

- 1/2
tmin(fs) = _tmin(glfs) = _(1 + 0(51/2N1/4)) (%) N1/4, (13911)

~ . 1/2
OufI™ = twin(fs) = —(1+ O(8 /2N <%> NY* <« —1/N,
N N _ (13.9.12)
O fy =< 6TVANTVY < 1 |tmin(fo)], for ¢ < toin(fs)- (13.9.13)
We next look at ]/”\S and notice that
1 ON et 1 ~
0,—1 = = — hen t < tuin(fs). 13.9.14
N T e N =€) " Nltwn(F2)| when (fs) ( )

In particular,

~ ~ 1 1
<8th> (bmin(fo)) = Nltwin(fs)| 02N (13.9.15)
ct. (353)
Further,
1 oON 1 et 1 ~
=1 = — = — hen ¢ =<t (fs).
N E TN = T N e )
We compare this with (@ and find for ¢t < tmin(fs):
1. 6N 2 f.
2 - s
O In—— = =, (13.9.16)
SO o)
8t2f5 = (1 + W) fos, when t =< tmin(fs)- (13.9.17)
Since (@f;)(tmin(ﬁ)) > (0, we know that tmin(/; < tmin(jz). For t < tmin(ﬁ),
£ tomn(.) we have by (FES5), (o7, (F5o.03),
~ C'/N 1 -
A0S T G (e )
min S min S (13_918)

1 C 1 =~
— m (N - E(tmin(fs) - t)) ;
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and we conclude that

I r 02 tmin fs tmin }V.s
tmin(fs) - tmin(fs) S W S 0(1)% S O(l)‘]\ﬁ% (13919)

Combining this estimate with the bound 8tf; = O(1) in the interesting re-
gion, we get

fmin i — (£ £ (fnin fs)) + [oltmin(F5) = Fs(tmin(f5))
i ( + 0(1))
N 1— etmm
1 (13.9.20)
~ <(9 5N3/2))
N
1)111]\7

We are now ready to look at f,. The main observation here is that et
much smaller than 6 N/(1 — €') for ¢ < tyin(fs). Indeed, for such ¢, we have

ON IN

1ot SU2NA OVENSIENTYZ > N2 jO(1),
— €

while
Nt < exp(=6Y2N4/0O(1)) < exp(—=N“/2/0O(1)),

SO

ON Nt
1_€t+e

and consequently, for t < tmin(ﬁ),

fo— Jo = O(1/N)e=N2/00) (13.9.21)

In order to treat also the derivatives of the difference, we write

ON

— (1 4+ O(e=N02/00)
(1+0 N

. Nt
fs—[fs= %ln (1 + (i—N)) : (13.9.22)

1—et
We have just seen that

eNt

SN\
( 1—et )
and this extends to a complex domain:

Rt = tin (), St = O(1)tmin(f5).

O(1/N)e No2/0M),
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Hence by the Cauchy inequalities, we get for real ¢ < tmin(ﬁ), and k € N,
af (eNt/((SN/(l o et))) _ Ok(l)e_]veo/2/(9(1)7
Using this in @b, we get for every k € N that for ¢t < tmin(fs):

O (f, — o) = Ou(1) (e—N€0/2/0<1>) . (13.9.23)

It is now clear that f; has a unique critical point ¢, (fs) = tmin(ﬁ) +

@ (e*N 0’2/ 0(1)> which is a nondegenerate minimum and that

£ = i) = 4 O (V0O (15924
Combining this with dﬁb, we get
U |
o= e = o (I (BN*2) + O(1/N)) . (13.9.25)

By the symmetry relation @D, we know that

tmin(91/2) = —twin(F1/2),  F = ONY2 4 g,
and in view of (@D,
1

We look for s &~ 1/2 such that g™* = fmin_ Consider F(s) := gm™® — fmin g0
that

F (%) = —%m (6N*?) + O(1/N). (13.9.27)

We have for s in a neighborhood of 1/2:
OsF(8) = tmin(gs) — tmin(fs) = 62N, (13.9.28)
This gives,

Proposition 13.9.1 There exists a unique point sy in a neighborhood of 1/2
such that
min g;gm. (13.9.29)

Moreover,

1 |In(SN32)| +1 1
80:§+O<) 61/2N5/4 :§+0(1)
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From the calculations above we also have

tmin(9so) = (1 + 0(1))(25)1/2N1/4, tin(fao) = —(1 4 0(1))(20)2 N1,
(13.9.30)
We can now apply and the corresponding discussion and get

Proposition 13.9.2 Let h = hy be the largest convex fynctjon in (@
Then there ezists sq= 5 + 0(1) such that h is given by /%l) with s = sg.
We also have .

Recall that we work under the assumption (T3.9.0): N©5/2 < § < N—3/2
for some fixed €y > 0. Also recall that since (I[3.9.2) we have simplified the
notations by writing ¢ for 2C1d. We_now reinstate the original §. Let us
review the estimates in Theorem that will be used:

With probability > 1 — e~ " we have the interior upper bound m:

20151\7) 20,6 N3/2
+
1—7 1—7

In|det(z — As)| <1In (T’N + =: Nf(r), (13.9.31)

when r < 1, 611151{\/ . Here and below, we frequently write r = |z|

With probability 2 1—e ", we have the exterior upper bound (|

2016N?/?

In|det(z — As)| < Nlnr + .1

=: Ng(r), (13.9.32)

when r > 1. Recall that f = fi, ¢ = g1 in the notation of the beginning
of this section. Let h(r) = hy(r) be the largest subharmonic function (of z)
such that

h(r) < f(r), 0<r<1, h(r)<g(r), r>1.

If we identify functions of r with functions of ¢ via the substitution r = e,
Proposition % gives,

M) {m) for r < 1— (14 o(1))(4C18)/2NVA, (15.9.33)

g(r) for r > 14 (1 + o(1))(4C,0) /2N V4,

now with the original J reinstated.
Concerning , we notice that if 7 < 1 — (1+ o(1))(4C,0)2NV4,
then

1—7r = 2
by @ and hence (@D applies. Thus we can apply the maximum
principle and conclude that with probability > 1 — e, we have

(C16)VAN34 < 1/2,

In|det(z — As)| < Nh(r), z € C. (13.9.34)
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With probability > 1—e~ ? we have the exterior lower bound in (@b:

6N3/2
g C1oN"”

In|det(z — As)| > Ng(r) — PO

(13.9.35)
for r > 1 and % < % As before, the last condition on r is satisfied when
7> 1+ (1+0(1))(4C6) V2NV, ,

We also recall the interior probabilistic lower bound (ﬁl} which says
that if

1 N J J IN
R < —_— <
|z] <1 N 12| < (’)(1)1_707 t < 0(1)1—7“7 T < 1,
then
SN3/2 t(1—1)\>
In|det(z—As)| > Int—0O(1) 1 , with proba > 1-0(1) % —e N,
—r
(13.9.36)

We choose t = eV ! for some small fixed ¢;. (This is almost the same choice
as in the case of small random perturbations, the factor ¢ is now squeezed
between two powers of N and is therefore superfluous.) Then we see that

3/2 2
In|det(z—As)| > —Nel—(’)(l)(sl]\i/r with proba > 1—(9(1)(1 EZT) N
(13.9.37)

for every fixed z with r < 1 — 1/N, r¥ < O(8)/(1 — r), provided that
e N <O0)/(1—-7), IN/(1—r) < 1. When r < 1—(1+0(1))(4C16) 2N/,
these conditions on r are fulfilled, so (ﬁb applies.  an

Recall that f = h precisely when t < t.,in(fs,). From (13,9.30), d@,
we get in that region, |f| < O(SNY2/(1 —r) + N971) so (13.9.37) implies
that

In|det(z — As)| > N(f(r) — €(r)), (13.9.38)
where, as in ,
1/2
e(r) <O (N“-l1 + 51N > , <1, (13.9.39)
—r

and we get

Proposition 13.9.3 For every z € D(0,1 — (1 + 0(1))(4C186)YV2NY4), we
have
In|det(z — As)| > N(h(r) — €(r)), (13.9.40)

with probability as in @ Here €(r) satisfies (@
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We shal? co% %ine this with the upper bound and the exterior lower

bound , that gives
In|det(z — As)| > N(h(r) —€(r)), (13.9.41)
for 7 > 1+ (14 0(1))(4C16)Y2 N4 where
e(r) = 60710%]\[1/2, r> 1. (13.9.42)

As in Section @ we will study I(ri,72) = [, _,,, Ah(|2])L(dz) (cf.
dﬁb) and we restrict the attention to the case |r;—1| > (140(1))(4Cy6)/2 N4,
ngen r < 1— (14 0(1))(4C16)2NY*, we have h(r) = f(r) and by

[ F= 0N om) (13.9.43
and similarly for (r0,)*(f — f) Here (see b) after (@)

~ 1. (206N | 2C,0N'?
f““)—ﬁln( 1_r>+ﬁ-
We have S
~ B r 201 N-=r
T&nf(r)—N(l_T)—i— e (13.9.44)

This is an increasing function of r which reaches a value < 1 at the right end
point r = 1 — (14 o(1))(4C16)Y/2 N4,

When r > 1+ (1 + 0(1))(4C18)Y2N'4 we have h(r) = g(r) = Inr +
2C16N1/2

L=— and we see that

20,6 N2y

We get the following result, similar to Proposition
Proposition 13.9.4 a) When 0 < r; < 17y < 1 — (1 + 0(1))(4C16)2NY4,

we have

_ /2 _
_ T2 T1 _NEO/Q/O(I) C15N1 (7”2 T'1)
Irr) = ga—a =y TOW (e LN TR '

b) 14 (14 0(1))(4C10)Y2NYA <7y <1y < 2, we have

015N1/2(T2 — T1>

I(ry,m9) = O(1) (= 1)
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c) When, 1 —ry, 19 — 1 > (14 0(1))(4C10)/2 N4,

1/2 C §N1/2
. T 7N60/2/O(1) 016]\7 (&} 1 ]
1 =1-———+0(1
(ri,72) N -y oW (e T T )
where .
1 _

— < O(1)N®/2,

N(l — ?"1) - ( )

We next turn to the Ah-density (cf. dﬁ[} and the subsequent esti-
mates). Consider open discs D(z, p) with |z| =r, r+p =19, r — p.= 1 with
r1, To as in case a) or b) of the proposition. Again we have @D, where
in Case a) we assume in addition that

p<6y(1—r), p>exp (—0(1)N6°/2) , (13.9.46)

for some fixed 0y €]0, 1], so that 1 —r, 1 —ry, 1 —ry are of the same order of
magnitude. Then,

5N1/2p>

I(ry,m) = O(1) (N p_r)2 AR

(1

5
Defining Ah-dens as in % we get

1/2
Ah-dens (z, p) = O(1) (N<1p_ r)2 N ((SlN— 7”;>

(13.9.47)

In case b), we take |z| = r, r+ p =ry, r — p = 11 where ry, ry are as in
case b) and in addition,

p<06y(r—1), (13.9.48)
for some fixed 6y €]0, 1[. Then,
5N1/2p
Ah-dens (z,p) = O ((r — 1)3> . (13.9.49)
We next logk at the e-density, defined as after dﬁ[} In case a) we
get from ([I3.9.38)), @5{%7
1 SN/
edens (z,) = O (e 4 F). (13.9.50)
and in case b) (cf. @),
1oN'/?
e-dens (z,p) = O(1)— (13.9.51)

pr—1°
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Thus, with the restrictions on p, to be respected, we have in case a)

(Ah-dens + e-dens)(z, p) <

O(1) (P (N(ll_T)Q t (fjilgg) +% (Nq_l + 51N_1/:» (13.9.52)

<o) () (v 75

and in case b)

1/2 1/2
(Ah-dens + e-dens)(z, p) < O(1) (p ON 16N >

(r—1)3+;7“—1

o ) . N\ NV (13.9.53)
- (r—12 p)r—1°
In both cases, we strengthen the assumption on r to
Ir — 1| > 2(4C,0)V2N4 (13.9.54)
and choose
1
P = Pmin = §|r —1]. (13.9.55)

Then we get

1 (Na-t 6N1/2) .
(A-dens + e-dens)(z, pmin) < O(1) {1r < + =) in case a),

ﬁ% in case b).
(13.9.56)
We now adapt the discussion from Q%D to Theorem ﬁﬂ Define
Q) as in , now with
L—r_, ry —12>2(1+0(1))4C8)V2NYV4, (13.9.57)

and apply Theorem ﬁwi’ch “l %h” %%ere replaced by by N and with “¢”

replaced by h(z). As noted after , the main term in that theorem is

% [ Ab(z)L(d2) = NO [ro,h(r)]

which now according to ¢) in Proposition is equal to

r_ _Areo/2 SN2y SN2y
N [ 1 Ne€0/2/0(1) +
9( N Tl )(e TSN Ty

(13.9.58)
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Before continuing, let us observe that by @D, the spectrum of Ay is

contained in D(0, R,) when ||Q] < C1N where R, < Ry and Ry is given by

1 1
= that is, Ry =1+ C10N.
Ro—1  Cpn oS fo=1+&
Here 6N < §Y2NY4 sq the spectrum of As in Q does not depend on the
choice of r, , satisfying (13.9.57)). For simplicity, we choose r, = 7, (r_) such

that 1 —r_ =r, — 1.
The remainder terms in the theorem can be written

O(N) (/ (e-dens + Ah-dens )(z, pmin)|dz| + R) : (13.9.59)
09232,U00a

where 0, = 0Q N {r =r_} and 0Qe, = 02 N {r = r, } are the interior and
exterior arcs in the boundary of ), and_R_is the contribution from the two
radial segments in 0€). The integral in @D is bounded by

1 N1/2
O(9) (Nel‘l + 0 ) (13.9.60)

1—1r_ 1—r_

by (F39.50).

We have,

Tmin (fsq)
R =0(1) / ’ (e-dens + Ah-dens)(r, pmin )dr

T
+O(1) / (e-dens + Ah-dens)(7, pmin)dr
Tmin (9sq)

+ O(1) ((rmin(9so) — Tmin(fs0)) L (rmin(f50)s Tmin (9so)))

Tmin (fsq) Ne—1 (SN% Ty SN+
:O(l) (/T ( L=r ' <1 N 7”)2) dr " /"'min(gso) (7’ - 1)2dr

+ O(l)déN%[(Tmin(fso)? rmin(Qso))-

Here, I(7min(fsy), "min(gs,)) = O(1) by ¢) in Proposition and the second
integral will satisfy the same upper bounds as the first one (up to a factor
O(1)), since ry, r_ are symmetrically placed around 1, and 7min( fs, )5 Tmin (s, )
have approximately the same property.

Thus,

Tmin(fs()) Nﬁl*l 5N% 1 1
RzO(l)(/r (1_T+(1_T)2>dr+62]\74>

5N%(rmin(f80)_r—) a7l
I o= 70N ) '

N,

=0(1) <N€1‘1| In(6z N
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Here the second term in the last expression is O(6'/2N'/4) and In(6'/2N1/*) =
O(1)In N, since N=2+0 < §N1/2 < N~!. Thus,

R=0(1) (NGH In(N) + 5%N%> . (13.9.61)

Applying Theorem "ﬁﬁ d%édflg_%%[)fd%d%ﬂ%—b, we get,

Theorem 13.9.5 Let As = Ay + 6Q) be the N x N matriz in the beginning
of this chapter, where the entries of () are independent complex random vari-

ables, ~ N¢c(0,1) and N30 < § < N2 for a fized ¢y > 0. Define Q as
m and put 0 = 0y — 0. Let

Tmin(9so) = €XP tmin(gsy) = 14 (1 + 0(1))(4C16)2 N5,
rmin(fso) = exptmin(fm) =1- (1 + 0(1))(4015) N )

be as in Proposition@ and (@ (with “6” there replaced by 2C10).

Fix 0 < ey <1 and choose r_, ry in the definition of €2, so that

PSS

= NI

1
5 S r— S Tmin(fso)a Ty 2 1 + 016N

Then with probability > 1 — O(1) exp(—N*), we have

o B

™
1

5 e1—1
vot (e 81 )

(I1—r_)2 1—r_

+NO(1) (NGH In N + 5%Ni> .

This gives Theorem %
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Part 111

Spectral asymptotics for
differential operators in higher
dimension

269



Chapter 14

Weyl asymptotics for the
damped wave equation

14.1 Eigenvalues of perturbations of self-adjoint

operators

The damped wave equation is closely related to non-self-adjoint perturbations
of a self-adjoint operator P of the form

P, = P +ieQ. (14.1.1)

Here, P is a semi-classical pseudodifferential operator of order 0 on L?*(X)
where we consider two cases:

e X = R" and P has the symbol P ~ p(x, &) 4+ hpi(z,&) + .... in S(m),
as in Section ﬁ where the description is valid also in the case n > 1.
We assume for simplicity, that the order function m(x, &) tends to +o0,
when (z, ) tends to oo. We also assume that P is formally self-adjoint.
Then by elliptic theory (and the ellipticity assumption on P) we know
that P is essentially self-adjoint with purely discrete spectrum.

e X is a compact smooth manifold with positive smooth volume form
dx and P is a formally self-adjoint differential operator, which in local
coordinates takes the form,

P=S au@ h)(hD)?, m >0
|a| <m

where a,(z;h) ~ Y 70 hFaq(x) in C™ and the “classical” principal
symbol

pm<x7£) = Z aa,O(x)gaa

|a)|=m
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satisfies
0 < pm(z,§) < €™,

so m has to be even. In this case the semi-classical principal symbol is
given by

p(x75) = Z CLOA’O(:E)SOL.

laf<m

We assume that @ : L?(X) — L?*(X) is bounded with norm < 1. This
operator may depend on € and h. Let I = [a,b], —00o < a < b < +00. We
assume that a, b are not critical values of p:

dp # 0 on p~ (). (14.1.2)

iS799
Then it is a classical result (see H)ZIlU]Jﬁd further references given there) that
P has discrete spectrum and that we have the Weyl asymptotics,

H(o(P)NT) = 2W1h)n (vol (= (1) + O(h)) (14.1.3)

—~

and that
#(o(P) N (01 + [=,8]) = O(1)oh™, (14.1.4)
uniformly for O <h<d << 1. AMa79
asa-ie following result is due to A.S. Markus, V.I. Matseev }{497[%66 also
1657 Fro.

Theorem 14.1.1 For 0 < e < 1, the spectrum of P, is purely discrete and
contained in R + i[—e¢,€]. We have

B(o(P) O (I +i[—e,d)) = (Q;h)n (volp (1) + O(max(e, k),  (14.15)

where the eigenvalues are counted with their algebraic multiplicity.

The inclusion o(F,) C R + i[—e¢, €] follows from the fact that
|S(Peufu)] < el|ull?,
and from this estimate we also deduce that
(P —

27| < N when |z| > e.

The assumptions about P and in particular the ellipticity assumtion near
infinity, imply that (P — z)™!, Q(P — 2)~" and (P — z)~'Q are compact

271



when zy & o(P)[] For such a z (take for instance z away from the real axis)
we write

z—P.= (20— P)(1+ (20 — P)" (2 — 20 — i€Q))
= (14 (= — 20— i6Q) (0 — P) ) (20 - P).

Here, (29 — P)7 !}z — 20 — i€Q), (2 — 29 — 1€Q) (2 — P)™') are compact for
z # 2y and since we can here vary zg, it follows from Fredholm theory, that
the spectrum of P, is discrete.

Proof of . Thj e main at Q%ghe theorem and we shall follow
the general strategy of k%zlﬁ—t ee also 93], TZ’S]) which consists in introducing
a self-adjoint finite rank perturb tlor%: Zof P which has no spectrum near 01.
The use of the results in Chapter%l_ﬂ allow us to shorten the proof slightly
by avoiding a standard argument (now included in the proof of the results of
that chapter).

Without loss of generality we may assume that h < ¢, for if € < h, we
can write eQ) = h((e/h)Q) and use h as a new perturbation parameter, since
Ie/mQI < 1.

Let A;, 7 € N denote the eigenvalues of P repeated with their multiplicity
and let e;, 5 € N be a corresponding orthonormal basis of eigenvectors.
Define for € < § < 1,

a point in O 4+ {—4,6} with dist (A, I + {—6,6}) = |\; — A}
Aj = § when \; € 0I+] — 4,9,
A; when \; € R\ (01+] — 9, 9]).

We define our modified operator to be

Pu="Y"X;(ule;)e;. (14.1.6)

where the spectral resolution of P is

Pu = Z Aj(ulej)e;

It follows that

|P° = PI| <, (14.1.7)
|P° — Pllu < 5#(a(P) N (OI+] — 6,0]) < O(1)5°h™™, (14.1.8)
o(P°) N (OI+] — §,6[) = 0. (14.1.9)

! Strictly speaking, the two operators are compact: D(P) — D(P) and L? — L? respec-
tively. The two properties are equivalent since the operators are related by conjugation
by zo — P.

272

dwe.8

dwe.9

dwe.10



By construction and ,

#(o(PYNI) = #(a(P)NI) + O(6h™). (14.1.10)
Recalling that P. = P + ie(), we put
P2 = P° +ieQ). (14.1.11)
Then P° has a purely discrete spectrum contained in R + i[—¢, €] and more
precisely,
o(P°) C (R\ (9I+] — 6,0[)) + D(0,¢) (14.1.12)
and in particular (01+] — 6 + €, — €[) + iR is disjoint from the spectrum of
P?. By a simple deformation argument, we see that
#(o(P)N (I +iR)) = #(c(P)NI), (14.1.13)
to be combined with @D
In the following, we choose
0 = Cpe, (14.1.14)
where Cy > 1 is a large constant to be fixed later.
Let
Q=1+i]-1,1], (14.1.15)
and consider the following neighborhood of 0€:
W= | D(z.7(2)), (14.1.16)
z€00
where
T(2) = 4de + |3z] /4. (14.1.17)

If Cy in is sufficiently large, it is clear that
D(z, 27(2))N((R\ (OI+] =+ €,6 — €])) + i[—e,¢]) =0, z € W. (14.1.18)
It follows that P’ has no spectrum in W and that
(PP = 2)7Y < O1/7(2)), zeW. (14.1.19)

We shall view the eigenvalues of P. in () as the zeros of a relative deter-
minant. Let 0 < x € C3°(T*X) be equal to 2 on a sufficiently large compact
subset of T*X. Then, if p = p + iy, we see that (p — 2)~! is a uniformly
bounded function for z in a fixed neighborhood of the closure of 2 U W. We
can then quantize p — p + P as an h-pseudodifferential operator and get an
operator P such that
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e P — P is uniformly bounded in L2(X),
o [P =Pl < +o0,

e P has no spectrum in W U and the resolvent (P — z)~! is uniformly
bounded on that set. The same holds for P. := P + ie().

The eigenvalues of P, in QU W are the zeros of the determinant of a trace
class perturbation of the identity, namely,

Do(2) = det ((R — (P - z)_1> — det (1 —(P—P)P. — z)_1> .
(14.1.20)
Similarly the eigenvalues of P° in Q U W are the zeros of

DY (2) = det ((Pj — (B - Z)—1> — det (1 —(P-P+P— PP — z)_1>
(14.1.21)
and we have seen that there are no such values in W.

Remark 14.1.2 We can identify the algebraic multiplicities of the eigenval-
ues and th gesponding zeros of a determinant by expanding the discussion
in Section%‘slighﬂy: Let P(z) : F — G, z € A be a holomorphic family
of Fredholm operators of index zero, where A C C is open and connected.
Assume that P(z) is bijective for at least one value of z. Then the set I' C A
of points where it is not bijective is discrete. Let zy € I'. Then we can find
1 < Ny € N and bounded operators R (z) : F — CY R _(z): CN — G,
depending holomorphically on 2z € neigh (zg, A), of maximal rank, such that

P(z) = <}§+(é)) RO(Z)) : FxCM = gxCh (14.1.22)

is bijective for z € neigh (zg, A). Define the multiplicity

1
m(zp, P) = tr — [ P(2)7'0.P(2)dz, (14.1.23)
27 .

where C is the oriented boundary of the disc D(zg,r) with r > 0 so small
that D(zg, )N = {2p}. We shall see that m(zo, P) is well-defined in general.
When P(z) = z — P it is the rank of the spectral projection, hence the usual
multiplicity.

Let

_(E(x) Ei(2)) . No No
E(z) = (E_(z) E_+(z)) : GxC =5 FxC (14.1.24)
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b
be the inverse of P(z). Then (cf. Section @ we have
P(2)™ = E(2) - E4(2)EZLE_(2), (14.1.25)

and F(z)0,P(z) being holomorphic near D(zp,r), when r > 0 is small
enough, we get

L P 0Pz = ——— [ Bu(2)E_ i (2) B (2)0.P(2)d>

271 . 211 .

which is of trace class, so m(zy, P) is well-defined and we can take the trace
of the last integral, move the trace inside the integral and get

m(zo, P) = —% tr (B4 (2)E_1(2)"'E_(2)0.P(2)) dz
L . (14.1.26)
=5 Fytr (EZLE_(0.P)E.) dz,
using the cyclicity of the trace for the last equality. Using that 0,€ =
—E(0,P)E, we get
- 0,FE_ ,=FE (0,P)E, +E_,(0,R,)E. + E_(0.R_)E_,, (14.1.27)
—F (0,P)Ey=0,E_+F _(0.R\))E, + E_(0,R_)E_,

and substitution of the last identity in @D gives

m(zo, P) =1+ 11 4 111, (14.1.28)

where

1
I=— [ tr (EZ10.E_})dz =m(z,det E_,),

271 .

the multiplicity of 2y as a zero of det E_,

1 1
I=— [tr (ECLE_+(0.Ry)E:)dz = — [ tr ((0.R+)E4)dz =0,

27 . i/,

the integrand of the last intergal being holomorphic,

M=_" [t (E E(0.R)E.)d: = —— [ tr (E_(0.R_))d= = 0.

211 . 271 .

Thus,
m(zo, P) = m(zp,det E_, ). (14.1.29)
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Similarly one can show that

m(zp, P) = tr 2L (0.P(2))P(2) tdz.

7TZ,y

If P(z) = Pi(2)Py(z), where Pa(z) : F — H, Pi(z) : H — G are
Fredholm operators as above, one of which is bijective at z = 2y, then

P hen P is bijecti
(o, P) {m(zo, 1), when Py(z) is bijective, (14.1.30)

m(zo, Py), when Pj(z) is bijective.

The two cases are very similar and we only treat the second one when Py (z)

is bijective. Let
Py(z) R(z)
Pa(2) = <Ri(z) 0 )

be associated to P as in d@ Let
E? Ei
&= (EQ E2+)

(P PR\ (P 0
P (e ") = (0 0)

is bijective and we have @ with Ry = R%, R_ = PiR%. The inverse

of Pis ) .
e <E2 Ei) <Pf 0> _ (E2P1: Ei)
E? E%, 0 1 E2prt E%L
and of the form with E_ = E?_. Hence we have d@ when
Pi(zp) is bijective. The other case can be treated similarly. Finally let us
recall that when P, = 1+ K(z) where K is holomorphic and of trace class,

then m(zg, P) as defined above, is equal to 7 (20, det Py); the multiplicity of
2o as a zero of det P, (defined in Section %E

We have
= det <(PE —2) (P}~ Z)_l) (14.1.31) [dwe.22]
=det (1= (P’ = P)(P) = )").
Thus,

|D.(2)/D(2)| < expll(P° = P)(PY = 2) |l (14.1.32)
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Here,
1(P° = P)(P? = 2) Ml < (B = 2) |1 P° = Pl

and by m, d&ﬁb, we get for z € W:

17 = PP = 2 e < 0=
From d@, we conclude that
In|D.(2)] —In|D%(2)| < O(1)= i L zeW. (14.1.33)
¢ 7(2)h"
For every fixed 6 > 0, we have
I(P. —2)7!|| < C?;ES), zeW, |Sz] > (14 0)e. (14.1.34)

Using this and a formula similar to @ with P? replaced by P, we get
upper bound

In|DI(2)] - In | D, (2)] < 2L

= T(z)h’

due
in the same region as in 7 so in addition to dﬁ we have the

lower bound,

2 —_—
In|D(2)] — In|D%(2)| > —f?(;;h) , ze€W, Sz > (1+0)e.  (14.1.35)
r(z)h"
In W we have
In|D?(2)| = ®o(2)/h", (14.1.36)

where ® depends on the various parameters and is harmonic in W. Extend
d, to a smooth function on QUW and notice that we have the exact formula,

1

#(o(P)NQ) = /A@O(z)L(dz). (14.1.37)
2whn O
t r(z) = r(z)/(1 4+ 0) for some fixed § with 0 < § < 1, and define (cf.
)

W= ] D(z (). (14.1.38)

z€082

From (@, we have

In|D.(2)| < ®(2)/h", z € W, (14.1.39)
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where

52
($2)2 4 02)172

®(z) = Po(2) +

provided that C' is large enough.

We can find x € C§°(W,[0,1]), equal to 1 on W, such that

Rz X = 0(1)7‘(2)_‘04, for all o« € N2,

We extend the definition of ® to W U ), by putting

Co*x(z)
((32)2 + 2)1/2.

O(2) = Po(2) +

Then,
O(6%)
A - Ay = ———
07 (|1Sz] + 6)3

and it follows that

52

/ |IAD — AD|L(dz) = O(6%) + (9(1)/0 mds

— 0(5).

In particular, since ®q is harmonic on W,

/~ AB|L(dz) = O(5).
w

(14.1.40)

(14.1.41)

(14.1.42)

(14.1.43)

(14.1.44)

In view of the choice of 7(2) in Q%, if we choose 6 > 0 small enough
in the definition of r(z), we can find distinct points z; € 09, j € Z/NZ
distributed in the positive sense so that j — arg (z; — (a+b)/2) is increasing,

with the properties:

1) There are precisely 4 points z; that minimize the distance to R, namely

a =+ i5e/4, b+ ibe/d,

2) r(z;)/(2C) < |zj+1— 2| < 1r(z;)/C for some fixed large constant C' > 1.

It follows that N = O(1)1In(1/€) and that
00 | D(z,7(2)/2).
J

Let
C6?

€ = =
J |%Z]|+57
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for C' > 0 sufficiently large. Then by d%, dﬁ%ﬂ),

1
In[D(2)] 2 —-(8(2) = €)), = € D(z,7(2)/C), (14.1.47)
and we recall that In |D.(z)| < ®(z)/h"™ on W, by dﬁ[} By construction,
D e =0(9). (14.1.48)
To sum up the discussion, we have by d%, d%ﬁ%[),
#(o(P)NQ) = #(o(P°) N 1) =#(o(P)N 1)+ O(h™").
ere F#(o(P°) N Q) is given by the integral formula @D, where by
L / AGL(d2) = —— [ ABL(dz) + Oh™)
Thus,
. ﬂ J
On the other hand, Theorem“%.i.%, d%, d%, dﬁ@, ddﬁ%[)
show that
1
|#(o(P)NQ) — —— | ADPL(dz)| < O(5h™),
27Thn Q
SO
[#(0(Fe) N Q) = (o (P) N T)| < O(0h™"),
which concludes the proof of (@ in view of @ O
Remark 14.1.3 Notice that Theorem % is an application of a more
general abstract theorem, that we do not formulate in detail. In particular,
ther aﬁgg@xtﬁa%?gons of the theorem to the case of boundary value problems.
See 941793
14.2 The damped wave equation
Let X be compact Riemannian manifold of dimension n. The damped wave
equation is then of the form
(02 — A+ 2a(x)0,)v(t,z), (t,2) € R x X. (14.2.1)
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Here A denotes the Laplace-Beltrami operator on X and we let a € C*(X; R).

Because of the “damping term” 2a0,v this evolution is no more energy con-
serving (for a suitable energy) and we have to expect exponential growth or
decay of the solutions, when [t| — oco. Clearly this is related to the eigen-

frequencies of the corresponding stationary problem. Put v(¢,x) = e""u(z),
7 € C. Then v solves iff

(—=A — 7% 4 2ia(x)7)u(x) = 0. (14.2.2)

When (u,7) is a non-trivial solution of (@ we call 7 an eigenfre-
quency or simply an eigenvalue and u “the” corresponding eigenfunction. It
is easy to show that if 7 is an eigenfrequency, then

infa < 37 <supa, when R7 # 0, (14.2.3)

2min(inf a,0) < 37 < 2max(supa,0), when R7 = 0. (14.2.4)

In this chapter we content ourselves with establishing the most basic re-
sult about the distributj )t aQ7f9eigenfrequencies, namely that their real parts
obey Weyl asymptotics %@%any other important results concern the dis-
tribution of imaginary parts and the growth-decay of solutions and they are
c}osely related to thej geome'try ar'ld the interplay between @%%9%6}%?5&% ?8%];&_
cient a and the classical trajectories (“rays”). We refer to [89, 114} 68], where
more references can be found. Some very lestaiiéed results in 2 dimensions are
applicable to the eigenfrequencies . (See [73] Tor a more recent work on that
theme.)

When a = 0, the eigenfrequencies are real and symmetrically disctributed
around 0. In fact, they are the square roots (with both signs) of the eigen-
values of —A. In this case, (neglecting the case of 7 = 0 which has the
multiplicity 2 as we shall see) we define the multiplicity of an eigenfrequency
7 to be equal to that of 72 as an eigenvalue of —A. Applying the standard

%%ulg’%on the Weyl asymptotics for the eigenvalues of —A (see for instance
%5[ and further references given there) we have

Proposition 14.2.1 When a = 0 the eigenfrequencies are real and symmet-
ric around 0. The number of eigenfrequencies T in [0, \], counted with their
multiplicity, is equal to

(5) (ol G0 +0 07)). (14.25)

when A — 4o00. Here p(x,§) denotes the principal symbol of —A (equal to
the dual Riemannian metric on T*X ).
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Back to the general case, we notice that the set of eigenfrequencies is
symmetric under reflexion in the imaginary axis and can be identified with
the set of eigenvalues of the unbounded operator

P:(&‘%%D:H%QXH%QAHWHXH%ﬂ (14.2.6)

with domain H? x H'. In fact, the relation between @ and

w—ﬂ(m)z, (14.2.7)

is given by ug = u, w1 = TU.
Let Py be the operator in d% with a = 0. Let 0 = A\g < A\ <
. — 400 be the eigenvalues of —A and let ey, e, ... be a corresponding
orthonormal basis of eigenfunctions. For k # 0, we put

1 )\_1/26
+ _ k k c Hl HO
fk \/5 ( :l:@k X I

(3 1-()

Let (eg)® denote the L? orthogonal to Cey. Then )\1_1/261, )\2_1/262, ... Is an
orthonormal basis in H' N (eg)+, equipped with the scalar product [u|v] =
(—Aulv). From this we see that fi, fa,... is an orthonormal basis in ‘H =
(H' N (eg)t) x (H N (ep)t), with the scalar product

(COTGE)) = (Co D) CGR)). = ol + ol

Also Pofi = :I:A,t;/ 2 fif, so the restriction of Py to H is self-adjoint with f;
as a corresponding orthonormal basis of eigenvectors.

From this we see that Py, has a purely discrete spectrum, given by 0,
+v/\i, k > 1. 0 is an eigenvalue of algebraic multiplicity 2 and the full
spectral decomposition of H' x H? is

and for £ = 0:

H'xH' =Cfy o Cfy dH

The algebraic multiplicity of 44/, is equal to the multiplicity of A\ as an
eigenvalue of —A, when k& > 1.
When 72 # ), for all & > 0, the resolvent (Py — 7)~! is of the form

(Po—7)" = (A=) Po + 7). (14.2.8)
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Let

Q= (8 2?@) , so that P =Py + Q.
Then we see that Q(Py — 7)7!, (Py — 7)7'Q are compact on H' x H® and
H? x H' respectively. The norms of these operators tend to zero when
T — oo in closed sectors that are disjoint from R away from 0. It follows
that P has purely discrete spectrum and we define the multiplicity of an
eigenfrequecy to be equal to its algebraic multiplicity as an eigenvalue of
P. Thus tl(]é ei%nfr%geggies form a discrete set, confined to the region
defined by 2.3, (1A2. and the elements have a natural multiplicity
defined above. (In [[I28] two further equivalent definitions of the multiplicity
are given.) The set of eigenfrequencies, counted with their multiplicities, is
invariant under the map 7 — —7 of reflexion in the im@g gLy axis. We can
then state a theorem which is due to Markus-Matseev [94]:

Theor 2.2 Under the assumptions above, the number of eigenfrequen-
cies of with real part in [0, \], counted with their multiplicity, is equal
to
)\ n
(%) (vol (0 ([0, 1)) + O (A1), A — +o. (14.2.9)

Proof. We reformulate the problem semi-classically,, Let h =< 1/A and put
T = z/h, so that |z| < 1, when |7| < A. Then becomes

(—h*A — 2* + 2iahz)u = 0, (14.2.10)

and we define the semi-classical eigenfrequencies in the obvious way and
define the multiplicity of the semi-classical eigenfrequency z to be that of the
eigenfrequency 7 = z/h. We then have to show that the number of semi-
classical eigenfrequencies (counted with their multiplicity) with real part in
[0, 0], where b < 1, is equal to

1
(2wh)"

(vol (p~'([0,8])) + O(R)), h — 0. (14.2.11)

The set of semi-classical eigenfrequencies is symmetric around the imag-
inary axis, and we have a uniform bound on the number of eigenfrequencies
on the imaginary axis, so equivalently, we have to show that the number of
semi-classical eigenfrequencies with real part in [a, b], where a := —b, is equal

to
2

(2wh)"

(vol (p~'([0,8])) + O(h)), h — 0. (14.2.12)
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As in the non-semi-classical case, the eigenfrequencies appear as eigen-
values of a matrix operator, namely

A 1Y\ o
Ph_(—h% 2iah>_P0+ZhQ'HhXH — Hp x H°,  (14.2.13)

Q= (8 20@) ,Po = (_f?zA (1)) : (14.2.14)

and it is here convenient to endow H* = H} with the semi-classical norm

where

lull sy = [I<AD) ]l 2 = [|(1 — A2A)* 20l 2.
For §z # 0, the resolvent of Py is of the form
(P — 2)7' = (=R*A = 22)7Y(Py + 2), (14.2.15)
and using the semi-classical Sobolev norms, we see that
(Po— 2" =01/|Sz|): Hj x H® — H} x H}, (14.2.16)
uniformly when |z| < 1.
Again, Py is self-adjoint on H = (H} x H®) N ((eo)* % (e9)*) and has

the spectral decomposition CfJ ® Cf} ® (H} x H) N ((eo)* x (e0)*). The
number of eigenvalues of Py in b+ [—6, 0] and in —b+[—9, ] is O(6h™") when

h < &< 1 (and b < 1), and we can construct a perturbation P§ of Py which
satisfies d%%b% with I = [a,b] = [—b, b]. Ve are therefore basically
in the same situation as in the proof of Theorem (with e there equal
to h), and the remainder of the proof is then the same. O
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Chapter 15

Distribution of eigenvalues for
semi-classical elliptic operators
with small random
perturbations, results and
outline

In this chapter we will state a result saying that for elliptic semi-classical
(pseudo-)differential operators the eigenvalues distribute according to Weyl’s
law “most of the time” in a probabilistic sense. The first three sections are
devoted to the formulatation of the results and in the last segti e give an
outline of the proof that will be carried out in the chapters il %, il }E

15.1 The unperturbed operator

In this section we describe the class of unperturbed operators.

Let X be a smooth compact manifo (i of dimension n. It is also possible
to treat the case when X = R" (cf T3T]§), but we will concentrate on the
compact manifold case.

Let P be an h-differential operator on X which in local coordinates takes
the form,

P =Y aa(x;h)(hD)", (15.1.1)

laf<m

where we use standard multiindex notation and let D = D, = %%. We
assume that the coefficients a, are uniformly bounded in C* for h €]0, ho|,
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0 < hg < 1. (We will also discuss the case when we only have some Sobolev
space control of ag(z).) Assume
ao(z;h) = al(x) + O(h) in C*,

15.1.2
ao(x; h) = aq(x) is independent of h for |a| = m. ( )

Notice that this assumption is invariant under changes of local coordinates.
The second part of {]% is for convenience only.

Also assume that P is elliptic in the classical sense, uniformly with respect
to h:

[P (2, )] > é|§|m, (15.1.3)

for some positive constant C', where the classical principal symbol
P26 = 3 an(a)e” (15.1.4)
|a|=m
is invariantly defined as a function on 7*X. It follows that p,,(T*X) is a
closed cone in C and we assume that
pm(T*X) # C. (15.1.5)

If 2o € C\ p(T*X), we see that Azg € X(p) if A > 1 is sufficiently large and
fixed, where X(p) := p(T*X) and p is the semiclassical principal symbol

p(z. &) = Y ag(w)E”. (15.1.6)
la|<m
Actually, @ can be replaced by the weaker condition that ¥(p) # C.
Standard elliptic theory and analytic Fredholm theory now show that if we
consider P as an unbounded operator: L?*(X) — L*(X) with domain D(P) =
H™(X) (the Sobolev space of order m), then P has purely discrete spectrum.
(When we only assume that X(p) # C, we need to use the assumption that
h > 0 is small enough.)
In the case of multiplicative random perturbations we will need the sym-
metry assumption
P=TPT, (15.1.7)
where P* denotes the formal complex adjoint of P in L?(X,dx), with dx
denoting some fixed smooth postive density of integration and I' is the an-
tilinear ppergtor of complex conjugation; I'u = u. Notice that the left hand
side in {%D is equal to the “real” transpose P*, defined by

/(Pu)vda: = /u(Ptv)dx, u,v € C*(X).
and that the assumption implies that
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15.2 The random perturbation

Let
W’R = (hDy)'r;x()hDs, (15.2.1)

be a non-negative elliptic operator with smooth h-independent coefficients
on X, where the star indicates that we take the adjoint with respect to some
fixed positive smooth density on X. Then h2R is essentially self-adjoint with
domain H*(X) and it has an orthonormal basis of eigenfunctions, ¢; € L*(X),
J = 1,2,... with corresponding eigenvalues ,u? = (hu?)z, where 0 < ,u? ya
+00. By Weyl’s law for the large eigenvalues of a positive elliptic operator
of order 2, we know that

#{7: 12 <A} = (1+0(1))(2m) "CuA™, X = +00, (15.2.2)
where C,, is the symplectic volume of {(x,¢{) € T*X; r(z,§) < 1}. Here
r(z,§) = er,k(f)@fk (15.2.3)
gk

is the principal symbol of R and also the semi-classical principal symbol of
h2R.

Our random perturbation will be of the form dq,, where § > 0 is a small
parameter and

qw(z) = Z ag(w)eg(x), |alcp < R. (15.2.4)
0<pr<L
Here we choose L = L(h), R = R(h) in the interval
—3n 3
hie<L<on™ M>—"
ST (15.2.5)
1 —(24e)M—3n M r 3n n
5h 2 > <R<Ch ,M27+(§+E)M,
for some € €]0,s — 5[, s > %, so by Weyl’s law for the large eigenvalues

of elliptic self-adjoint operators, the number of terms D in (I5.2.4) is of
the order of magnitude (L/h)™. The small parameter § will be of the form
§ = 1oh™™ 0 < 19 < h?, where Ny > Ny(n,s,¢) is a sufficiently large
constant.

The random variables «;(w) will have a joint probability distribution

P(da) = C(h)e® ™M L(da), (15.2.6)

where for some Ny > 0,
IV, ®| = O(h™4), (15.2.7)
and L(da) is the Lebesgue measure. (C(h) is the normalizing constant,

assuring that the probability of Ben (0, R) is equal to 1.)
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resl

15.3 The result

Let Ps = P+ dq., 6 = 1oh™?™", where ¢, is as in m%‘%@% Let

N3 = (M +1)n, N5 = Ny + M, Ng = max(Ns, Ns).

Let 2 € C b a fixed open simply connected set with smooth boundary. In
Section m below we introduce a continuous subharmonic function ¢ on €2
satisfying 1@’

A¢

5 L(d2) = p.(dudg), (15.3.1)

where the right hand side denotes the direct image under p of the symplectic
volume element. . ‘ ‘ . nte

Let I' € Q be a Lipschitz domain as in Chapter %constant scale
r =+vh. Let

h |dz|
G(w,T) = . 15.3.2
ot /arh+\w—z|2¢ﬁ (15:5:2)

Theorem 15.3.1 Let 6 > 0. Then with probability

> 1-O0(1)h N (mi ( ) /G w, T)Ad(w)L(dw) + |ar|hé> ¢,

T

the number of eigenvalues of Py in I (counted with their algebraic multiplic-
ity) satisfies

'#(U(Pa) NT) — (27r1h)"V01 (p_l(l“))‘ <

Oh(:) (h—glnl <ln %) /QG(w,F)AQS(w)L(dw) + ]8F|h§> )

To

(15.3.3)

Remark 15.3.2 Actually, we shall prove the theorem for the slightly more
general operators, obtained by replacing P by Py = P + §o(h2 ¢ + ¢3), for

0<do <h% ||¢)

19| <1, (15.3.4)

Hp»

where || - || g5 is the natural semi- lassica]l norm on H* that we shall review
in Subsection . If we weaken @

0<d§ <h*?, (15.3.5)

for some fixed ¥ €]0,1/2[, then we get the slightly weaker statement in the
theorem obtained by replacing |0T|h2 with |T|h2~ both in the lower bound
on the probability and in the estimate
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domains I' C 2 satisfying the assumptions of Theorem [[5.3.1| uniformly
in the natural sense: With a probability as in Theorem 15.3.1 and after
replacing h_N67" there by h~N6~"~1/2 (or after increasing Ng by 1/2) the
estimates (ITEBTBD hold simultaneously for all T" € C.

As in ﬁ[ ]]We also have a result valid simultaneously for a family C of
T3]

Remark 15.3.3 When R has real coefficients, we may assume that the
eigenfunctions ¢; are real. Then, as will follow from the proofs below, we
may restrict a in (I5.2.4)_to be in R so that g, is real, still with |a| < R,
and change C(h) in (I5.2.6) so that P becomes a probability measure on
Brpo(0, R). Then Theorem [I5.3.1| remains valid.

Remark 15.3.4 The assumption @ cannot be completely eliminated.
Indeed, let P = hDy+g(z)on T =R/ (QW%twhere g is smooth and complex
valued. Then (cf Hager 53]_and Chapter he spectrum of P is contained
in the line Sz = f02 g(x)dx/(27). This line will vary only very little under
small multiplicative perturbations of P so Theorem cannot hold in
this case.

n order to have a better understanding of the statement in Theorem
. we need to compare the Weyl term

1
W= — /F A¢(2)L(dz) (15.3.6)

and the main contribution to the remainder in (@, given by
R= / G(w, ) A¢(w)L(dw). (15.3.7)
Q

As W% shall see in Section if OI' satisfies the regularity assumption

Y

0T N D(w, R)| < O(1)Vh (%)HH, R>Vh,

Wher% |7| denotes the length of the curve v and 0 < k < 1, then we have

as well as the improvement away from I' in Remark

G(w,T;h)
d(w 81")
- O(1) ( ) in general, (15.3.8)
= dism () (1 N <w 8F>> 7 when d(w, ar) > diam (T)
vk Vh ! T '
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Here d(w, dI') denotes the distance from w to OI'. From this estimate we
expect — unless I' is very small or if a considerable fraction of p,(dxd§) is
concentrated to a I' — that R < W and indeed give the asymptotic
behaviour of the number of eigenvalues in I" for moderate values of § and To-

In the remainder of this section we shall dicuss three closely related ex-
amples when holds with k = 0 so that

G(w,T;h)

-1
1 (1 + %) in general, (15.3.9)

) —2
diam (") <1 + d(w,@F)) , when d(w7 ar) > diam (F)

Vh Vh

Example 15.3.5 Let I' be a fixed Lipschitz domain as in Chapter nliI;lzde—
pendent of A with scale 1 (in the sense of that chapter), so holds.
Assume that )

volp 1 (0T + D(0,t)) = O(t™), t — 0, (15.3.10)

for some Ny > 1 and notice that this holds with Ny = 1 when
p(p) € OI' = dRp(p), dp(p) are linearly independent.

Then it is easy to check (as we shall do prior to Proposition % that
/G(w, ) Ag(w)L(dw) = O (hY/ENo))
r

where for notational simplicity, we have suppressed a factor In(1/h) to the

right, when Ny = 1. Theorem now tells us that with probability
> 11— oMY (L) (2 PRI (15.3.11)
— n— n—-| —e 3.
- 70 h 2N(] 7
we have

0P D) - vl 7 D) <

o), s(. 1 1\*, o

which is a significant estimate if In1/79 = O(h™7), where 0 < 8 < 1/(2N)
and we choose ¢ small enough so that 4§ < 1/(2Ny).

(15.3.12)
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Example 15.3.6 Let Q € p(T*X)NQ be open and with closure containing
no critical value of p;

p(p) € Q= dRp(p), d3p(p) are linearly independent.

Then A¢L(dz) =< L(dz) uniformly on Q. Let I'y be a bounded closed Lip-
schitz domain as in Chapter [I2] 1ndependerit of h and with scale 1 (in the

sense of that chapter). We fix some 2y € Q and put I' := 2y + ol C f),
where vVh < a < 1. Clearly oI satisfies @l} with Kk = 0, so we have
@D uniformly with respect to a.

We see that

W =< o (15.3.13)

In order to estimate R, assume for simplicity that zp = 0. Then

R:/QG(U),I’)AMUJ) (dw)<—h+/Gw [ Ag(w) L(dw)
w, adl’y

d(
Savh+ / (1 + = ) L(dw 15.3.14) [res.6.5]
ON{d(w,adlo)<a} Vh (dw) ( ) lzes

Q d(w, al'y) ) -2
+/ — (1 + — L(dw).
ﬁﬂ{d(w,a@FO)ZQ} \/E \/E ( )

Here “<” means “< O(1) times”. The first integral in the last member is
equal to

d(@,0T)\ .
a2/ (1 -+ a—,) L(dw
d(,0T0)<1 Vh (i)

1
<o / L(d@) + avh 1
{d(@,0T0)< Y2y (12d(@,0r0)> 2} d(w,0T)

@

ga\/EvLa\/Eln%:a\/ﬁ(l—Hn%).

The second integral in the last member of @ is equal to

. 2
a 2/ ( ad(w,3F0)> .
—« 1+ —F= L(dw
Vh LON{d(@,0T0)>1} Vh (dw)

a3 h
< \/_ Lon{d(w,0r0)>1} & 2d(w, OT'y)?
1
<avhln—.
e

L(dw)

L(dw)
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Thus,

«Q 1 1
R < O)avh(l+In it In—) = O(1)avh(1l+In ﬁ)'

In conclusion, we have

1
R < h®W when —= > p~¢ 14+ 1In—),
< Sz g

and the estimate (@b gives spectral asymptotics, provided that 5 <6
and 7 is not too small so that In 1/7y does not grow faster than h~? for some
0<d—0.

Example 15.3.7 Let z, € 93 and assume for simplicity that p=!(zy) con-
sists of just one point pg, where

{p.{p.P}} # 0. (15.3.15)

dRp and dIp have to be colinear at the point py and in particular {p, p}(po) =
0. Without loss of generality, we may assume that

dp(po) = dRp(po) # 0. (15.3.16)

We may also assume for notational reasons that zy = 0. Since 0 belongs
to 0%, we see that one of the following holds:

1) Sp(p) > 0 for all p € (Rp)~1(0) N neigh (po)-
2) Sp(p) <0 for all p € (Rp)~1(0) Nneigh (po)-

We may assume, in order to fix the ideas, that we are in the first cage. We
then make the following generic assumption (which follows from
when n = 1).

Sp, ) has a nondegenerate minimum at py. (15.3.17)

(Rp)~1(0)Nneigh (po

Then for ¢ € neigh (0, R), Sp, (Rp)~1 () neigh (s0) has a nondegenerate minimum

at a point p(t) depending smoothly on ¢ with p(0) = py. We have

3p(p) — Sp(p(Rp(p))) = Ip — p(Rp(p))]? (15.3.18)

for p € neigh (po, T*X). If g(t) := Sp(p(t)), then near z = 0, X is given by
1m

Sz > g(Rz) (and from ) we see that ¢’(0) = 0).
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Near py the hypersurfaces (Rp)~'(¢) carry a natural Liouville measure
and the direct image of this measure under the map

(Rp) ™' (R2) = p = Sp(p)
is of the form
f(2)(Sz — g(%z))i_%d%z, where f > 0 is continuous,

since the Liouville measure of the set Sp(p) — Sp(p(R2)) < rin (Rp)~H(R=2)
is =< r"~1/2_ It follows that

p(dad€) = F(2)(S7 — g(R2))""2 L(dz) (15.3.19)

near z = (. Notice that when n = 1 the corresponding density tends to +o0
at the boundary of ¥ while in the case n > 2 it tends to 0.

We will compare R(I') and W(I") for small domains centered at points of
the boundary of ¥ and we may assume that ¢ = 0. Let ' = I'(«v) be the
domain

Ia)={z€C; |Rz| <2a, 0<Sz<a}, for Vh<a< 1. (15.3.20)
We have
W= / y"rdrdy < o™t (15.3.21)
oSu<a
We next look at R. Since the direct image measure vanishes in the lower
half-plane (near 0) we may restrict the attention to w = z + iy with y > 0.

Since our domains are symmetric around the imagainary axis it suffices to
consider the case x > 0. In the quarterplane x,y > 0 we have by %D

d(w,d0)\ ™
M) , when |z| < 2a, y < 2a,
Vh

)
G(w,T') < % (1 + ’y\;ﬁ&‘) , when 2a <y > z,

I

G(w,T) < (1 +

a (1 N |z — af
Vh Vh
The contribution to R from the region inside I' is bounded by a constant
times the contribution from the exterior region, so from now on we shall only
consider the contribution from the region z > 0, y > 0, max(x,y) > «. Fur-
ther, when n > 2, the contribution from the region y > max(«, ) dominates
the one from z > max(«, y), while for n = 1 the latter contribution is domi-
nant. When saying this, we tacitly restrict the attention to a neighborhood
2 of 0 and observe that the contribution from 2\ € is

O1)avh.

-2
G(w,T) < ) , when 2a <z > .
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Case 1: n =1. In this case

1
Rg// (1+x_0‘> y~ddrdy
20>z >max(o,y) \/E

—2
(07 r — 1
+ // — (1 + —) Yy 2dxdy.
max(2a,y)<z<1 \/E \/E

Here the first integral can be estimated by

-1
T — 1
Mo (57 s

alzl2a

[ (1) e

The second integral is equal to

)
(0% r— 1
— (1+ —) Yy~ 2dxdy
//0§y§2a§x§1 \/E ( \/E
—2
« r — 1
+ — |14+ — “2dxd
M@Syﬁmﬁl \/E < \/E > Y y

— % CVah [— (1 + x\;{‘)_l im + /2:\/5 [— <1 + x\;EOé)_l] 1y‘5dy

—1 1 -1
§a§(1+i> +a/ (1+y—a) y_%dy
\/E 2a \/ﬁ
1
5\/ah—|—a\/ﬁ/ y~2dy < Vah.
2c

Thus

R§m<1+ln(l+%>),

while W = o?/2.
We conclude in thi gsatsltedthat R < h(In %)W if @ > h2=°v/h. The scaling
argument in Chapter o] could lead to improvements.

Case 2: n > 2. In this case

-1
Yy—« _3
R< 1+ "2 dad
N/lazllir;gx(a,x) ( \/E > Yy xray

—2
! y— 3
—1—// — (1 + —> Yy 2dxdy.
max(2a,x)<y<1 \/E \/E
29
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In the domain of integration of the first integral, we have y < o, * < 2a, so
this integral is

2a _ -1 . 2a
< 200" 2 / (1 + %) dy < o 2vh {ln (1 + %)}

1 « 1 (0%
" 2vhIn 1+—> < avha?n (l—l——) :
( Vh Vh
where we used that n > 2 in the last estimate.
In the domain of integration of the second integral, we have

Yy —

Vh

1+

~
—~

Sl

so this integral is

/ / h 2y 2dyd$<oz\/_/ / ”_gdyd:r,ﬁa\/ﬁ,
max(2a,x) (2a,x)

since n — 5/2 > —1 in the case under consideration.
Thus,

«Q 1 1
R< 1+a§1n—) avh < ahzln—,
( vh h
and we compare this with @D It follows that if
hefln— <a™ Y2 0<i< 1, (15.3.22)

then
R < W,

so Theorem @] gives an asymptotic formula for the number of eigenvalues
in T’ when o < 1 fulfills (15-3:22

resi

15.4 Comparison of Theorem 1/and The-
orem 1.1 in TlT";l] and TﬁZ]

In the two papers we treated respectively the case of h pseudodifferential
operators on R" and of h differential operators on a smooth compact man-
ifold. The second work is a simple adaptation of the first so we refer to the
first one even though we shall compare with the result on manifolds. (The
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formulations are almost identical.) An extra assumption is those papers is
that

Ag(2)L(dz) = O(r*), 0<r <1, z€Q, (15.4.1)

D(z,r)

for some k €]0,1]. The class of random perturbations is the same there as
in this ch pler, excopt for the fact that some parameter ranges are slightly
wider in FTBT,_TBZ}_But depending on x. In the following we restrict the
attention to random perturbations as in the present chapter.

The mo 1.'5%teresti thing is probably to compare the right hand sides
of (1.14) in TST]Eand % To make things simple, let us notice that for
every 0; > 0 there exists do > 0 such that if &6 > e~"""? is as in Theorem
@, then with probability > 1 — O(1)e™" ", we have

\#@(Pa) AT) -

% (h—51/QG(w,F)A¢(w)L(dw)+|ar|h%>.

|
—vol (p™ ()| <
(2mh) ’ (15.4.2)

i08
Similarly in Theorem 1.1 in flllﬂ]g(and where I is a fixed domain with smooth
boundary), ¥é; > 0, 355 > 0 such that if 6 > e~ is as in that theorem,
then with probability > 1 — O(e~""), we have

'#wu%s) Ty -

K—01
ou) (h— +7+In <1> / A¢(w)L(dw)> , 0<r< 1.
h" r T ) Jor+p(o,r)

We neglect the factors h=%' and the log factor in dﬁ%{), (i%—ail) Then

we are reduced to comparing

1
—vol (p~!(I))| <
(2h) ' (15.4.3)

A= / G(w,T)AL(dw) + h2 (15.4.4)
Q
and I
B := inf (— +r+ F(r)) : (15.4.5)
0<rk1 T

Since I is a fixed domain with smooth boundary, the regularity assump-
tion after dg with x there equal to 0 (not to be confounded with
the x in (I5.41), (5.4, !),andbyﬁ%b

d(w, OT) ) -
Vh '

G(w,T) = O(1) (1 +
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Hence

A< O() (/0 (1 + #)1 dF(t) + hé> | (15.4.6)

Covering OI' + D(0,r) with =< 1/r discs of radius 2r and using (@D,

we get

F(r)= 00>, (15.4.7)

We end the section by a small calculation that indicates that A in gen-

eral is smaller than B ( %Shené; glgat Theorem is sharper than the
corresponding results 1nT§1 or that we assume in addition that

F(r) =r9, (15.4.8)

for some 0 < o > 2k — 1. Then

hz, ifa>1
p=", =" (15.4.9)
hett ) if a < 1.

The integral in d% is equal to
P\ -2
1+ —) / ( ) F(t)dt
1+ f g

hz, a<1
= 1 a a—-1 1
o hf(\/ig =hz, a>1,
neglecting a factor In(1/h) when o = 1. Thus,
h2, a>1
AT (15.4.10)
hz, a < 1.

Since k < 1, we have A < B when o > 1. From the inequalities 2k — 1 <
a > 0, we have

ak a
< 5
a+1 7 2
so A < B also when a < 1. (Recall that we have neglected a factor ln(l/h)
when a = 1.) This is a rather clear indication that Theoremy, [T5. yes a

better remainder estimate than the corresponding results in [[I31] TEZ
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Chapter 16

Proof I: upper bounds

16.1 Review of some calculus for h-pseudodifferential
operators

We recall some basic h-pseudodifferential calculus on ¢ npact manifolds,
] O%]é%ging some fractional powers in the spirit of R. Seeley [118]. Recall from
S3[ that if X C R™ is open, 0 < p < 1, m € R, then S'(X x R") =
S (X x R™) is defined to be the space of all a € C*°(X x R") such that

p,1—p
VK € X, a, f € N", there exists a constant C' = C'(K, «, 3), such that

0007 ax, &) < C(gmrIPH=All (5 €) € K x R™. (16.1.1)

When a(z, ) = a(z,&; h) depends on the additignal parameter h €]0, ho| for
some hg > 0, we say that a € S7"(X x R"), if (I6.1.1)) holds uniformly with
respect to h. For h-dependent symbols, we introduce Sg“k = h_kS;”. When
p = 1 it is customary to suppress the subscript p. We say that R = R}, :
E'(X) — C>(X) is negligible if [|¢ o Ry 0 ¥z yny < Cngph™ for all
o, € C(X), N € N. Ry, is negligible iff the distribution kernel Kg(z,y)
satisfies 8;“05[( r(z,y) = O(RY) for all a, 3, N uniformly on every compact
subset of X x X.

Let now X be a compact n-dimensional manifold. We say that R = R, :
D'(X) — C>(X) is negligible, and write R = 0, if the distribution-kernel
Ky satisfies 0507 Kg(x,y) = O(h™) for all o, € N™ (when expressed in
local coordinates).

We say that an operator P = P, : C*°(X) — D'(X) belongs to the space
L™k (X) if ¢o P, 01 is negligible for all ¢, 1 € C*°(X) with disjoint supports
and if for every choice of local coordinates i, ..., z,, defined on the open
subset X C X (that we view as a subset of R™), we have on X for every
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ue CP(X):

=

Pu(z) = (%T;mn//ei(x_y)'ea(x,e;h)u(y)dyd@ + Ku(z), (16.1.2)

where a € S™*(X x R") and K : £'(X) — C*(X) is negligible.
The correspondence P — a is not globally well-defined, but the various
local maps give rise to a bijection

L™F(X) /L™ YN (X)) — S™R (T X)) /SR (T X)), (16.1.3)

where we notice that S™(T*X) is well-defined in the natural way. The
image op(x,&) of P € L™k(X) is called the principal symbol.

Pseudodifferential operators in the above classes map C*° to C* and
extend to well-defined operators D'(X) — D'(X). They can therefore be
composed with each other: If P; € L™*i(X), for j = 1,2, then P, o P, €
Lrutm2kitk: - Noreover op,op, (7,€) = op, (z,&)op,(z, €).

We can invert elliptic operators: If P, € L™* is elliptic in the sense that
lop(x,&)| = Fh7F(€)™, then P, is invertible (either as a map on C* or on
D') for h > 0 small enough, and the inverse @ belongs to L=™7%. (If we
assume invertibility in the full range 0 < h < hg then the conclusion holds
in that range.) Notice that og(x,&) = 1/op(x,&) € S~k /§—m=L=k=1

The proof of these facts is a routine application of 18 Iggthod of station-
ary phase, following for instance the presentation in [HI]. See also Section

where we will consider a degenerate calculus.

Let _

WPR = (hDy)) rjs(x)hDs, (16.1.4)

be a non-negative elliptic operator with smooth h-independent coefficients
on X, where the star indicates that we take the adjoint with respect to some
fixed positive smooth density on X. Let r(z, ) be the principal symbol of R
in the classical sense, so that r(x,&) is a homogeneous polynomial in £ with
r(z,€) < |2, Then P := h2R belongs to L*°(X) and 0,,5 = r. It is a
self-adjoint operator: L?(X) — L*(X) with domain H?(X) and by standard

functional calculus, we can define the self-adjoint operators (1+h%R)*, s € R.

Proposition 16.1.1 For every s € R, we have (1 + h?R)* € L*° and the
principal symbol is given by (1 + r(x,§))*.

Proof. It suffices to show this for s sufficiently large negative. In that case
we have

~ 1 ~
(14 h*R)* = o (1+2)%(z — h*R) " 'dz, (16.1.5)

7T'Z,y
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where -~y is the oriented boundary of the sector arg (z + %) < m/4. For z € v
and more generally for z in the complement of the sector, we write

h

~ Z ~ o~ ~
(2 = h’R) = |2|(75; — I*R), h = |z|—1/2’

2]
and notice that % — h2R € L*° is elliptic when we regard & as the new
semi-classical parameter. By self-adjointness and positivity we know that
this operator is invertible, so ( — h?R)"! € L™29, and for every system of

local coordinates the symbol (111 the sense of ﬁ—pseudodifferential operators)
is

1
- 4a, aeS3L 16.1.6
2w Ho-L0)
The symbol of (z — h?R ) as an h-pseudodifferential operator is therefore
1 1 13 h
+ —alx,——;——= ] . 16.1.7
A @) T (o ) HO-LT)

Here the first term simplifies to (z — r(z,£))~! and the corresponding contri-
bution to has the symbol (1 + r(x

S
, .
The contribution from the remainder in % to the symbol in dﬁb

1 [(1+2) & h
blw,8) = 2m/ vr“@ﬂwWMW)“’

where we will use the estimate

a af 6 . h _ h 5 —3—18]
88|N’mwwwﬁ‘o(MMWﬂ%wﬁ (16.1.8)
= O(h) (|| + [¢[*) 726+,

18

Thus,
0200h = O(l)h/]z\s(lz\ - 1€[7) 00z, (16.1.9)
v

e In a region |£| = O(1), we get
0290 = O(h).

e In the region || > 1 shift the contour v in @ to t;le or%'ented

boundary of the sector arg (z + 1[£[*) < Z. Then we get for
the shifted contour and the integral can now be estimated by

(’)(h)/ #5735 dt = O(nle 1181,
el2/c
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all

e There is also the negligible part in (z — h?R)~! which by the same
scaling arguments satisfies 0507 K (x,y, z;h) = O((h/|z["/?)*) on the
level of distribution kernels. After integration of (1 4 z)°K along -,
this gives rise to a negligible operator.

The proposition follows. O

16.2 Sobolev spaces and multiplication

We let Hi(R") C S'(R"™), s € R, denote the semiclassical Sobolev space of
order s equipped with the norm ||(hD)%u|| where norms without subscripts
are the ones in L?, ¢? or the corresponding operator norms if nothing else is
indicated. Here (hD) = (1 + (hD)?)'/2. Let u(§) = [ e “*u(z)dx denote
the Fourier transform of the tempered distribution u on R”.

Proposition 16.2.1 Let s > n/2. Then there exists a constant C' = C(s)
such that for all u,v € H(R"), we have v € L*(R"™), wv € H;(R") and

lull e < Ch™"2|Jul

H: (16.2.1)

lwvll g < Ch™ ||z 0| a5 - (16.2.2)

Proof. The fact that u € L* and the estimate @ follow from Fourier’s
inversion formula and the Cauchy-Schwartz inequality:

1
)"

It then suffices to use that ||(h-)~%| = C(s)h /2.
In order to prove we pass to the Fourier transform side, and see

that it suffices to show that

[ (eI < )l

ju(z)] <

Hs-

/<h£>sw(§)(<h~>sﬁ* (h)=0)(€)de < C()h™ 2 [all[[@llflwll,  (16.2.3)

for all non-negative @, v, w € L?, where * denotes convolution. Here the left
hand side can be written

T
//n%:5 (hn)* (hC)* (&)u(n)o(¢)ded¢ < T+ 11,
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al2

where I, IT denote the corresponding integrals over the sets {|n| > |¢|/2} and
{I¢] > |€]|/2} respectively. Here

1< o) [(fuiete- <d£><(§>) ac

C(s)llwl [l

< —||L1.
(h-)®
As in the proof of l%%l we see that |75 ||L1 < CO(s)h2||7]|, so 1 is
bounded by, a constant times h~z||u|||7| ||w|| The same estimate holds for
IT and follows. O

Let X be a compact n-dimensional manifold. We cover X by finitely
many coordinate neighborhoods Mj, ..., M), and for each M;, we let zy, ..., z,,
denote the corresponding local coordinates on AM;. Let 0 < x; € C5°(M,;)
have the property that > ¥ x; > 0 on X. Define Hj(X) to be the space of
all u € D'(X) such that

p
lullzz: == D s (hD) x;ull® < oe. (16.2.4)

1
It is standard to show that this definition does not depend on the choice of the
coordinate neighbagrhoods or on x;. With different choices of these quantities
we get norms in which are uniformly equivalent when h — 0. In fact,
this follows from the h-pseudodifferential calculus on manifolds with symbols
in the Hormander space ST, given in Section . An equivalent definition
of Hi(X) is the following: We saw in Section that (1 + h2R)*/? is an
h-pseudodifferential operator with symbol in S ; and semiclassical principal
symbol given by (1 +7(z,€))*2, where r(z,&) = Y., 7i1(2)&;& is the semi-
classical principal symbol of h2R. Proposition @ shows that for every
seR:

Proposition 16.2.2 H}(X) is the space of all u € D'(X) such that (1 +
h*R)*?u € L* and the norm ||ul|gs is equivalent to ||(1+h? R)*/ul|, uniformly
when h — 0.

Let (u0)%, k = 1,2, ... with 42 > 0 be the eigenvalues of R repeated ac-
cording to their mult1p11c1ty and let €1, €, ... be a corresponding orthonormal
basis of eigenfunctions. It follows from the basic Weyl asymp Eéc% ior elliptic
self-adjoint operators on compact manifolds (see for instance [HI] and further
references given there) that

#{k; pp < A} =< A",
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uniformly for 0 < h < 1, A > 1. If u € D'(X), we have

U= Zakek, ar = (uleg),

where the sequence of oy is of temperate growth_and the series converges in
the sense of distributions. From Proposition we see that v € Hj iff
S~ {ux)? is finite and

iy = > (pun) e,

uniformly with respect to h. Here py, := hul so that u? are the eigenvalues

of h?R.

al3 %;mark 16.2.3 From the first definition of H; we see that Proposition

ald

remains valid if we replace R™ by a compact n-dimensional manifold
X.

Of course, H}(X) coincides with the standard Sobolev space H*(X) =
H$(X) and the norms are equivalent for each fixed value of h. We have the
following variant of Proposition

Proposition 16.2.4 Let s > n/2. Then there exists a constant C = Cys > 0
such that

[wollm; < Cllul

vllgs, Yu € H*(R"), v e Hy(R"). (16.2.5)

HS
The result remains valid if we replace R"™ by X.

Proof. The adaptation to the case of a compact manifold is immediate by
working in local coordinates, so it is enough to prove (%D in the R"-case.

Let x € C5°(R") be equal to one in a neighborhood of 0. Write u = u;+us
with u; = x(hD)u, us = (1 — x(hD))u. Then, with hats indicating Fourier
transforms, we have

S RT3 " -
(T = T [ iy (WH(E = m)lE =) ) Tl

Here (h&)/(hn) = O(1) on the support of (£,n) — x(h(§ —n)), so

lurvllsy < O@)[ulllloll; < O@)|ullas [0l

where we also used that s > n/2 in the last estimate.

On the other hand, (h§)% < Ch*(£)® when 1 — x(h§) # 0, so [[uglm: <
Ch*||u||gs. By Proposition | we get

||u2v| Hi S Ch_%HU2| Hf U‘ H? S 5’hs_%||u| Hs Ul H; S 6||U| Hs U| H
when h < 1. O
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16.3 Bounds on small singular values and de-
terminants in the unperturbed case

:Eet % be a compact manifold, let P be of the form @ and let p in

upc

be the corresponding semi-classical symbol. Recall that the spectral
parameter z varies in the open simply connected set 2 € C™ with smooth
boundary and that 2 contains a point, 2o which is not in the image of p. We
can (cf. the proof of Proposition % construct a symbol ﬁ e S™MT*X)
which is equal to p outside any fixed given neighborhood of p~(Q) such that
p(p) — z is non-vanishing for every z € Q. Indeed, there is a smooth map
k:C\ {20} = C\ {2} such that kK(C\ {2}) NQ = 0 and x(z) = z for |2|
large. It then suffices to put p = K o p. Let P=P+ Op,,(p — p) where we
use the h-quantization in Section
Using the h-pseudodifferential calculus, we see that for A > 0 small

enough, B
P—z:HMX)— H'(X) (16.3.1)

is bijective for all z € Q with a uniformly bounded inverse. Put

P.=(P—2)Y(P-z))=1—(P—2z2)"(P-P). (16.3.2)

Notice that P — P = Op,(p — p) is a smoothing operator of t ago CB&
C1(L?, L?) with the corresponding trace class norm = O(h™") (see fm 40

In this section we shall estimate the number of small singular values of P — z
and P, and obtain closely related upper bounds on In | det P,|. We introduce

the operator
S=(P—2z2)*P-2). (16.3.3)

(Later on we shall use the same symbol for a closely related bounded opera-
tor.)

In order to do so, we shall develop a slightly degenerate pseudodifferential
calculus. Let h < a < 1. A basic weight function in our calculus will be

1
= (?Ij) , where s(p) = [p(p) — 2%, (16.3.4)

and we see that /a/2 < A < 1.

Consider first symbol properties of 1 + 2 and its powers.

Proposition 16.3.1 For every choice of local coordinates x on X, let (x,§)
denote the corresponding canonical coordinates on T*X. Then for all{ € R,
a, B € N, we have uniformly in & and locally uniformly in x:

90001+ 2)5 — oM+ g)m—l&l—lﬁu@—lﬁl. (16.3.5)
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S

Proof. In the region || > 1 we see that (1 + £) is an elliptic element of
the Hormander symbol class

a~fSH = S (™),

and A =< 1 there, so (@ holds. In the reglon €] = O(1), we start with
the case £ = 1. Since s > 0, we have Vs = O(s2), s0

V(1+2) = 0(5) £OM) 1+ 2)a+s) =01+ DA,

For k£ > 2, we have

VHI+ D)= 0() = o)1+ DA <o+ DAt

and we get @ when ¢ = 1.

If £ € R, then 00‘86 (14 £)"is a finite linear combination of terms
(L4 2) 000 (14 2)) - (0702 (1 + 2),

with a =a; + ... + ag, =01+ ... + B, and we get @ in general. O
We next notice that when w = O(1),

R

S S
. — (14 = )<|w_5|§0(1+5)‘ (16.3.6)

In fact, the second inequality is obvious, and so is the first one, when 2 > 1.
When 2 < O(1), it follows from the fact that

1+ 2 =001), |Jw-2]>|Su
Q Q
From (ﬁ%[}, G%D, we get
9592 (w — )| < O1)(w — Z)A~TE=181 () =181 Sy 1 16.3.7 8
050w — ) < 0w - 2) (&) Swl (16.3.7) [wpc.8]
When passing to (w — —) and applying the proof of Proposition ﬁL we

loose more powers of |Jw| which can still be counted precisely, but we refrain
from doing so and simply state the following result:

Proposition 16.3.2 For all ¢/ € R, a,8 € N", there exists J € N, such
that

9200 (w— 2) = 0(1)(1 + g)m-\al—lﬁ\<5>—Iﬁ\\%w\—J, (16.3.8)

(07

uniformly in & and locally uniformly in x.
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We next define some new symbol spaces.

Definition 16.3.3 Let m(x, ) be a weight function of the form m(x,§&) =
(E)*AL. We say that the family a = a,, € C*(T*X), w € D(0,C), belongs to
Sa(m) if for all a, B € N™ there exists J € N such that

0297 a = O(1)i(x, &) A1)~ Sw| . (16.3.9)

Here, as in Proposition %L it is understood that the estimate is ex-
pressed in canonical coordinates and is locally uniform in x and uniform in
¢. Notice that the set of estimates @D is invariant under changes of local
coordinates in X.

Let U C X be a coordinate neighborhood that we shall view as a subset
of R™ in the natura way. Let a € S\(T*U, m) be a symbol as in Definition
% so that holds uniformly in ¢ and locally uniformly in x. For
fixed values of o, w the symbol a belongs to Sfo(T*U), so the classical h-
quantization

Au = Opy,(a)u( 27rh // @=9nq(x,n; h)u(y)dydy  (16.3.10)

is a well-defined operator C3°(U) — C>*(U), &'(U) — D'(U). In order
to develop our rudimentary calculus on X we first establish a pseudolocal
property for the distribution kernel K 4(x,y):

Proposition 16.3.4 For all o, € N", N € N, there exists M € N such
that N
O20) K a(x,y) = O(hN|Sw|™), (16.3.11)

locally uniformly on U x U \ diag(U x U).

Proof. If v € N", then (z — y)"Ka(x,y) is the distribution kernel of
Il

Oph((—hDg)M) and (—hD¢)Ya € Sy (m <A<£>> ) By the observation af-

ter (T837), h/A < h/a} < v/2h%. Thus for any N € N, there exists M € N
such that

(z —y) Ka(z,y) = ON|Sw|~™) if |[y] > y(N)

is large enough. From this we get @ when o = 6 = 0. Now, 827(?5KA
can be viewed as the distribution kernel of a new pseudodifferential operator
of the same kind, so we get for all o, 3. O

This means that if ¢,9 € C§°(U) have disjoint supports, then for every
N € N, there exists M € N such that pAv : H-V(R") — HY(R") with
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norm O(h"Y|Sw|™), and this leads to a simple way of introducing pseudo-
differential operators on X: Let Uy, ..., Us be coordinate neighborhoods that
cover X. Let x; € C§°(U,) form a partition of unity and let x; € C3°(U;)
satisfy x; < X; in the sense that X; is equal to 1 near supp (x;). Let a =
(a,...,as), where a; € Sy(m). Then we quantize a by the formula:

A= "X;o0O0p,(aj)ox;. (16.3.12)
1

This is not an invariant quantization procedure but it will suffice for our
purposes.

We next study the composition to the left with non-exotic pseudodiffer-
ential operators. Let U = U; be one of the above coordinate neighborhoods,
viewed as an open set in R", and take A = Op,(a), a € S10(my), m1 = (£)",
B = Op,(b), b € Sy(my) with my = (£)*A’ as in Definition . We will
assume that supp (b) C K x R", where K C U is compact. We are interested
inC=Ao0B.

The symbol ¢ of this composition is given by

c(x,&h) =€ h“A( ,€)en ) (z)
" (16.3.13)
// a(z, n)b(y, &)er ¥ 1= dydny

In the region |n — &| > 5(5) we can make repeated integrations by parts
in the y-variables and see that the contribution from this region is a symbol
d(x,&; h) satistying

VN € N,a,5 € N",dM € N,VK € U,3C > 0;

hgi)yMN’ ©.6) € K x R™ (16.3.14)

27rh

0507 d(x, & h)| < C

1

Up to such a term d, we may assume that with x € C§°(B(0, 35)) equal

to 1 near 0,

1=E\ i) -9
. L

(%h) // )+ %))b(l’ +y, O)x(n)e ¥ dydn,

(16.3.15)

GrSj94, DiSj99

We shall apply the method of stationary phase (see for instance [HI; 40])
and pause to recall some facts for the expansion of the integral

J(t,u) = ﬁ // u(y,n)e’%y'"dydn, u € S(R™).
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Here the exponent is of the form
A (y\ (v
21 (n) (n) ’

Q= (_01 _01)-

5,194
Then (cf (2.3) and Proposition 2.3 in H;B%]l)_vve know that

where

J(t,u) = u(0), t — 0.

We also know that with F : L2(R*") — L*(R?") denoting the Fourier trans-

form,
1 i s,k %
F YN P W 17 T ]

so we can apply Plancherel’s formula and write

J(t /]—"uyn Ve dy* dn
(tD 0,)(u)(0,0).

By Taylor’s formula with integral remainder, we have

N-1 i

J(t,@:Z%(an D,)Fu(0,0) + Ry

0

where
RN:tNﬁ/O (1= $)¥J((D, - D,)Vu)(st)ds.

Applying this to the last expression in @D with ¢t = h/(&), we get

c(z, &) Z 7 aﬁ DPb+ Ry. (16.3.16)

IBl<N

Here,

(16.3.17)

13
e + y7s>x<n>>) i,

307

h N
J (t@, (877 ) Dy) (a(xa <§>(77 +



By Plancherel’s formula we have

Jewl<c Y 150l
|al+|8l<2n+1
Indeed, |Fu(y*n*)| is bounded by O(1){y*|n*)~?"~1) times the sum in the

right hand side. Thus, we see that there exist exponents N,, N3 independent
of N, such that

‘RN'SC(%) (€€ o ¥ |G| M),

Similar estimates hold for the derivatives and using that N can be chosen
arbitrarily large and that o > h'/2, we conclude:

Proposition 16.3.5 Let A = Opg(a), a € Sio(my), my = (§)", B =
Op,(b), b € Sa(my), my = (E)*A and assume that b has uniformly com-
pact support in x. Then Ao B = Op,(c), where ¢ belongs to Sy(myms) and
has the asymptotic expansion

¢~ Z—aﬁ a(x, €)D2b(x, €),

in the sense that for every N € N,

c= Z aﬁ (2,€)DPb(x, &) + ry(x, & h),

IB\<N

where ry € SA(%hN)

We next make a parametrix construction for w — éS , still with S as in
, and most of the work will take place in a coordinate neighborhood
U, viewed as an open set in R™. The symbol of w — éS is of the form

1 h o om_1
F = F() + F_l, FO =w — ES, F_1 == 58_1 € S(a<§> ) (16318)

Put
1 o

Ey = m € SA(W) (16'3'19)

With Proposition @ in mind, we first consider the formal composition

Fiby~ Y 0P (D2

(16.3.20)

~1E DY n —— (0 Fy) (D} Eo) + F_14Ey.
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Here,

h om_1 « B h
F—lﬁEO € SA(E<§> A2<§>2m) - SA<A2<§>)
Since Fy also belongs to Sy(+A%(£)*™), we see that for || > 1,
BBl h
Bl(ob B
W0, Fo) (DS Ey) € SA(W(@W) C SA(A2<§>)?
and this can be improved for |3 > 2, using that F' € Sy o(Z(£)*™). Hence,
h
FﬁEO =14r, rn € SA(A2<S>)
Now put
ha
El = EO — rl/(w - S/CK) = EQ mod <SA<W)) (16321)

Then by the same estimates with an extra power of hA=2(£)7!, we get

h
FﬁEl =1 + 79, T2 € SA((A2<§> )2)7
and iterating the procedure we get
1 Q@ h
EN = w——i mod SA(WAQ—@)’ (16322)
such that h
FiEx =147y, Ty € SA((A2<€>)N+1). (16.3.23)

Actually, in this construction we can work with finite sums instead of asymp-
totic ones and then

Ey is a holomorphic function of w, for |{] > C, (16.3.24)

where C' is independent of N. In fact, in order to make this remark more
explicit we prefer to replace w by z = aw and write

(z—9)" = é(w _alg) .

Start with a 'Ey = (2 — s)_l on the level of symbols and consider

1 h\l

aﬁ s+ hs_ 1)Dﬁ<

). (16.3.25)
o1 P -
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The right hand side can be written in the general form,

s Ols O hs_y 0% hs_y

ze5 £ g7
ZZ > Chan h'ﬂ'\z 7o a5 " aes (16.3.26)

k>0 yitept
€20 §1+.4+6p=(8,8) RS A

where

1) If E = 0 or £ = 0, the corresponding factor I' or A is equal to 1 by
definition,

2) v, #0for 1 <j <k,
3) The term with =0,/ =01is = 1.

4) Only finitely many values of ¢ are present for each § (actually ¢ = 0,1,
to start with).

Writing v; = (7.2, 7j¢) and similarly for §; we see that the general term
in belongs to the symbol class

Al ATl h<£>*1*51,§ h<§>*1*5e,§
Sa (h|5| GG T A )

= S\ (hﬁl(%)zAl'ﬂ--%I<§>vl,gl..%5||al,§|..5M|z)

s ((AQL@)/MZ)’

where we used that |y |+ ...+ |7k < 2|6], Yie+ o+ Voe+ 1+ ... +dpe = B
Now assume that for some N € {1,2,..} we have found a finite sum
0es Os Ochs_y Oytchs_y

(17

_EN—

Y

—s z2—8 z—s8  z—35§

(16.3.27)
satisfying 1) — 4), such that
1 1
(w— aS)ijN = (z — S)ﬁaEN =1+ Ry, (16.3.28)

where Ry is of the form w with the additional restriction that |3|4¢ >
N. Let Ry n+1 be the sum of the terms in Ry with |5]+¢ = N + 1 and put
éEN-H = éEN - z_isRN’N'H‘ Then we get

1
(z — S)jjaENH =1+ Ry1, (16.3.29)
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where Ry is of the form with |5+ ¢ > N + 1. The symbol ry of
Ry is therefore as in (16.3.23)).

Without | 05, of generality, we may assume that Ey in (@D coincides
with Ey in (16.3.28).

Now we return to the manifold situation and denote by F ]\J,'), TN the
corresponding symbols on T*U;, constructed above. Denote the operators
by the same symbols, and put on the operator level:

Ex =Y XE, (16.3.30)

j=1

with x;, X; as in (@ Then

s

1
(w— aS)EN =1- Z S, XJ]EJ(\JI X5+ ZXJTN Xi

= 11 , = (16.3.31)
=1+ Rg\,) + REV)
=1+ RN.

Proposition [I6.3.4 - Phes that for every N, there exists an M such that the

trace class norm of R’ satisfies

IR e < OBN |Sw] ). (16.3.32)

As for the trace class norm of RE\Q,), we review some facts about such
norms for pseudodifferential operators:

If A= a(x,D) is a pseudodifferential operator on R", either in the Weyl
or in the classical quantization, then A is of trace class and we have

|Ale < C / / S 107 calduds,

[Bl<2n+1

provided that the integral is finite. In that case we also know that

tr(A) = a(x,&)dxdé.

087 15199 _ _
See Robert %_TS], and also %U}lfﬁr a sharper statement. Now an h-pseudodifferential

operator A = a(x, hD) is unitarily equivalent to A= a(héf, h%Dg), SO

1

[Ale<c [ S 0 alht @.6))didE

|8]<2n+1
:%// S [(h20,¢) aldude.
[B]<2n+1
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Now, let a € Sy(m) be a symbol on T*U with uniformly compact support
in z. Then for || < 2n + 1, we have

18]
2

h
W7o’ a=0(l)m (—) |Sw| M),
’ «
Thus there exists M > 0 such that a(x, hD,) is of trace class and

o@D} < Ch [[ (e, )duds [Sul ¥, (16.3.33)
UxR™
provided that the integral_converges.
From 3.31)), (16.3.23)), we now get

h N
(2) < —n|Cx,,,|—M(N)
171 < ot ) [[ () asde

and @D then shows that we have the same estimate for Ry:

N
| Ry lee < Ch™™|Saw|~ M) // (AQL(@) dxdg. (16.3.34)

The contribution to this expression from the region where A > 1/C is
O(RN=")|Sw| =MWV,
For 0 <t <1, we put

V(t) = // dede, 0<t< 1. (16.3.35)

This is an increasing function of ¢ and we notice that since we have started
with a differential operator P,

V(0) = 0. (16.3.36)
For N > 0, put
1 ¢ 1/«
V() = / (1+—=)Ndv(t) = / (1+7)"NdV(ar) (16.3.37)
0 o 0
The contribution to the integral in from the region 0 < s <1 is
equal to
1 h N h N
O(1 — ) dVit)=(—-)] V 16.3.38
o[ () veo=(%) v (16:3.39)
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Remark 16.3.6 The choice of 1 as the upper bound of integration was some-
what arbitrary. If we replace it by a fixed constant 6 €]0, 1], then Vi changes
by a quantity which is O(1)a™ (V (1) — V(0)).

The contribution to from the region s(x,&) > 1 is O(h™?) times

some negative power of |Sw| for every Ny. In conclusion, we have

Proposition 16.3.7 We have for all N,N >0,

N ~
Byl < O(1)R™" ((g) Vv (a) + hN> | S| M) (16.3.39)

From dﬁb, we get
1 1
(w — aS)_l = EN — (U] — ES)_lRN.

Quantize and use the functional Cauchy-Riemann form aq .%%metimes car-
rying the names of Dynkin and/or Helffer-Sjostrand, cf. [40]):

1 1 [ 0% 1.
—S)=—1 [ —=(w—— L(d 16.3.4
8 =2 [ R —5) " L(dw) (16340
where x € C§°(R) and Y € C§°(C) is an almost holomorphic extension. We
get
1 1 [Ox 1 [Ox 1

_ —_ = — — — — -1 3
X<aS) - 8@ENL(dw) + am(w aS) Ry L(dw) =: T+ 1L
(16.3.41)

From (ii %.g.%g), (f%[) and the fact that 0y /0w is in C§° and vanishes

to infinite order on the real axis, we get

Il = O(DR™ ((g)N Viv(a) + hﬁ) |

It elglains to study the term I and for that we return to the expression
(% for (the symbol of) Ey (in local coordinates). Here z = aw and we

get
1 O (L) 9 (2) 851(23_1) 858(23_1)
Exn = ClsshlP! > . & & .. &
a B k>0 Y1+t a [e] «@ «@

S1+..+6,=(8,8)
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The contribution from the general term to the symbol of I is

Csrs [ OX(w) 1 18] oy (S e (S 981 ﬁ ) E
- oo (w §)1+k+él’<dw)h 0 (a)...a (a)a (—s.1)...0°%(—s_1)
_ (k) (S\plBl g (S e (90 E d¢ E
= Cpr6X (—)h"lo (a)..ﬁ (a)ﬁ (—5_.1)...0°%(—s_1).

(16.3.42)

When 3 =0, £ =0, we have Cg, 5 = 1 and we get x(2). For every N € N,
the general term belongs to the symbol class

A2 —N+k h|/3| B l
S (E) AP+l (5) '
Here, we notice that |yi| + .|| <.2|8] and since b < a, A > a'/? we
conclude that the general term ([I6.3.42)) belongs to

@7 =(7)

The trace class norm of the contribution from @ to I is bounded

by
O(1)h™" (g) o /0 1 (1 + i) e AV (t)

<O@)h™ <ﬁ>|ﬁ+f Viva(a@),

«

where we used that N can be chosen > 2k. B
Summing up we have proved that for all N, N > 0,

Proposition 16.3.8 Let y € C°(R). For 0 < h < o < 1/2, we have

IX(S)lle = OWA™ (Vir(a) + 1Y), (16.3.43)

() = (27T1h)n / / X(S(zg))dxngr(’)(h‘")g(VN(a)+hﬁ). (16.3.44)

Remark 16.3.9 (] %]3 simple h-pseudodifferential calculus (for instance as
in the appendix of [I32], we see that if we redefine S as follows

S=PP, (16.3.45)
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then in each local coordinate chart, S = Op(S), where S = smod Sy o(h{£)™!)
and s is now redefined as

_ ’p(fE, S) B Z| ?
s(z,€) = (—Uﬁ(x,f) — Z|> . (16.3.46)

The discussion goes through without any changes (now with m = 0) and we
still have Propositionwith the new choice of S, s and the corresponding
redefinition of V(¢), now restricted to 0 < ¢ < 1/2. Notice here that if Ve
denotes this new function, then for some C' > 1, we have

1 t
SV(2) < Viewlt) SCV(CH, 01 < 1.
npc 35 5 mhpc 36

In the remainder of this section, we choose S, s as in (16.3.49]), (16.3.46)).
In this case S is a trace class perturbation of the identity, whose symbol is
14 O(h™/{£)>) and similarly for all its derivatives, in a region |[¢| > Const.
Let 0 < x € C7([0, oof) with x(0) > 0 and let ap > 0 be smpall and fixed.
From standard pseudodlfferentlal calculus in the spirit of TUS]_W€ know that

1
Indet(S + aox(a—OS)) =

In(s + aox(aios))da:df + O(h)).

(16.3.47)
Extend x to be an element of Cg°(R; C) in such a way that ¢ + x(t) # 0
for all ¢ € R. Then (cf 55]l)_we use that

E

LoEy, (16.3.48)

d 1n(E+tX<f)) (i

dt
where B\ — EV/(E
H(E) = X(E)— X(E)
+ X(E)
so that ¢ € C§°(R). By standard functional calculus for self-adjoint opera-
tors and the classical identity

d . d
= In(det A;) = tr A, IEA::

(16.3.49)

for differentiable trace class perturbations of the identityf’, we have

d S S
S indet(s + x(2) = 7o), (16.3.50)

20~ et
1 (El?i i ex%ends to the case when Ay and A are trace class operators as in Section@*

and the identity is valid for finite rank perturbations of the identity. By Taylor expansion
and partitions of unity we can approximate a C! family A; of trace class perturbations

of the identity with a sequence of such perturbations A,EV) such that Ai”) — A; uniformly
in ¢y and similarly for the derlvatlves (on any given compact interval) and such that

N(Aﬁ”)) UR(A; () H®) where H®) is independent of ¢ and of finite dimension. It then
suffices to pass to the limit.
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Using (now with S as in that equation), we get fort >a>h>0:

%hmlet(SHX(llf %h (// —(= d:cd§+(’)( ) ()+(9(hN)>

hpc 37 hipc 39
Integrating this from t = ag to t = « and using (16.3.47)), (16.3.48)), we get

lndet(S + ax(L8)) =
) " (16.3.51)
1 S h
W <// hl(S + OéX(a))dQJdg + O(h +/a t—2V(t>dt>> .

In fact, this follows from an estimation of:

/:Ot%vN Bt = /h/ 1+ V(s)dt
:/OJ( V(s),

ag N ao/s N _ _
J(s) :/ ﬁt—olt: ﬁ/ " Feg
o 2(t+s)N S Jass (E+ 1N

Considering separately the three cases, a/s > 1, a/s < 1, a/s < 1, we see
that

(16.3.52)

where

h
J(s) =
max(«, s)
Thus the term (% is
! h h Lh
= —d =-V(1 — d
| ax(as) V(s) 1V( )+ ) SQV(S) s

and (ﬁ[} follows.

Write

//m (2.6) + o (2D ) e — //lnsxfdxd£
:/0 //;zb(;)dxdgdt:/o /0 L %)av (o)
< o(1) /Oa /01(1+ %)NdV(a)% _ O(l)/oa%VN(t)dt

Here we may notice that for ¢t < 1/2:

Vn(t) = /O (1+ %)_NdV(a) > /0 (1+ %)_NdV(a) > 27NV (1),

Combining the above computation with @, we get
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Proposition 16.3.10 If 0 < x € C5°([0,00]), x(0) > 0, we have uniformly
for0<h<axl1

lndet(S + ax(ls» _

Ins(x,&)dzdé + O(1 )(h-I—/ Vi (t )dt /ao EV( )Cit»

(16.3.53)

16.4 Subharmonicity and symplectic volume

Recall that P, is defined by @ and has the semi-classical principal
symbol

p-(p) = (plp) — 2) " (p—2), z € .

In section %] we encountered the function

_ //m 1p. (2, )| dudg = %//lnsz(x,§)dxd§. (16.4.1)

We also considered the function
Vt)=V,.(t) = // dxd§, (16.4.2)
p(x,&)—2]2<t

and the closely related one

= / / dzde, (16.4.3)
Ip (@ &)2<t

These two functions will be used only for small values of ¢ and they are
equivalent in the sense that

1 t
V.
C <C
for some C' > 1.
For x €]0, 1] consider the property that

) < V.(t) < CVL(CL), 0<t<1/C, z€Q, (16.4.4)

V.(t) = Ot"), 0 <t < 1. (16.4.5)

recall that 2m is the order of the elliptic differential operator P.

Proposition 16.4.1 @ holds uniformly for z € Q when r = 3.
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sh2

Proof. Because of the ellipticity , the set of points where |p(z,§) —z| < 11s
contained in a fixed compact set in 7% X, independent of z, that we can cover
by finitely many sets of the form T*Uj, j = 1,2,..., Ny, where U; are local
coordinates charts that we can identify with open bounded subsets of R".
On each such T*U; we know that &, — p(z, ) — z is a polynomial of degree
2m with leading term a;(x)&2™, a;(x) # 0. By the standard factorization of
this polynomial;

p(x,§) — 2z = a;(z)(& — M (2,8, 2))e (6 — Aam(2, €, 2)),
we see that
L({& € R; [p(z,€) — 2| < 1'%}) = O(1)tan
uniformly for z € U;, £ € R"!, where now L denotes the Lebesgue measure
on the real line. The result then follows from Fubini’s theorem. O

Proposition 16.4.2 The function ¢(z), defined in (@ s continuous
and subharmonic on ). Moreover,
Ag(2)
2
where the right hand side is defined to be the direct image under the symbol
map: T*X > (x,§) — p(x,&) € C of the symplectic volume element dxd§
(that we also denote dp, p = (z,£)).

Proof. The property (16.4,5) for some £ > 0 (here with x = 1/(2m))
implies that the integral (T6.4.1)) converges. Moreover, with 0 < x € C§°(R),

x(0) >0,
) = lim — //lnszx§+ax(
a—0 2

where the convergence is locally uniform, so that ¢
limit of continuous functions and hence continuous.

Next p.(p) = (p(p) — 2)"H(p(p) — z), where the first factor is holomorphic
and non-vanishing for z € €2, so

Az In|p.(p)| = Az Inp(p) — 2| = 2m0(z — p(p)).
If ¢ € C§°(Q), we get

JdeoneeL) = [ oam)L@)

- / / In [, (p)| A (=) L(d=)dp = / / A (In p.(p)|)eb(=) L(d=)dp
T*X JC T*X JC
g / N /C 5(= — p(p))(2)L(d=)dp = 2r / $(p(p))dp.

T*X

L(dz) = p.(dzdf), (16.4.6)

&

s:(2,§)

))dad,

Q

/\

z) is the locally uniform
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which shows . O

16.5 Extension of the bounds to the perturbed

case
For s > n/2, we consider the perturbed operator
Ps=P+6(h2qi+q) =P +6(Q1+Qs) = P +6Q, (16.5.1)

where ¢; € H*(X),

ol <1, llgallms <1, 0 <0< 1. (16.5.2)

According to Propositions @, , Q = O(1) : H — H; and hence by

duality and interpolation,
Q=0(1):H] - H], —s<o<s. (16.5.3)

Let Py = Here (P—2)"' = O(1) : HS — HS for —s < o < s
and using (ﬁ'ﬁS 1 (ﬁ'ﬁSBD and the fact that 0 < 5 < 1, we get the same
conclusion for, (P5 — 2)71. The spectrum of Ps in € is discrete and from
Remark it follows that it coincides with the set of zeros of

det((Ps — 2) "} (Ps — 2)) = det(1 — (P; — z)"Y(P — P)), (16.5.4)
Put

P.i=(P—2) (Py—2)=1—(Bs—2)"(P-—P)=1-K;., (165.5)

S(g = (P(; - Z)*(P(; - Z), (1656)

5572 = P(;ZP&Z =1- (K&Z -+ KS:Z — K;;’ZK(;’Z) =:1- L(g,z. (1657)
Then

K&Z, L57z = 0(1) : Hh_s — H]i (1658)

Observe that
1Ks -l < (P = 2) 7 P = Pllw < O(™™), |[Ls:lle < O(R7"). (16.5.9)
We shall extend Proposition , Remarkand Proposition

to the perturbed case for 6 > 0 small enough.
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As in Proposition , let x € C5°([0,400[) and let Y € C§°(C) be an
almost holomorphic extension of y. Then, working in the parameter range
0 < h<a<1, wehave

™ (0%

wats) = [(w =507 @) L) (16.5.10)

This is not obviously of trace class for all values of s, n, m, so we make a
modification: We can find 0 < ¢ € C§°(T*X) such that

€)= 2 + 9(.8) 2 (&P, on T'X

for all z € Q. Let ¥ = 9(z, hD,) denote also a corresponding self-adjoint
quantization. Then for h > 0 small enough,

(P—2)'(P—2)+ ¢ > é(hD)Qm.
Now,

Ss = Sy +6Q* (P — 2) + (P — 2)"0Q + 6°Q*Q, (16.5.11)

so for §, h small enough, we get

1
> m

In particular, (Ss+1 —w) ™! exists and is uniformly bounded for w in a small
neighborhood of 0 € C. On the other hand,
(w—S5)" = (w—(Ss+¢))" — (w—Ss) p(w— (Ss +1))"*. (16.5.12)
D 0
When inserting this in the first term gives the contribution zero
since it is holomorphic in a neighborhood of 0, and we get
1 1 1 a1 w
x(a™ Ss) = - (w—=S5)"¥(w— (S5 +¢)) a(@x)(a)L(dw), (16.5.13)

which is of trace class, since 1 is.
Differentiating this relation with respect to d, we get

0

%X(OFIS(;) =

o [ =SS5 = 8 ow - (S 4+6) @R Lidw

2 [ = S o = (S5 0) Suw — (S5 +9) S O (L),
(16.5.14)
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where
. 0
Ss = %55 =Q(P—2)+(P—2)'Q+20Q*"Q =0(1) : HT™ — H] ™.
From m it follows that S5 = Sy + R, where R = O(§) : H™™ —
H7™™, —s <o <s. If wy belongs to some compact set in C that is disjoint
from R it follows that for § small enough, wy — S5 : Hyt™ — H; ™™ is
bijective for —s < ¢ < s. In fact,
wy — S5 = wo — Sy — R = (wo — So)(1 — (wo — 50)713)7

and we see that (wg — Sp)™' = O(1) : Hy™™ — HJ™, so (wg — Sp) 'R =
O(0) : H7™™ — H7™™ and hence

('LU[) — 55)71 = (1 — (U)o — Sg)ilR)il(wo — S(])il = O(l) . Hg—m — Hg-l-m’

as claimed.
Let w belong to a bounded set in C disjoint from R. Iterating the resol-
vent identity, we have

(w— S5)™" =(wy — Ss) ' + (wo — w)(wy — Ss) % + ...
+ (wo — w)QN_l(wo — 55)_2N + (wo — w)2N(w — 85)_1(w0 — S(;)_ZN.
The last term can also be written in a sandwiched form as
(wo — w)gN(wo — Sg)_N(w — Sg)_l(wo - 55)_N.
For N large enough, we have
Hy™™ — H°,
H® — HJ™™,

(wo — S5)N = O(1) : {

and since (w — S5)~' = O(|Sw|™) : H* — H°, we conclude that

(w—S5)"'=0(Sw|™) : HI™™ — HIT™. (16.5.15)
Similarly, with v as in @D, positive on a sufficiently large set de-
pending on the bounded set where we let w vary,
(w—(Ss+¢)) ' =0(1): HI™™ — H™™. (16.5.16)

Using also that ||[¢]l; = O(h™"), (0:X)(w/a) = On((|Sw|/a)V) for all
N > 0.and choosing 0 = 0, we see that the trace norm of the first integral

in (| is



while the second integral satisfies the better bound with the exponent —2
replaced by —1. Choosing N = 2, we get

)
I55x(@ 7 85)llw = O(1)a” h". (16.5.17)

Integrating this “from 0 to 6” and applying Proposition , we get
Proposition 16.5.1 Let x € C3°(R). For 0 < h < a < 1, we have

Ix(a5) e < O (Viv(a) + 4% + 2, (16.5.18)

try(a™'S;) = ﬁ // X(S(Z’ \dwde + O (Vi(a) + ¥ + g),
(16.5.19)
where s(z, &) = |p(x, &) — 2|

We next extend Remark [I5.3.9| to the perturbed case, Recall the expres-
sions for K;, and Ls, in .D.5)), .0.7) and also . We have

Ks.=—(z2—PB5)'Q(z — P5)" (P - P), (16.5.20)

SO
1Ks:]l < O(), K5zl < O(RT), (16.5.21)

since ||@Q]| = O(1). Here the dot indicates derivation with respect to 4. It
follows that

|95.2[lex < O(h™™). (16.5.22)
With x € C°(R), we get
0 4 1 e L1 w

s(a185) = =2 [ (w85 15w - 53.)7 L@ () Lidw)

(16.5.23)
which again leads to
0 -1 —17—n

Ig5x(a™ S5) e = O(L)a"h (16.5.24)

and combining this with Remark , we get

Proposition 16.5.2 Proposition remains valid if we replace (S, $)
with (S5, S,) where
_p(a, &) = 2
Sz(.'lf, ) == a2
p(z, &) — 2|
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Finally, we shall extend Proposition to the perturbed case. Let
0 < x € C([0,00]), x(0) > 0. Put

t o0
f(t) :t—i-ax(a) =:t+g(t), 9= 9. € C5°.
For 0 < h < a <« 1, we have

F(S52) = Spa — % / (w — S5.)"'35(w) L(dw).

From this we see that

0 . . -
%‘f(S&Z) = S&Z — ; /(w — Sg,z)’1557z(w — S(;,Z)’l@g(w)L(dw).
Now,
0 B 4,0 B
% 1[1 det f(S(s,Z) =tr f(S(g’Z) %f(S(;,Z) =

tr (f(Ss)~"S5) — %/tf (F(S5..) " (w — S5,.) ™ S5 (w — S5,.) )G (w) Ldw).

Here f(Ss5.)" and (w—Ss.)~! commute, so by the cyclicity of the trace and
an integration by parts, we see that the last term is equal to

=D

= tr (f(Sg,z)l(;—l) /(w — 5572)’@wﬁwﬁ(w)L(dw)Sg,z)
= tr (f(S5,:) "9 (S5.2)55.),

leading to the general identity

tr ((S5.)™" / (w — S5.)" 2B (w) L(dw)Ss.)

% Indet f(S5.) = tr (f(S5.) " f'(S5.)5%.)-

With the above choice of f we have fj,, , > a/C, so 1 £(S5.) 7l < Cfav.
Moreover, f" = O(1), so || f'(Ss.)| = O(1). Using also , we conclude
that

a _ —171—mn
2% Indet f(S5.) = O(a™h™").

Integrating from 0 to J and using Proposition , we get
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Proposition 16.5.3 If 0 < x € C5°([0, +0o0[), x(0) > 0, we have uniformly

forO<h<a<1:
Indet(S;. + ax(a'Ss5.)) =

(27r1h)” (//lnsz(a:,f)dxd§+(9(1) (/0 Vi (t )Cit +/a“° hv( )cit) L0 +h>)

We end the section with some remarks about H*-properties of eigenfunc-
tions for low lying eigenvalues of S5 and Ss ., here under the only assumption
on J that 0 < ¢§ <« 1.

We start with S5. Let 0 < ¢2 < 2 < ... denote the increasing sequence
of eigenvalues of S5, repeated according to their multiplicity and with ¢; >
0. Let e, eq,... be a corresponding orthonormal family of eigenfunctions.
Proposition % shows that

No:=#{k; t; <1/2} < O(h™™) (16.5.25)

Proposition 16.5.4 Under the assumptions above we have

No

1) Ases]
1

where?:()\l A .. /\No)t.

nc 25 c 26 nc 12
Proof. Using (16.5.15)), (ﬁm—mp in (I6.5.13) with o = 1, we see that for
every x € Ci°(R),

_>
o < OV X |, (16.5.26)

X(S5) = O(1) : H*™™ — H:t™, (16.5.27)

(We choose the set where 1 > 0 sufficiently large depending on the support of
x and of its almost holomorphic extension and use that ¢ = O(1) : H, "™ —
}{s—nl)

Let x > 0 be equal to 1 on [0,1/2], so that x(Ss)(D_ ]e]) Yo Nze;.
Using only that y(Ss) = (’)(1) H° — H5+m we get (16526 O

Next consider Ss . in From , the fac that P — P =

O@1) : H* — H;?, Vsq, s9 and the observatlon after 1 , we see that
K(;Z = (’)( )i H, ™™ — H;™ and by duality and the explicit formula for
Ls ., we get the same facts for K5 and L(;Z Thus, S(gz =0(1): H, ="
H; ST and since 0 < § < 1, we conclude that

S(S,z = SO,z + R6,27 Ré,z = O(l) : Hh_s_m — H}SL—i_m
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We then apply the sandwiched resolvent identity,

(w— S(;,Z)’1 =(w — 5072)*1 + (w — Sgyz)’lR(;,Z(w — 5072)’1

16.5.28
+ (w - SO,Z)_IR(S,Z(U} - S(S,z)_le,z(w - SO,Z)_17 ( )

to get for x € C5°([0, 3/4[):

X(852) = x(50:) = = [ = 50.2)7 Roalio = $0.) DR (w) L)

- _l /(w - SO,Z)_lRé,z(w - S&,z)_lRé,z(w - SO,Z)_lgy(w>L(dw)

7r
Here x(Sp ) is an h-pseudodifferential operator of order 0 in h and of order
—oo in &, so x(Sos) = O(1) : H,*™™ — H;™™. Each of the two integrals
define operators that are O(1) : H;*™™ — H;™™. In fact, (w — Sp.)"' =
O(|Sw|™") : Hf — Hy] for eyery real o.

This is the analogue of ([I6.5.27) and completing the discussion as at the
end of the proof of Proposition [16.5.4] we get

A

Proposition 16.5.5 Proposition remains valid if we let eq,...,en,
(still with Ny = O(h™™)) be an orthonormal family of eigenfunctions cor-
responding to the spectrum of Ss . in [0,1/2].

325



Chapter 17

Proof II: lower bounds

17.1 Singular values and determinants of cer-
tain matrices associated to 0 potentials

As in Chapter %,Lblet X be a compact smooth manifold of dimension n,
equipped with a positive smooth density of integration dz. Let e(z), ..., en(x)
be continuous functions on X (and observe that the discussion will remain
valid if we replace X by a compact subset with non-empty interior and
smooth boundary). We would like to find a continuous function ¢ : X — C
such that the matrix M, = (M, x)1<jk<n, given by

My = /X 4(@)e; (@)ex(@)dz,

has nice lower bounds for its singular values. In the present section, we shall
achieve such a goal when ¢ is replaced by a sum of Dirac masses of the form
0, = SV 6(x — a;) for a suitable a = (ay,ay,...,ay) € XN. Notice that
Ms, = (M, ) where

N
M = Z ejay)ex(a,) (17.1.1)
v=1

and that

M =FEoE" (17.1.2)

where
E = (ej(ar))i<jr<n-
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If we introduce the column vectors

then £ = (€ (ay) € (as) ... € (ay)).

Lemma 17.1.1 Let M € [1,N] be an integer and let L C CN be a linear
subspace of dimension M —1, for some 1 < M < N. Then there exists x € X
such that

dist (€ (z), L)? > tr (1 — 71)Ex). (17.1.3)

vol (X)

Here Ex = ((ejler) L2(x))1<jh<n 15 the Gramian of (eq, ...,en) and 7y, denotes
the orthogonal projection from CV onto L.

Proof. Let vy, ..., vy be an orthonormal basis in C"V such that L is spanned
by v1,...,vpm-1 (and equal to 0 when M = 1). Let (-] - -) denote the usual
scalar product on C and let (-] - -)x be the scalar product on L*(X). Write

Vie
Vy =
UNy

We have

dist (€ (), L)? (€ () |ve)|?

| Z e; ()7

J

Z_j,fej(l")ék(w)uu.

I
0 1M 20-

7,k
It follows that
N
/ dist (2 (), L)%dz = 3 (Exvilue) = tr (1 — m)Ex).
X =M
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It then suffices to estimate the integral from above by

vol (X)) max dist (¢ (z), L)?.

rzeX
O
If we make the assumption that
e1,...,ex is an orthonormal family in L*(X), (17.1.4)

then £x =1 and m simplifies to

N-M+1
L= 2

> 0
I;le%?(dlst(e([B),L) Z ol (X)

(17.1.5)

In the general case, let 0 < g1 < ey < ... < gy denote the eigenvalues of

Ex. Then we have

dim[i/rif]\/lfl tr ((1 — WL)gx) =e1+te+ ... t+EN-M+1

Indeed, the min-max principle shows that

er = inf sup (Exv|v

M dim L=k VEB< xvlp),
llvll=1

so for a general subspace L of dimension M — 1, the

m)Ex (1 —mp) are &) < ... < ey, With € > €.

=: By (17.1.6)

eigenvalues of (1 —

Now, we can use the lemma to choose successively aq,...,ay € X such

that
1€ (ar)|?

dist (?((12), C?(a1>>2 Z

dist (€ (ap), C€ (a1) & ... ® C€ (ap_1))* >

Ey
vol (X)’
Ey
vol (X)’

En
vol (X)’

Let 14,15, ...,vn be the Gram-Schmidt orthonormalization of the basis

@ (a1), € (as), ..., € (ay), so that

?(aM) = cpvy mod (v, ..., vpr—1), where |cp| > (
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Recall that E is the N x N matrix with the columns ¢ (a;). Expressing
these vectors in the basis vy, ..., vy will not change the absolute value of the
determinant and F now becomes an upper triangular matrix with diagonal
entries ¢y, ...,cy. Hence

|det E| = |cy - ... - enl, (17.1.8)

and ﬁb implies that

(EyEy...Ex)Y/?

det E| > . 17.1.9
[det Bl = S a1 oy (17.1.9)
. 7
We now return to M in (“ 7.1 ), (F#Iéﬂ) Then det M = (det F)?, so
Ei\Es.. . By
det M| > ——————. 17.1.10
|det M| = = T ( )
Under the assumption , this simplifies to
N!
det M| > ————. 17.1.11
|det M| = Coryw ( )

It will also be useful to estimate the singular values s;(M) > so(M) >
... > sn(M) of the matrix M (by definition the decreasing sequence of eigen-
values of the matrix (M*M)z). Clearly,

N
st > sty > [ s = [det M|, 1<k <N, (17.1.12)
1
and we recall that
sp = || M]|. (17.1.13)
inv 105 inv 11 1

Combining (I7.T.10) and (I7.1.12], we get

Proposition 17.1.2 Under the above assumptions,

z|-

(Ey...Ey)

S S\ P 17.1.14
1= T 0l(X) ( )

1

N (H (ﬁ)) o 17.1.15)
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17.2 Singular values of matrices associated to
suitable admissible potentials

We shall now carry over the results of the preceding section to potentials
that are linear combinations of eigenfunctjons of the auxiliary operator h2R.
Recall the definition of €, ju, in Section Rey, = (u9)%ex, p, = hpd. Also
recall that D#{k; ux < L} = O((L)"/2/h™) by Weyl asymptotics for elliptic

self-adjoint operators on a compact manifold.

Definition 17.2.1 An admissible potential is a potential of the form

q(z) = Z aper(z), a € CP. (17.2.1)

0<pr<L

Here we shall take another step in the construction of an admissible potential
q for which the singular values of P + dq satisfy nice lower bounds. More
precisely, we shall approximate d-potentials in H~® with admissible ones
and then apply the results of the preceding section. [Let us start with the
approximation. Recall that s > n/2+¢€, ¢ > 0 in @D

spe02| Proposition 17.2.2 Let a € X. Then Ja, € C, 1 < k < oo, such that for
L > 1, there exists r € H™®° such that

do(x) = Z ager + 1(x), (17.2.2)

np<L
where
Irllg s < Coel™ 0727973, (17.2.3)
(S lon) < (D)3 (Y u) 23yt < CLFFRE (17.2.4)
uE<L
Proof. Observe first that
18all 7 = O)[I(h€) |12 = OL(1)h 2. (17.2.5)

In general, if u € H™* ()? ), then by Proposition and the subsequent
observation (where s was arbitrary) we have

o0
=Y 3 Gu) <l .
1
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Thus, if s > 51 > n/2:

u= > o+, (17.2.6)
up<L
where
(13, = > () o < CL_2(5_51)||u||iI;sl, (17.2.7)
pre>L
(Y Jaul?)? < @ (Y () > awl?)? < CL ul? .y (17.2.8)
PR <L ur<L h

In particular, when u = §, get the proposition by taking s; = e +mn/2. O
c 1 c. 2
Let Ps; be as in 1' 6.5.1)), (ii6.5.2|). Let 0 < h < a < 1/2, and let 13 <
t3 < ... < 13, be the eigenvalues of PyPs in [0,af with ¢; > 0. We call t,
the singular values of Fs, arranged in increasing order. Let ey, ...,en, be a
corresponding system of eigenfunctions. From (I6.5.18)), we know that

v 0
No < O (Vir(a) + 2N + =),
but for the moment we will only use that N, < Ny < O(h™") (when 6 < «).
Let a = (ay,...,ay,) € XNe and put

@) = b (), (17.2.9)

My = / do(@)en(x)e;(@)dz, 1< j,k < Na. (17.2.10)

We lighten the notation by writing N instead of N,, when possible. Then
using (16.2.2), (16.5.26]), and the fact that gall -+ = O(1)Nh="/2 we get

for all X\, u € CV,

(Mg, Alp) = /qa(ﬂﬁ)(z Aver) (Y myej)de = OLNB [l

and hence
s1(My,) = [|Mg, |lzcov.ovy = O(1)Nh ™. (17.2.11)
i 2.54 3
We now choose a so that 1“ %.i.iZ—Ii, i“ %.i.igi hold, where we recall that
S > 5g > ... > sy are the singular values of M,, and F; is defined in

, where 0 < g7 < g5 < ... < g are the eigenvalues of the Gramian
Ex = ((ejler) 2x) r<imn-
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Since {e;} is an orthonormal system,

Ej=N—j+1. (17.2.12)
i 2.5
Then m_glves the lower bound
N~ InN . N
o> MY Lo (17.2.13)

N ))evol(X)’

where the last iden itnyollows from Stirling’s formula.
Rewriting as

~ vol (X)

and using ﬁb, we get

1 h™\ N-k+L 1
Sk > 1 ~ (—) (N ~=#1T, (17.2.14)
C'~=#+1 (vol (X)) N—k+T

Summing up, we get

Proposition 17.2.3 There exist ay,...,an € X, with N = N, defined above,
such that if o = Y1 0(z — a;) and My, = [ qa(x)eg(x)e;(x)dz, then the
sin%u%r values sy > sy > ... > sy of M,,, satisfy 2.11), 2. and

We shall next approximate g, with an admissible potential. Apply Propo-
sition to each d-function in ¢,, to see that

Ga=q+7, q= Y e, 17.2.15

e <L

where

HQHH;S < Ch 2N,
Pl < CLL-G5-0R %N,
(Z \Ozk|2)% < CL:h~ % N.

17.2.17

)
17.2.16)
)
17.2.18)

(
(
(
(
In order to estimate M,., we write

(,51) = [ (@3 Brer) (e
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spe2

so that
(MBI < Clirlgsh ™2 1Y Brerllag I D el
Applying to the last two factors, we get with a new constant C' > 0:

(MBI < Clirllg—h~ 2181171l

H; H; -

SO
IMe]| < Ch™2 |7l (17.2.19)

Using dﬁﬂ), we get for every € > 0

M| < CL™75 7R "N, (17.2.20)
ne 06

_Faor the admissible potential ¢ in dﬁ[}, we thus obtain from (I7.2.14)),
and the fact that si(M,) > s, (Ms,) — || M, ||:

k

1 h™ N—;il 1 "
sk(Mg) 2 —= = <—> (N))¥=1 — C L™ 79p™"N.
C~N=F71 (Vol (X))m N

(17.2.21)

spe 03 ne 8
Similarly, from (I7.2.11)), (ﬁ"?‘Z‘ZOD we get for L > 1:
| M,|| < CNh™™. (17.2.22)

Using Proposition @ and the subsequent observations, we get for all
s1>n/2,

lall: < O () >l
e <L
< O () = arH) Lot
pe<L

< O()h ENL*™*,

where we used dﬁ with s replaced with s; in the last step. Thus for
every € > 0,
lallm; < O()NL* 2 h™%, Ve > 0. (17.2.23)

Summing up, we have obtained

l?str;gpﬂosition 17.2.4 We can find an admissible potential q as in (%},

(17.2.18) such that the matriz M, defined by

Mgk = /qekejda:,

lspe .9 lspe .10
satisfies (17.2.21), (17.2.29). Moreover the H;-norm of q satisfies .
Here N < O(h™") is the number of singular values of Ps in [0,a'?[ and we
assume that 6 < a.
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grp

Notice also that if we choose R with real coefficients, then we can choose
q real-valued.

17.3 Appendix: Grushin problems and sin-
gular values

We mainly consider the case of an unbounded operator
P=F+V,

where Py is an elliptic differential operator on X and V' € L*(X). The
underlying Hilbert space is H = L?(X) = H° and we will mainly view P as
an operator from H™ to H°. The dual of H™ is H~™ and we shall keep in
mind the variational point of view with the triple

H™C H Cc H ™.
Consider O = P*P : H™ — H~™. For u € H™, we have

(Oulu) = ||Pul]* > 0. (17.3.1)

Proposition 17.3.1 If w €]0,+oo[, then O+ w : H™ — H~™ is bijective
with bounded inverse.

Proof. The injectivity is clear since ((O+w)ulu) = wl|ul|*+||Pul/*, v € H™
and combining this with the standard elliptic apriori estimate, ||ul/gm <
CllPull + [[ul]), we get

lullFm < Cw)((D + w)ulu),

implying

[ullm < Cw)[[(B + w)ullg-m.
From this estimate and the fact that 0" = O, when we take the adjoint in
the sense of bounded operators H™ — H ™™, it is standard to get the desired
conclusion. O

Notice that when P is injective, then by ellipticity and compactness, we
have (Ou|u) > &llul|* for some C' > 0 and we get the conclusion of the
proposition also when w = 0.

The operator (O + w)™t : H~™ — H™ induces a compact self-adjoint
operator HY — H°. The range consists of all v € H™ such that Pu € H™.
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The spectral theorem for compact self-adjoint operators tells us that there is
an orthonormal basis of eigenfunctions, ey, es, ... in H° such that

(O+w)'e; = p5(w)ey, (17.3.2)

where 0 < p; N\ 0 when j — +oo. Clearly e; € H™, Pe;j € H™, so we can
apply O+ w to and get

(O +w)e; = py(w) e, (17.3.3)
which we write as
Oe; = (i (w) ™2 — w)e;. (17.3.4)

Here p1;(w)™? —w = (Oejle;) > 0, so we have found an orthonormal basis
e1,€e,... € H with e;, Pe; € H™ such that

De; = tie;, 0 <t; S 4oc. (17.3.5)
It is easy to check that t? are independent of w, that e; can be chosen

independent of w, and we have

1

. 2 — .
ﬂ](w) t?—i—w

From Proposition @ and its proof we know that O + w is self-adjoint
as a bounded operator: H™ — H~™. Consider O as a closed unbounded
operator Og, : L? — L? with domain, D(Oy,) = {u € H™; Ou € L?*}. Then
D(O.) = (O + w) L% which is dense in (O 4+ w) 'H™™ = H™ and hence
dense in L?. Og, (or equivalently O, +w) is closed: If (Og, +w)u; = v, u; —
u, v; = vin L? then v; — v in H™™ u; — uwin H™, hence (O+w)u = v and
since v € L?, we get u € Dg,. Similar arguments show that O, is self-adjoint.
We also know that Og, has a purely discrete spectrum and that {e; 521 is an
orthonormal basis of eigenfunctions.

We have the max-min principle

2 .
t; = sup inf (Dulu), (17.3.6)

. i ueL,
codim L=j—1 w]=1

where L varies in the set_of closed subspaces of H° that are also contained
in H™. Similarly from , we have the mini-max principle

2 - . D _1 . .
,U] codinl}%/f:j_1 SULGIE) (( + U)) U‘U)a (17 3 7)
[lvll=1
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where L varies in the set of closed subspaces of H?. When 0 & o(P), so that
P : H™ — H° is bijective, we can extend (I7.3.7) to the case w = 0 and
then, as we have seen, 1;(0)? = tj_Q.

Now assume,

P: H™ — H°is a Fredholm operator of index 0. (17.3.8)

The discussion above applies also to PP* when P is viewed as an operator
H® — H~™ so that P*: H™ — H°. Put

O=PP": H" - H™.
Then as in m we have an orthonormal basis fi, fa, ... in H® with f;, P*f; €

H™ such that B
Of =12f;, 0<t; / +o0. (17.3.9)

Proposition 17.3.2 We have t; = t; and we can choose f; so that

Pe; =1t;f;, P'f; =tje;. (17.3.10)

Proof. We have N'(O) = N(P), N(8) = N(P*) when P and P* are viewed
as operators H™ — HY. Notice however that by elliptic regularity, the kernel
of P*: H* = H™™ is the same as the one of P* : H™ — H°. Since P is
Fredholm of index 0, the kernels of P and P* have the same dimension, and
consequently

dim V(0) = dim A(0).
Let t§ = t3 be a non-vanishing eigenvalue of O of multiplicity ko, so that
tio—1 <tjo = oo = tjotho—1 < Ljotko

for some jg, kg € N* and with the convention that the first inequality is
absent when jo = 1. If 0 # v € N(O — t2), we know that u, Pu € H™,
Pu # 0 and we notice that

OPy = POu = t?Pu in H ™.
Thus v := Pu € H™ is non-zero and satisfies
Ov = t?-v,

so P gives an injective map from A/(O — #2) into N'(3 — #2).
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By the same argument P* is injective from N(8 — t2) to N(O — #2) so
the two spaces have the same dimension. It follows that %Vj = t; for all j.

Let e;, jo < j < jo+ ko — 1 be an orthonormal basis for N'(O — ¢2) and
put f; =ty ' Pe; € N(O —t2). Then

(filfe) = to 2 (Pe;j|Per) = t5*(Dejler) = 0

0 fi, jo < j < jo+ ko — 1 form an orthonormal basis for N (0 — #3). Also
notice that
P*fj = tglP*Pej = t()ej,
and we get dﬁﬁ[} in the non-trivial case when ¢; # 0. O
Write ¢;(P) = t; so that ¢;(P*) = t; by the proposition. When P has

a bounded inverse let s;(P~!) > so(P~1) > ... be the singular values of the
inverse (as a compact operator in L?). We have

1

si(P ) = ——-. (17.3.11)
! t;(P)
Let 1 < N <ooandlet R, : H® — C¥, R_: C¥ — H° be bounded

operators. Assume that

P:(RP }B—):mecN%HOch (17.3.12)
+
is bijective with a bounded inverse
E FE
E = + 17.3.13
(£ 27) (17.3.13)

Recall that P has a bounded inverse precisely when E_, has, and when
this happens we have the relations,

P'=FE-E,E\E, E\=-R.P'R. (17.3.14)

69 2
Recall (FRfatid Proposition 23] that if A, B : Hy — H and C : Hy — Hs
are bounded operators where H; are complex Hilbert spaces, then we have
the general estimates,

Snak—1(A+ B) < s,(A) + si(B), (17.3.15)
Snak—1(CA) < 5,(C)s(A), (17.3.16)

in particular for £k = 1, we get

sn(CA) < [|Cl[sn(A), $n(CA) < su(C)[|A[], sn(A+ B) < sn(A) + || BI|
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Applying this to the second part of , we get
se(B73) < |R-IReflse(P7), 1<k <N

implying
0(P) < | R R, [tu(F_), 1<k < N. (17.3.17)

By a perturbation argument, we see that this holds also in the case when P,
E_ are non-invertible. )
Similarly from the first part of 1@) we get

se(P7Y) < BN+ 1B E-llsk(EZY),

leading to

1(P) > GACED |

IE[tr(E—t) + [ E4 [ £-]]
Again this can be extended to the non-necessarily invertible case by means
of small per‘t}lrbation.s.  Hasios

Generalizing Section @g(zas in 55]37we get a natural construction of an
associated Grushin problem to a given operator. Let P = P° : H™ — H°
be a Fredholm operator of index 0 as above. Choose N so that ty1(P°) is
strictly positive. In the following we sometimes write ¢; instead of ¢;(P?) for
short.

Recall that t? are the first eigenvalues both for P°*P° and P°P°". Let
e1,...,ey and fi, ..., fx be corresponding orthonormal systems of eigenvectors
of PY"P% and P°PY" respectively. They can be chosen so that

(17.3.18)

Pej =t;f;, P”f; = tje;. (17.3.19)

Define R, : L? — CY and R_ : CV¥ — L2 by
Riu(j) = (ulej), Rou_ = Zu (17.3.20)

It is easy to see that the Grushin problem

0 _
{ Plut Rou=v, (17.3.21)

R+u = U4,
has a unique solution (u,u_) € L?> x C¥ for every (v,vy) € L? x CV given
by

— 10 0
{ u=FEuvt b, (17.3.22)

u- =E%0+E° vy,
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where

EQvy =300 vi(f)ey, Eu(j) = (vlfy), 7. 23]
17.3.23 .23
{Em:—diag@j), B < 2 e e

tN41
E° can be viewed as the inverse of P° as an operator from the orthogonal
space (e, €a,...,en)T to (fi, fo, o fN)T

We notice that in this case, the norms of R, and R_ are equal to 1, so

tells us that ¢,(P%) < t,(E°,) for 1 < k < N, but of course the
expression for EY | in implies equality.

Let Q € L(H°, H°) and put P° = P’ — Q) (where we sometimes put a
minus sign in front of the perturbation for notational convenience). We are
particularly interested in the case when () = Q,u = qu is the operator of
multiplication wyith a function ¢q. Here 6 > 0 is a small parameter. Choose
R, asin &%D Then if § < ty41 and ||Q| < 1, the perturbed Grushin
problem

{ Pou+ R_u_ =,

o (17.3.24)
is well posed and has the solution
u = E(s'U + Ei'U+,
SR (17.3.25)
where
5 E° Ei
=\ m p (17.3.26)
- by
is obtained from £° by
0 0 -1
g =g° <1 -4 ( ng QOE+ )) : (17.3.27)

Using the Neumann series, we get

E°, =FE°, + E°5Q(1 - E%Q) " EY
) } . 17.3.28 .28
_ BV, 4 GECQEY + BB QEYQED + R0 Q(EPQREY 1. (T2

We also get

E° = E°(1-0QE°)™" = E°+ ) 6"E%(QE")", (17.3.29)
1

E) = (1-E°%Q)™E} = EY + ) dME°Q)*EY, (17.3.30)
1
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E° =E°(1-0QE°)'=E° + ié’“EE(QEO)’“. (17.3.31)
1

The leading perturbation in Ei+ is 0M, where M = E°QEY : CN — CV
has the matrix

M(w);r = (Qex| f5), (17.3.32)
which in the multiplicative case reduces to
M(w)je = / a()ex(2)J; (@) da. (17.3.33)
Put 79 = ty11(P°) and recall the assumption
QI < 1. (17.3.34)
Then, if § < 73/2, the new Grushin problem is well posed with an inverse £°
given in ([I7-3.26)—(17-3.31]). We get
5 1 0 2 5 1
1)< ey < 2, < 1 <2 (17.3.35)
1 — 7_—0 7_() 1 - 7_—0
5 0 0 ) 0 60?1 6
|E2, — (B2, +0EZQEY)|| < — = <2—. (17.3.36)
T() 1 - % 7—0
Using this in 1‘I TEAT ), 1‘1 3. Igb together with the fact that ,(E°,) < 27’
we get
te(E°
4 8‘+) < te(PY) < te(E°). (17.3.37)

17.4 Lower bounds on the small singular val-
ues for suitable perturbations

Let P,p be as in 1) (5. .igi. Fix z € Q. Our unperturbed operator
will be as in 1il%%l )—(16.5.3)), where we change the notations slightly:
Py=P+Qo, 0<) <1,
Qo = O(1) : Hf — Hy uniformly for —s <o <s.

(17.4.1)

Lindeed,
5 5 5 52
(B2 ) <ti(ES )+ ||BS, —E° || <t (E°,)+6+ 270

<th(E° L) +26 < t(E° ) + 10 < 279,
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We also assume that () is the operator of multiplication with a potential, so
that P, also satisfies the symmetry assumption . Proposition @

gives:
Proposition 17.4.1 For 0 < h < a < 1, the number Ny(a/?) of eigenval-
ues of (Py — 2)*(Py — z) in [0, a| satisfies

9o

No(a'?) = Oy gh ™" (Viv(a) + Y + 22). (17.4.2)
: Q@
We can get a slightly different and more interesting bound when dy/« is
not very small: Recall the max-min formula (cf )
G(Po—2)= sup inf (B — 2)ul
codim L=5—1 \\Zﬁ:l

and the similar one for ¢;(P — z). Now, ||(Po — 2)ul| > ||[(P — 2z)u|| — do||Qo|
when ||u|| = 1. Thus (which can also be viewed as a special case of the Ky
Fan inequalities),

tj(Po—2) = t;(P — z) — dol|Qol|.
In particular, if ¢;(Py — 2) < al/2, then t;(P — 2) < a2 4 §||Qo, leading to
No(a'/?) < N(a'/? + 6| Qoll),

where the right hand side denotes the number of singular values of P — z in

[0, a2 +6]|Qo|], or equivalently the number of eigenvalue of (P—2)"(P—2)
in [0, (a2 4 6||Qo|)?]. Combining this with Proposition for &y there

equal to 0 and assuming that ||Q| < 1 for simplicity, we get
Proposition 17.4.2 For all M, N > 0,
No(a'/?) < Oy 5" (Var((a/? + 60)* + 1),

This is of interest when 6, < ao'/2.
Assume from now on that

0<dy <he. (17.4.3)
Choose 7 €]0,h'/?], @ = h and let N = Ny(7o),
N < O) (KM= + h™"Vy(4h)) =: M, (17.4.4)

be the number of singular values of Py — z in [0, 79[, labeled in increasing
order so that 0 < (P — 2) < ... < ty(Po—2) < 10 < tyy1(FPo — z) and
let ey, eq, ..., ex be an associated family of eigenfunctions of (P — z)*(P — z).
Fix 0 €]0,1/4[.
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Proposition 17.4.3 If q is an admissible potential as in with L >
1, then

lqlle < Ch™2||q]

Hs < Ch 2.LS|(I| (1745) sv.8

N is sufficiently large, there exists an admissible potential q as in

such that
a)
o < L2Hh73 N,

n n 17.4.6 .9
rs <O()h 2 NL 27, ( ) lev
h

]

L = Msfehsf. (17.4.7) [sv.10]
b) The conclusion of Proposztzon% applies to q, so (ﬁ 7.2.2 1)), (iﬁ 7. %Q)

hold.
Put Ps=PFPy+9q, 0<d < 1. Then
¢)

t,(Ps — 2) > t,(Py — z) — CSh™"L2TT*N, v > 1;

d) There exists No > 0 depending only on n, s, €, that we can choose arbi-
trarily large, such that if 6 = Croh™2>™", C' > 1, then either for q above or
for ¢ =0, we have,

ty(Ps) > 1oh™, 14+ [(1-0)N] <v < N. (17.4.8)

Here [x] = sup(] — 00, x] N Z) denotes the integer part of v € R.
W%en % Ebelongs to a bounded interval, a)-d) are still valid, if we restrict

vin to the value v = N.

.9 .10
Since N < My < h™", we get from 1i| 7.4.0)), (il 7 4.7) that
3n

n Y
S 2 €

|Oé‘ < R — h h +€)Mm1n

corresponding to the minimal orders o gnltude in .
Proof, We_ choose ¢ as in Proposition [T7.2.4]so that, (17.4.5)), 1i| %.%.6} follow
fﬁom (T7.2718)) and the estimates leading to ﬁ Then we also have

and we choose L large enough to guarantee that the first term to
the right is dominant for 1 < k& < N/2: We have for such k:

L 5 h_Mmina M pin =

N

hn

V|3

> — —(N! —(s—
s(M,) > 5 (N = CL
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1/N

By Stirling’s formula we have (N!) > N/Const, so we get with a new

constant C' > 0:

h" n_ o N N
Sk(Mq) Z 6 — CeL_(s_E_E)ﬁ, 1 ~ k S 5 (1749)
Thus,
h’I’L
> — 4.
se(My) 2 55, (17.4.10)

provided that L*~27¢ > Nh™2", %? view of , this is achieved with a

sufficiently large L satisfying
We have then verified all the statements up to and including b). ¢) follows
from the max-min description of ¢, (Ps) and the fact that

qlloc < CRT"LETHN. (17.4.11)

Let ey, ...,en be an orthonormal family of eigenfunctions corresponding
to t,(FPy — z), so that

(P —2)"(Po— z)ej = (t;(Py — z))er. (17.4.12)

Using the symmetry assumption @ which extends to Fy, we see that a
corresponding orthonormal family of eigenfunctions of (Py — 2)(Py — 2)* is
given by B

fj ="Te,. (17.4.13)
If the non-vanishing ¢; are not all distinct it is not immediately clear that
we can arrange so that f] = f; asin (@ (with P replaced by P,), but
we know that ﬁ, ey fN and fi, ..., fy are orthonormal families that span the
same space Fy. Let E'y be the span of ey, ...,ex. Then

(PO—Z)ZEN%FN and (Po—Z)*IFN%EN (17414)

have the same singular values 0 <t; <ty < ... <tpn.
Define R, : L? - CN R_:CN — L2 by

N
Ryu(j) = (ulej), Rou_ =Y u (j)f; (17.4.15)
1
Then
P:(PO_Z R_):H,TXCN%LQXCN (17.4.16)
R, 0

has a bounded inverse o o
E” EZ
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Since we do not necessarily have (j%?_ﬁﬁb we cannot say that E° | = diag (¢;),
only that E°, is unitarily equivalent to diag (¢;), but the smgular values of
E° are given by t;(E,) = t;(Py — z), 1 < j < N, or equivalently by
sj(EY,) = tN+1_j(P0 — z), for 1 < j < N. We here follow the convention of
using the letter s for labelling the singular values in decreasing order and t
for the increasing order.

We will apply Sectlon@ and recall that N is assumed to be sufficiently
large and that 6 has been fixed in ]0,1/4[. Since z is fixed it will also be
notationally convenient to assume that z = 0. We consider two cases.

Case 1. sj(E°,) > 8rph™, for 1 < j < N —[(1 — §)N]. Then from (jﬁgﬁb
we get the conclusion in d) with ¢ =0, Ps = B.

Case 2.
s;(EY,) < 87ph™* for some j such that 1 < j < N —[(1—0)N]. (17.4.17)
From @D and the fact that N < My in (I74.4) we get
s1(My) < ||M,|| < CMyh™™. (17.4.18)

Put
Ps = Py+3q = Py + 00,
i _ (17.4.19)
5= CHh LT My, Q=5q/5 lQl <1,
where the last est1m mes from | . Then, if § <7 /2, we can
replace B, by P and we stlll ave g well-poged problem Wlth
inverse as 1n satlsfylng with @, =

and according to (| ), we have with a new constant C'

as above and with ¢ laced by 6. Here E° QEO M/ Ch~ "L2+€+SM)
ﬁ

oh" N

o 1<k<5 (17.4.20)

Playing with the general estimate @, we get
sy(A+ B) 2 syik-1(A) — si(B)

se(GE°GEY) = sy(SECQE) >

and for a sum of three operators

su(A+ B+ C) > spqpre—2(A) — si(B) — s4(C).

an
LpP.o0

We apply this to E§+ in (I7.3.36]) and get

- " 2
$u(E2L) > 8,01 1(0E°QEY) — s,(E°.) — 25—. (17.4.21)

To
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sy 18 sy 21

Here we use (I7.4:17)), (I7.4.20) with j = k = N — [(1 — 0)N], to get for
v<N-—[(1-0)N]

~ 5hn 52
s, (E°,) > ol 8roh™? — 2T—O. (17.4.22)

on
oV . ZU

Recall that 6 < i and that 0 is given in ([I7.4.19)). The first term to the right
dominates when

2

1)
Sh™ > 1oh™2, SR > —, (17.4.23)
To
i.e. when 5
No—n
Toh 2 < 5 <K T(]UH_QG—_W, (17424)
where the last member is
nt2e+2s
h3n+2n 57%'&6

by ﬁ[} and My < O(h™™) by , so the last member of is

> 1oh™3 /O(1) for some N3 = N3(n, s, €) > 0 that can be explicitly computed.
It suffices to ¢hoose N > N3 + n and we have a non-empty range of o
m»

satisfying (I . In particular we can take § = Crph™2~" for some large
enough C'.

Then we get from (@

s, (E° ) > 8mh™, 1< v < N—[(1-6)N]

Equivalently, for ¢,(E?_) = syy1-,(E,) we get

t,(E° ) > 8¢0th 1+[(1— 9)N] <v<N. (17.4.25)

From and
When N = O(1), we still get d%b with v = k =1 and this gives the
last statement. O

The conclusion of ¢) in the proposition (which of course is valid also when
we take ¢ = 0 in d)) implies that with the choice of ¢ as in d), we have

tV(P(;) Z tV(Po) — TQhNZ_K

for some K which depends only on n, s,e. Choosing N sufficiently large, we
get t,(Ps) > t,(Py) — 1oh™, where N; > 0 can be chosen arbitrily large (if
we choose N, sufficiently large).

345



The construction can now be iterated. assume that N > 1 and re-
place (Py, N, 7o) by (P, [(1 = 0)N],7oh™2) =: (PW, N 71y and keep on,
using the same values for the exponents Ny, N,. Then we get a sequence
(P®, N® 7y | = 0,1,..., k(N), where the last value k(N) is determined
by the fact that N*®) is of the order of magnitude of a large constant.
Moreover,

(PP > 7P N®) <) < NG,

(
t, (PRTD) > ¢, (PR — 7 MRt 5 N, (17.4.27
T = 7, (17.4.28
N — (1 = g)N®], (17.4.29
PO =p, NO =N, 79 =7

17.4.26

)
)
)
)

Here,
pl+1) — pk) 4 5(k+1)q(k+1), S+ CTék)th—n’ Hq(k+1)| 1y < OhL~ K.
Notice that N®) decays exponentially fast with k:
N® < (1-6)"N, (17.4.30)
so we get the condition on k that (1 —0)¥N > C > 1 which gives,
In X
k< —C (17.4.31)
In 10
We also have i
=7 (hV2)". (17.4.32)
For v > N, we iterate (%, to get
t,(P®) > t,(P) — 7oh™ (1 4+ A2 4 p2N2 4
(P 2 t(P) = N( ) (17.4.33)
Z tl,(P) - 27'0h L,

For 1 < v < N, let £ = {(N) be the unique value for which N®¥) < v <
NED 5o that
t,(PO) > 79, (17.4.34)

by . If £k > ¢, we get

t,(P®)) > ¢,(PO) — 270, (17.4.35)
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n N
The iteration above works until we reach a value k£ = ky = C’)(hlli)
1-0

for which N*o) = O(1). After that, we continue the iteration further by
decreasing N®) by one unit at each step.

Let k1 = O (In(%)/In(:25)) + O(1), be the last k-value we get in this
way. Then, by construction,

P(k:1+1) P _I_ (6(1 + + 6(k§1+1 k1+1))
P+ 6 (¢ + 12q® + 4 p gDy

where § = C’T IpNe=n and qV) satisfy 1|I T 2 6)), (II r % 7) uniformly In particu-
lar, [|[¢** V]| zs < Ch™* and this also holds for ¢ +hM¢@ 4. 4 pk N gD,

Summing up the discussion so far, we have obtained

oposition 17.4.4 Let Py, z, s > e + n/2, ¢ > 0 be as in Proposition

. Choose 7y €)0,h'?], so that the number N of singular values of
Py—z in [0, 10| satisfies . Let Ny > 0 be large enough so that @
holds. Let 0 < 0 < %1 and let N(0) > 1 be sufficiently large. Define N*),
1 <k < ky iteratively in the following way. As long as N*®) > N(6), we put
NED) = [(1 = 9)N®], NO = N. Let ko > 0 be the last k value we get in

this way. For k > ko put N*+tD) = N®) — 1 until we reach the value ky for
which N(kl) =1.

Put 7' =7 hkN2 i ki +1. The gre exists, an admissible

oten, wl q = qp{x) as in , satisfying (ii 7..5) 1), satisfying
, such that zf P5 Py+dq, 0 = C’TOhNQ*", we have the

followmg estzmates on the singular values of Py — z:

o Ifv>NO we have t,(Ps — z) > (1 — hN2C Yt (Po — 2).

o IFN® <y < NOD 1<k < ky, thent,(Py—2) > (1-O(hN>~K)) ™),
e Finally, forv = N%®) =1, we have t,(Ps—z) > (1—O(hRN2~ ))Téklﬂ).
Here K = K(n, s, €) is independent of the other parameters.

We shall now obtain the corresponding estimates for the singular val-
ues of Ps, = (Ps — 2)"'(Ps — 2z). Let ey,...,ex be an orthonormal family
corresponding to the singular values t;(P;) in [0, VA, put f; = & and let

(Ps—2)u+R_u_=v, Riu=vuvy

be the corresponding Grushin problem so that the solution operators fulfill

1
1| < —=, [IB<] <1, t;(E_y) =t;(Py—2) < Vh, 1 <j < N. (17.4.36)

Vh
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In order to shorten the notation, we shall assume that z = 0. Put R_ =
P{lR_. Then the problem

Ps u+ Rou_ = v, Riu=uv,,
is wellposed with the solution
u=Ev + E+v+, u_=E_v + E_+v+,
where

E:Eﬁg y E+ :E+
E, — E,§5 y E,+ — E7+.

Adapting the estimate dﬁl@gb to our situation, we get

ti.( P
b(Py) > (Fs) L<k<N, (17437

~ ||EPs||ti(Ps) + || E4 ||| E-Fs||

where we also recall that t,(P5) < v/h.
Write

EPs = EPsj+ E(P—P)
E_Py = E_Ps+E_(P-P)

and use that

EPs=1—E. R, =0O(1)in L(L* L?
E_Ps=—E_,R, = O(Vh) in L(L* ?)

together with and the fact that ||[P — P|| = O(1). It follows that

- 1 -
| EF;|| = O<ﬁ)’ |E_Fs|| = O(1).
Using this in %, we get
te (P, tr (P,
te(Ps.) > tkfé)” > ’“2( 05), (17.4.38)

where used that tx(Ps) < vh when 1 < k < N. Now the choice of N, gives
us some margin and we can get rid of the effect of 2C and get for 7y €]0, \/E]
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svb| Proposition 17.4.5 Proposition % remains valid if we replace Py — z
there with P .

We recall that by Proposition @L
Indet(S;. + ax(a™'Ss.)) =

(27T1h)n (//lnsz(x,f)dxd£+(9(1)(/0 VN()CiH/a%;’v &t g ))
<

when Ps = P+ 6(h2q + q2) = P+ 6Q and ||lg1]lms, [lgellas < 1,0 < h

a < 1. Here 0 < x € Cg°([0, +00]), x(0) > 0 and S;. = (Bs — 2) "X (Ps.—,2).
We apply this with Py = P in (I7.4.1) and Ps as in Proposition

and with 8 above replaced by & in ({74.19) so that Py = P40Q, Q = O( )

H7 — Hf for —s < o < s. Thus we get

In det(S(;Z + CYX<05_IS6 z)) =

(//lnszxgd:cdé—i-(’) </ Vn(t dt /aOhV()it 6—;50+h>>,

(17.4.39)
where § = §Ch "L+ M, and M is.given in , L is given in (@

and ¢ is given in d) in Proposition [I7.4.3] Notice that

° o), (17.4.40)

(67

where K is independent of N,.
Now choose v = h and set out to estimate Indet S5 .. First we have the

upper bound
Indet S5, < Indet(Ss. + ax(a™'S;.)),

40
which can be bounded from above by the right hand side of .
As for the lower bound, we use that

t3 (t
Indet S5, = Indet(Ss, +ax(a” ng Zl (M), (17.4.41) |sv.41

where 0 < t; <ty < ... are_the singular values of P; ., treated in Proposition
. The last sum in has at most finitely many non-vanishing
terms and is equal to Y7 In(1 + ax(£2/a)t,?). Assuming that 0 < y < 1, it
can be bounded from above by

Z In(1 + at,?) < (#{k; 1} < asupsupp x}) In(1 + at;?). (17.4.42)

tﬁ €asupp x
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Combining with Proposition il 742 (cf. (il f.%[.élb), we have for every

N >0,

#{k; 7 < asupsupp x} < On(1)(RY ™" + K"V (Ch)). (17.4.43)

From Proposition [I7.4.5| and the fact that k; = O(In(1/h)) we see that

> TOhNg(’)(l)ln% > 7_0h(9(1)1n%7

O(1)In %

L 1\ 1
In(l+at;7)<O1) (In—- | In—,

h To
which with 1i| §.§.43), 1|I f.24£.42b gives

> In(l+at?) <0O(1) (111 i) (ln %) 2 (RN + h™"Vn(Ch)).

To
(17.4.44)
Finally, (il ?.ﬁ.éﬂ ), 1|I %.ZAI.g§9i, (ﬁ'%) provide the lower bound for every N >

0,

SO

SRS

and hence

ti <asupsupp x

Indet Ss5, >(2wh)™" (// Ins,(x,&)dxdé+

o(1) (/Oh VN(t)% + /hao %V@%) + O(roh K 4 5—; + h)>

—0(1) <ln Tlo) (m %)2 (RN=" + b~V (Ch)).

(17.4.45)
40

Here we have chosen « = h in ([I7.4.39)), motivated by the fact that

o dt [h_ dt
a+—>/ V(t)—+/ V()=
] N

is minimal at o = h.
In the following, we assume that 6y < O(h?) and that N, is large enough

so that 5
Toh™M K EO < O(h). (17.4.46)
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17.5 Estimating the probability that det Ps . is
small

In this section we keep the assumptions on (P, z) of the be inning of Section

and choose Py as in with 0 < 6y < h? as in . As in the

preceding section, we consider perturbations of F, of the form
Ps=Py+0q, 0=Crh™™ C>1, (17.5.1)

where Ny > Ny(n, s,€) and ¢ is an admissible potential of the form dﬁb:

¢g= Y ore, acCP (17.5.2)

0<pr<L

where €y, €, ... is an orthonormal basis of eigenfunctions of the auxiliary op-
erator i > 0 which a semi-classical elliptic differential operator with smooth
coefficients and Re;, = uiek, e +oo. We will assume that L > 1 and
recall that

D = t{k; up < L} = O((L/h)") = O(h™™3), N3y = (M + 1)n.

Here we impose the following bounds on the sum in (@:

1

3 __2n
Lmin S L S h_Ma Lmin - M087776h 57%76, (1753)
o] < R, Ruin < R < h™, Ry = L2 M5 (17.5.4)
Recall from that
My = KM= 4+ h™"Vy(4h) < O(R™™), (17.5.5)

and that the number N of singular values of Ps — z in [0, 7o[ fulfills :
N < O(1) My, (17.5.6)
for any M > 0.
he main conclusion of the preceding section is_that there exists ¢ as in
with L = Ly, |a] < R, such that [45)) holds.
We next review the upper bounds of Chapter [I6] culminating in Proposi-
tion @ that we apply with a = h, recalling that “0” there refers to

sup || Ps — Pllc(ae me)-

—s<o<s
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With the notations of the present chapter, we get for general g as in m—
ﬂ.’lﬂb

In det 8,z <

(/nszxﬁdxdﬁ—i-(? (/ Vi (t it /hao}th()it)

0 _n
(17.5.7)

Recall that 0 is given in @D and that

us < O(L)RL* < O(1)h~ MM

lq]

Y

so (757 gives

In det(55 - <

N

+0(1) (h + TOhNQ_n_l_%_M_5M>>

(17.5.8)

and this still holds if we allow « to vary in the larger ball

la|op < 2R = O(h~M). (17.5.9)

(Our probability measure will be supported in Bgp (0, R) but we will need
to work in a larger ball.)
We consider the holomorphic function

F(a) = (det Pg}z)exp(—ﬁ // In |p,|dzdf), (17.5.10)

where we recall that det S5, = |det Ps.|?, s.(z,£) = |p.(z,&)[* Then by

(t758), we have
In|F(a)| <e(h)h™, |of < 2R, (17.5.11)
and for one particular value o = a® with | < %R, corresponding to the
special potential in ([I7.4.45)):
In|F(a®)] > —e(h)h™", (17.5.12)
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where we put with C' > 0 sufficiently large,
GO(h)/C ==

h dt @0 dt 1.1
/ VN(t)7 +/ ;V(t); +h—i—ln—(lnﬁ)Q(hN_”—i—VN(Ch))
0 h 70

+ 7oh™ K (17.5.13)

for an arbitrary fixed N > 0. Here K is independent of the choice of Ny > 1.
Let ! € CP with |a!| = R and consider the holomorphic function of one
complex variable
fw) = F(a® + wa'). (17.5.14)
We will mainly consider this function for w in the disc Dyo 41 = D(wy, 7o)
determined by the condition |a® + wal| < R:
0

1 2 0 1
Dyo g1 i |w+ bl ol + bl ol
o R R R R
with center wy,= —(a°/R|a*/R) and radius ro € [v3/2,v/5/2].
From (I7.5.11)), (I7-5.12) we get

2
<1-

2
=72, (17.5.15)

0

R

In [ £(0)] > —eo(R)h ™", In|f(w)| < eo(h)h". (17.5.16)

By @[}, we may assume that the last estimate holds in a larger disc,
say D(—(% O‘—Pi), 2r9). Let wy, ..., wys be the zeros of f in D(—(a—; °‘—Rl), 3ro/2).
Then it is standard to get the factorization

flw) =@ [[(w—w;), we D(—(%\%)ATO/S), (17.5.17)

1

together with the bounds
Rg(w)] < Oleg(A)h™), M = Ofeg(R)h™). (17.5.18)

ij01
See for instance Section 5 in fm] where further references are also given.
For 0 < e < 1, put

Q(e) = {r € [0,2r0[; Jw € Dyo o1 such that |w| =r and |f(w)| < €}.
(17.5.19)
If r € Q(e) and w is a corresponding point in Dyo 41, we have with r; = |w,],

[Tl =ril <] Iw = wy| < eexp(O(eo(h)h™)). (17.5.20)
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Then at least one of the factors |r—r;| is bounded by (ee@co(WP™")I/M Ty

particular, the Lebesgue measure A(Q(e)) of Q(e) is bounded by 2M (ee@(co(Mh™"))1/M

Notiging that the last bound increases with M when the last member of
is <1 and that {r € [0,4+00[NDyo41; f(r) < €} C Q(e), we get

Proposition 17.5.1 Let o' € CP with |o!| = R and assume that € > 0 is
small enough so that the last member of 1s < 1. Then
M{r € [0,+ccf; [a®+rat| < R, |F(a® +ra')| <e€}) <

co(h) hr (17.5.21)
hn exp(O(l) + W In 6).

Here and in the following, the symbol O(1) in a denominator indicates a
bounded positive quantity.

Typically, we can_chogse € = exp —Z%(fc)x for some small o > 0 and then
the upper bound in (%D becomes
GO(h) 1
0 O(1) —

Now we equip Beo (0, R) with a probability measure of the form
P(da) = C(h)e® @ L(da), (17.5.22)

where L(da) is the Lebesgue measure, ® is a C'' function which depends on

h and satisfies
V®| = O(h™), (17.5.23)

and C(h) is the appropriate normalization constant.
Writing a = o + Rra?, 0 < r < ro(a?), o? € S?P~1, % <7y <

N

, we get
P(do) = C(h)e® P~ 1drS(da?), (17.5.24)

where ¢(r) = ¢p0a2(r) = ®(a’ + rRa?) so that ¢'(r) = O(L™5), Ny =
Ny + M. Here S(da?) denotes the Lebesgue measure on S*P~1.
For a fixed a?, we consider the normalized measure

p(dr) = 6(h)e¢(T)T2D_1d7" (17.5.25)

on [0,79(a?)] and we want to show an estimate similar to @ for p
instead of \. Write e?™r2P~1 = exp(¢(r) + (2D — 1) In7) and consider the
derivative of the exponent:
2D —1

—

¢'(r) +
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This derivative is > 0 for r < 27y, where 79 = C~!min(1, Dh™5) for some
large constant C', and we may assume that 279 < 1/2. Introduce the measure
[ > p by

fi(dr) = C(h)e?trma)p2D—1 g = max(r, 7). (17.5.26)
Since ([0, 7)) < u([ro, 270)), we get
1([0,7(a?)]) < O(1). (17.5.27)
We can write
fi(dr) = C(h)e*Mdr, (17.5.28)

where
¥/ (1) = O(max(D, %)) = O(h=),
N6 = InaX(N:;, N5),

where D = O(h™"3) by the estimate on D prior to m

Decompose [0, 7(c?)] into =< A6 intervals of length < h™¥e. If I is such
an interval, we see that

Ndr) _ ldr) Adr)
oxT) = ) = O

nr 17 inr 25 nr_ 16
From (I7.5.21), (I7.5.30) we get when the right hand side of is
<1

— I

(17.5.29)

on I, (17.5.30)

it € 1 1Fla + rhat)] < i) < S0 U exp( o g
_ o(1yp-Ne o) M e,

P G @ e

Use that ([0, 70(c?)]) = O(1), multiply with fz(I) and sum the estimates
over I, to get

éo(h) h™
o eXp(O(l)eo(h) Ine).
(17.5.31)

incg 1 < fi, we get the same estimate with i replaced by p. Then from
(L75:24) we get

a({r € [0,r(a®)]; |F(a®+rRa")| < €}) < O(1)h N

pr2| Proposition 17.5.2 Let € > 0 be small enough for the right hand side of

(1 /.J).QQ) to be < 1. Then
h h"
P(F(0)] < ) < O(h U ey

O(l)ﬁo(h)

Ine). (17.5.32)
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Remark 17.5.3 In the case when R has real coefficients, we may assume
that the eigenfunctions €; are real, and from the observation after Proposition
% we see that we can choose oy above to be real. The discussion above
can then be restricted to the case of real o and hence to real a. We can
then introduce the probability measure P as in % on the real ball
Brp(0,R). The subsequent discussion goes through without any changes,
and we still have the conclusion of Propositionh%

pr4| Remark 17.5.4 Choosing N, sufficiently large in the definition of §, we see
that €y(h) in (I7.5.13) satisfies

eo(h) < C (/Oh T /h %V(t)% tmt (m %)2VM(Ch) + h) |

t To
(17.5.33)
C=C(M), M >n.

pr5| Remark 17.5.5 Let us write € = e~“/"". Proposition @l shows that if
€ > Ceg(h) > 0 for C' > 0 sufficiently large, then

€

P(|F(a)| < e ") < O(1)h "¢y (h) exp <—W) . (17.5.34)

17.6 End of the proof

epr
We start by having a cJoser look at the two i eg;rals appearing in the defi-

nition of €y(h) in (I7-5-13)). We have by

/oh vN(t)% - /Oh/;(Hg;)NdV(Uz)%- (17.6.1)

MeSj02, HaSj08

Recall from Proposition (using also Proposition see also [[I03]

5o]) that
o) =5 [ [ o duds = [ [ 1nlp.o.¢)pavae

is continuous and subharmonic with

Ad

5 (W) L(dw) = p.(dwdE). (17.6.2)

Hence, A
¢
2y
V)= [ Srwiiaw)
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SO
|w

wio=[ o+

_ Z|2>_N% .

t 27

lepr 3 lepr 1
Inserting (I7.6.3) in (I7.6.1)) leads to

/OhVN(t)% :/Oh/|w2|<1(1+

w—z* _yA
t
A¢

2
= / fN(’w A
fw—z|<1

where

lw — 2|2 /h lw — z*,_ydt /w—hzZ
W = s g 7

T T
B /l/’\ T Nodr
N 0 1+7 T
Next, we have a look at
dt
Vi T
/w z|<1 /max(|w

1/ -
() = /0 (14 Ly

/|w z<1(mm(L

w — 2>

Thus,

[amt-]

go(A) = (min(i, 1) —h); = {

h) e ) L(dw),

_ {<1+ln§>,
<1iv

E .

2hd7A¢

z|f7' T 2T

w — 2f*

1—h,
(% - h’)-‘ra

0<A<1,
A> 1.

1) —

90" ) A(w) L(dw

A <1,
A> 1.

) L(dw

(w) L(dw)

),

(17.6.5) |epr.5]

2h dr

>__

T2 T

(17.6.6) |epr.6]
(17.6.7) [epr.7]

pr_5 pr_3 br 13 nr 28
Combining (ﬁ/.b.bD, GLT/.O.JD and @ we get (cf (I7.5.13), (I7.5.33)):

dt
t

Tn(zh) =/0 ()

Ag

|Z7’LU|<1

D) S w) L(dw),
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(1+mnd), 0<Ax<1

17.6.9
A> 1 ( )

1+ A
Applying @,We get

eo(h)gln%an%)?/' y il _hw| )?f( VL(dw) + O(h).  (17.6.10)

En(A) S k(A) = L + ln+ 3= {

1
P

Let I' € iné)ze a domain with Lipschitz boundary as in the beginning
of Chaptercﬁﬁth constant scale r = v/h. Let 20,29, ... ;2% € 0T be dis-

tributed on the boundary as in that chapter, so that o' C U1 D( j,\/ﬁ),
dist (22,22,,) = Vh, with the cyclic convention that N+1 =1 Let

J = Jn(z; h) be defined in . We are interested in
N Ao
PRICHINBS /Go(w)2—(w)L(dw), (17.6.11)
T
1
where ~
o) = S k(2 17.6.12
() = 3K (17.6.12)

In order to avoid the glightly unpleasant logarithmic singularity appear-
ing in the estimate ﬁb, we make the same averaging observation as in
Chapter namely that there exist z; € D(z evh h) for any fixed € > 0,
such that

5 - wl?. A9 Ag

/D(zj,(l_ze)m)k(T)ﬁ(w)L(dw) = 0(1)/% . 5, (W) L(dw).
(17.6.13)

In fact,

T gt o e () B 0
5wl ) A0

= /D(z;?,u_e)\f L(D (zj,ex/_))/ (0,eV/R) " <T) L(dgj)%(wﬂ(dw)

-

<o)

<on) / 21 dw).
D0, (1-ovh) 2T
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Hence, 3%; € D(29, ev/h) such that

= WP\ A
/ k (u) —¢(w)L(dw)
D(Z;,(1-2¢)V/h) h 21

A
< / 29 ) L(dw)
D(29,(1-€)Vh) 2m

A
< /D 2 ),

We now replace the sum in @D by

S JGEh) = / Gl(w)%m)udm, (17.6.14)
where -
Gw)=3" k(@), (17.6.15)
so that by the preceding observation
[ 6w wiLi) < 00) [ w32 w)Lw)
G2(w) = Z%(@), (17.6.16)
= 2 h (17.6.17)

h )= h+|w—z]*
From the form of /15, we see that the order of magnitude_of the right hand
side in (I7.6.14)) will not change if we replace 2; in aﬁp by 27. Thus,
N Ad
S (i) < O(1) / Gw) 5 ) L(dw), (17.6.18)
1

where

G(w) = ZE(M). (17.6.19)
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From the geometric assumptiEns o% I', we see that the order of magnitude

of G and hence the validity of will not change if we replace GG in
A by
G(w) = G(w,T: h) — / plzz vl ldz] (17.6.20)
Y or h vVh -
By a change of variables,
1
G(w,T;h) = G(—=, —=T; 1) (17.6.21)

Vi Vi

- t
Here I' = h~'/?T" is a Lipschitz domain as in Chapter With constant scale
r = 1, so the problem of studying G is reduced to that of studying

~ 1
G, T = | ———|dz|. 17.6.22
@50 = | el (17.6.22)

Consider the following regularity property for ar: For some fixed k €
[0, 1], we have the following upper bound on the length of OT' N D(w, R),

0T N D(w, R)| < O(1)R'*", R > 1, (17.6.23)

uniformly with respect to w. Then by writing

. +o00 1
G, T 1) = / 4|6t N D(w, B)|,
d(w,0T") 1+ R2

we see that

G(w,T,1) = O(1)(1 + d(@, ). (17.6.24)

The most regular case is that with x = 0.
Returning to I', we may assume that for some x € [0, 1[:

R 1+k
10T N D(w, R)| < O(1)Vh (ﬁ) , R>Vh. (17.6.25)
Then (ﬁ%[)—(ﬁ%%zb lead to
G(w,I';h) =0O(1) (1 + d@’\/gr))ﬂl . (17.6.26)
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Remark 17.6.1 The estimate 1@ can be improved when d(w,T’) >

diam (T"). Let us first observe that (I7.6.25) with w € OI' and R = diam (T")

gives the estimate

T < O()Wh (M)M. (17.6.27)

vh
When d(w, dI') > diam (I') we get from dﬁ[}
|OT| 1

G(w,T';h) < T AT (17.6.28) |epr.26.2
L+ 75—
1

From (% we see that this estimate is sharper than (ﬁb when
d(w,T) > diam (T).

in 2
Let us sum up the results so far, in order to apply Theorem [12.1.2" We
choose z? as in that theorim with r there equal to v/h. Aprly Remark W
with z there replaced by z; and with ¢y(h) replaced by €(Z;; h), where

1 1\? —w*\ A
(zih) = Cln + (m E) / o <'T“"> 29 ) Ldu) + O(h).
(17,629

cf d%?l%b nd where % can be replaced with k, thanks to the choice of Z;.
By Remark [I7.5.5 we know that if €; > Ce(Z;;h) > 0, then

€

P <| det Pz, | < 67(27r1h)n(¢(§j)*€j)> < O(l)h*N6*n€<’Zj; h)e ©DGEM - (17.6.30) [epr.28

On the other hand, by Proposition @, we know that for every admis-

sible perturbation
1 .
| det Pj,| < o @ (#(2)+e(z:h) (17.6.31)

In order to fix the ideas, we choose ¢; = h~%¢(Z;; h) for some ng small
0 > 0. We can then apply Theorem and Remark with the
following substitutions:

e “h” in the theorem should be replaced by (27h)",
e “¢” in Theorem ﬁshould be replaced by the function ¢(z)+€(z; h),

e ¢, in the theorem should be replaced with €; = h=%¢(Z;; h).
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We also recall the passage from Theorem %to Theorem %by an
averaging procedure, and that we have applied the same procedure to see
that Z; can be chosen so that

e(Z:h) = O(1) In ~ <ln %)2 /gj_wmﬁ (M) ?—f(w)L(dw) L o).

To
(17.6.32)
(The averaging method _allows us to have simultaneously with the
conclusion in Theorem ;
From Theorem and we now conclude that with probability
-5
>1- O(1)h Nen (Ze(zj,h)> e 0w, (17.6.33)
we have

’#(G(Pé)mr)— ! /FAW“(Z”’))L(@)

(27h)» 2m
< (17.6.34)
% AT(AcM-!Ae!)L(dw)ﬂLh_é;G@?h) )

where (as defined in Theorem %
77/7“ - UZE’YD(Za T’(Z)), 7 = 8F7

here with » = v/h. It is also clear that the number of points z; satisfies

N = O(h™).
Let us next JeV1e the remainder terms in ‘ ' ):
Combining and , We see that

Ze(zj;h)gou)ml(m%) /G( V29 () L(dw) + O(Nh), (17.6.35)

To 2T

where G is given by (ﬁb Here, Nh.= O(|O|hY/2).
Noticing that the O(h) term in (ﬁb can be assumed to be constant,
we next look at

/F Ae(z: h)L(d2)

—0(1) mTlO(m%)? /Zer /weg A, (k: ('Z _hw’2)) A(gfrw)L(dw)L(dz)

_ L1 L Ad(w)
—(9(1)11&—(11(1%) /QH(w,h) L(dw),

To 27
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where

o= [ & ()

and ) is a fixed neighborhood of the closure of T'.
By Green’s formula,

L 0 |z — wl|?
H(w,h)—/aranzk< ; )|dz|,

where n, is the exterior unit normal. An easy calculation shows that

0 |z —w?\ h 1
anzk ( h ) =0(1) <(h + |z — w[?)3/2 T 1{|sz|§\/fl} |z — w_|> )

SO

h 1
H(w: h) = 1 1 )
(w7h> O( )/81" ((h+ ‘Z—’LU‘ )3/2 + {lz— w|<f}’z |) ‘dz‘

nr 17

. . pr_20
Comparing with (ﬁ{.b.ZOD7 (ﬁ/.b.l/p;

h |dz|
G(w; h) = ,
(w: ) /arh+|z—wl2¢ﬁ

we see that

h

and conclude that

<lnLn by ( /Q G (w) A (w) L (dw)

To

+/th+ (W) A¢(w)L(dw)> . (17.6.36)

The first term to the right is the same as in d%, while the second one
will require an averaging argument.
Finally, we look at

/F Ae(z: ) L(d2)

|A6|L(dz)

still with » = y/h and again with the ) term in constant This
time, we use with £ in regularlzed near A = 1. Apply A,
to get

1 1

) h
Aue=O(H)In - (iny) (/ (h+|z_w|2)2A¢(w)L(dw)+Agz5(z)).
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Consequently,

/ﬁrmew(dz): o) In H(n (/K ) A(w)L(dw) + /TM”( >),

(17.6.37)

where

K(@:l( L)

(h+ |z —w]?)

h3/2
— o) /8F T £ 0G ).

Since G 2 1 on 7, we have

/~ |Ae(z)|L(dz)§lnTl<ln%) /Q G()AG(:)L(dz).  (17.6.38)

0

lepr lepr 35
Combining Ul{ 6. d4|) (|1/ 6. dtﬁ|), we get

\#(awgmr)— T [ ot <

(2wh)™ Jr 27

0(1) h

" 7/an+ (W> A(w)L(dw), (17.6.39)

valid with a probability as in

For t €] — vVh, VI, let

ro_ {z € T'; dist (z,0T") > |t|}, when t <0,
e {z € Q; dist (2,T") < t}, when t > 0.

Then IT; is a uniformly Lipschitz curve of scale vh. Locally after rotation
near any given point zy, € 0T, we have in D(zg, 2v/h)

Iy = {z € neigh (29, C); Sz < f(t,R2)}
where f(t,-) is Lipschitz, uniformly with respect to to t and
ft,Rz) — f(s,R2) <t —s.
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Let v, = OI';. By construction the curves ~, are mutually disjoint and fill up
3 (r = V/h). Clearly,

A A¢ Ag
/Ft %L(dz)—/rgL(dz)' g/% gL(dz). (17.6.40)

Applying the proof of dﬁb with I' replaced with 7,, we simply avoid
the troublesome last term there (coming from f% eL(dz) that we have esti-
mated already) and we conclude that with a probability as in

\#(0(P5 ¥l S
1

( h~%1n < ) wF)A¢(w)L(dw)+(9(|aF|h%)>. (17.6.41)

onsequently for each ¢t €] — v/h,V/h[, after figst replacing I' with T, in
, we have with a probability as in :

\#wuﬁ;) )= o [ SoL)| <

(271']1)” 2T
% <h 51“%( ) /G w, T')Ad(w) L (dw)+0(|ar|h%)>
+ %/ﬂlm <m) A¢p(w)L(dw). (17.6.42)
Now,

dt < 15
2\/_/ (dlst (w,7)? > ~ v

2\/_/ dt/ (dlst (w, ;)2 )Acb(w)L(dw) N /:sz Ag(w)L(dw),

so there exists ¢t €] — v/h, V/h[ such that

h
/Q In, (W) Ad(w)L(dw) < é Do)
As in @Ei the last integral is
O(l)/g}G(w,F)Agb(w)L(dw),
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so choosing this value of ¢ in @D, we _can get rid of the last term there
and this completes the proof of Theorem . O

 We finally explain the extensions in Remark % The case when
is already included in the proof above. When we merely as-
sume ([I5.3.9]] for some 9 €]0, 1/2[ we get the corresponding weakening of the
theorem after some modifications, basically just by multiplying some powers
of h in some remainders with h=":

Before : Weaken the assumption to dy < h?~7.
In , replace the last h with h!'=7.

First sentence in Section : 0<dy < h??.

m: Replace the first A with 21~7 in the last O(...).

: Idem.

o ®3 Replace the third term h to the right with h!'=7.

° m: Replace the last term h to the right with h!'=7.

. dﬁf‘ﬁbz Replace the last term O(h) to the right with O(h!=?).

. dﬁb: Idem.

o @: Idem.

e In (ﬁb and on the following line: Read Nh!~? = O(|dT'|hz~?).
e On the following line: “Noticing that the O(h!~?) term ...”

o ([TFE30): Replace OO0 |h}) with O(|OT|AS )

o dﬁ[}: Idem.

o (529 1dem.
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Chapter 18

Distribution of large
eigenvalues for elliptic
operators

18.1 Introduction
-levint

In this chapter we consider elliptic differential operators on a compact man-
ifold and rather than taking the semi-classical limit (b —) we let h = ]Osan oll
study the distribution of large eigenvalues. W. Bordeaux Montrieux +F
studied elliptic systems of differential operators on S* with random perturba—
tions of the coefficients, and under some additional assumptions, he showed
that the large eigenvalues obey the Weyl law almost surely. His analysis
was based on a reduction to tﬁ} %%ml classical case, where he could use and
extend, the methods of Hager [b4].

In [I¥] Bordeaux Montrieux and the author considered scalar elliptic oper-

SH9p A general smooth compact manifold Ubslgg the semi-clasgical results

of 391 The present chapter follows closely, Tgf_ﬁut we replace [I32 F by the
results of Section which leads to some modifications.

Let X be a smooth compact manifold of dimension n. Let P° be an
elliptic differential operator on X of order m > 2 with smooth coefficients
and with classical principal symbol p(z,£). In local coordinates we have,

= Y @D pla,g) = Y al(@)e, (18.1.1)

jal<m jal=m
The ellipticity of P’ means that p(x,£) # 0 for real £ # 0. We assume that

WT"X) £ C. (18.1.2)
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Let dx be a strictly positive smooth density of integration dxr on X and use
it to define the L? norm || - || and the inner product (-|--). Let ' : L*(X) —
L?(X) be the antilinear operator of complex conjugation, given by T'u = u.
We need the symmetry assumption

(PY* =T P, (18.1.3)

where (PY)* is the formal comgleéi adjoint of P°. As in Section @ we

observe that the property (IS.1.3)) implies that

p(l’, _5) = p(x,E )

)
int.4
and conversely, if mholds, then the operator $(PY+T(P°)T) has the
same principal symbol p and satisfies I

(18.1.4)

Let R be an elliptic second order differential operator on X with smooth
coefficients, which is self-adjoint and strictly positive. Let €g,€y,... be an
orthonormal basis of eigenfunctions of R so that

Re; = (19)%€;, 0 < pg < p] <pg <. (18.1.5)
Our randomly perturbed operator is
P’ =P° + ¢’ (), (18.1.6)

where w is the random parameter and
@(z) =D adw)e;. (18.1.7)
0

Here we assume that 042 (w) are independent complex Gaussian random vari-
ables of variance 032- and mean value 0:

af ~ Nc(0,07), (18.1.8)
where .
—p —(uOYMF1 _
W(Mg) e~ <o <O (1Y), (18.1.9)
3n—1 1
M=——2_0<B<=, p>n, (18.1.10)
S — 3 € 2

where s, p, € are fixed constants such that

n< < n OD<e< n
—<s - = €< s — —.
2 Py 2
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We will see below that ¢), € H*(X) almost surely since s < p— . Hence
q° € L> almost surely, and it follows that P% has purely discrete spectrum.

Consider the function F'(w) = arg p(w) on the cosphere bundle S*X. For
given 0, € S' ~ R/(27Z), Ny € N := N\ {0}, we introduce the property
P(6y, No):

ZO: [VEF(w)| # 0 on {w € 5*X; F(w) = 6o} (18.1.11)

Notice that if P(6y, No) holds, then P(0, Ny) holds for all f in some neigh-
borhood of #y. Also notice that if X is connected and X, p are analytic and
the analytic function F is non constant, then 3N, € N such that P(6y, No)
holds for all 8,.

The main result of this chapter is basically the one of %8]]_

Theorem 18.1.1 Assume that m > 2. Let 0 < 0_1 < 0y < 27w and assume
that P (61, No) and P (0, Ngy) hold for some Ny € N. Also assume that 5 €
[0,1/(2No)[. Let g € C*([01,02];]0, 00[) and put

G, op00 = {re®;0, <0 <6, 0<r<Ag(0)}.

Then for every § €]0,1/(2Ny) — 5] there exists C' > 0 such that almost surely:
AC(w) < oo such that for all X € [1,00]:

1 _
|#(U(PB) N Pgl,QQ;o,A) - WVOIP I(Pgl,@;o,xﬂ

(18.1.12)
< Ow) + CAm~m g =09,

Here o denot&% the sp;gtmm and #(A) denotes the number of elements

in the set A. In the eigenvalues are counted with their algebraic
multiplicity.

By the same proof we have an almost certain conclusion for a whole family
of 017 027 g:

Theorem 18.1.2 Assume that m > 2. Let © be a compact subset of [0, 27].
Let Ny € N and assume that P(0, Ny) holds uniformly for 6 € ©. Also
assume that 5 € [0 7211v . Let G be a subset of {(g,01,02); 0; € 0,6, <
b2, g € C>([61,0-];]0, oo[)} with the property that g and 1/g are umformly
bounded in C*([01,02);]0,00]) when (g,61,0s) varies in G. Then for every
§ €]0, 2N — B there exists C' > 0 such that almost surely: 3C(w) Eoo sucﬁ

that for all \ € [1,00[ and all (g,0:,6,) € G, we have the estimate
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int.8.5
In we can choose o; decaying faster than any negative power of

p. The discussion below, will imél%.tg%t ¢w(x) is almost surely a smooth

function. Very roughly Theorem hen implies that for almost every
elliptic operator of order > 2 with smooth 50 fﬁcien%s on a compact man-
ifold which satisfies the conditions %,ﬁ d%%’bf the large eigenvalues
distribute according to Weyl’s law in sectors with limiting directions that
satisfy a weak non-degeneracy condition.

18.2 Some examples

Let f € C°°(S') be non-vanishing and take its values in a closed sector ' C C
of angle < 7. In other words, there exist 6y € R, a € [0, 7/2] such that

arg f(S) = [0 — , 0y + a. (18.2.1)

. .. Bo08, Boll, Se86
Assume for simplicity that 6y = 0. Then (see [15] 10, [II9]) the spectrum
of f(x)D can be computed directly and we see that it is constituted by the

simple eigenvalues

k
=iy KEZ (18.2.2)
where (1/f) denotes the mean-value of the function 1/f. Since 1/f is non-
vanishing with values in the sector T, the same holds for (1/f).
The antisymmetric operator fY/2Df1/2 = f=Y/2(fD)f'/? has the same
spectrum and the elliptic symmetric operator

PO — (fl/QDfl/Z)Q — szD o %l(fl>2 - %ff// (18.2.3)
therefore has the spectrum
2 k?
{MO;MMM?? }7 Hk = )\}g - W; (1824)

where pp is a simple eigenvalue and pq, o, ... are double. The principal
symbol of P? is given by
pla,€) = f(x)*¢ (18.2.5)
and its range is the sector .
[0, ooefl—22 (18.2.6)

(having chosen #y = 0) which does not intersect the open negatiye halfsaxis.
The eigenvalues py are situated on a half axis inside the range dﬁ and
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unless arg f = Const., we see that Weyl asymptotics does not hold for P°.
On the other hand, if we add the non-degeneracy assumption,

No

Z |(%)karg f(z)| #0, z € S*, for some Ny € N\ {0}, (18.2.7)

1

hen t]fE % % grty (6, No) holds for all 6 and we know from the Theorems

that Weyl asymptotics holds almost $ rel; fcbr the random
perturbations P? = P% + ¢ if ¢° is given in 4“% I ?i— i% I im

Despite the fact that (in some sense and with the additional conditions
in our main theorems) almost all symmetric elliptic differential operators
obey Weyl asymptotics, it is probably a difficult task to find explicit opera-
tors with this property outside the class of normal operators and operators
with principal symbol having constant argument. To find such examples one
would probably like to assume the coefficients to be analytic but in that case
Weyl asymptotics is unlikely to hold. Indeed, in the analytic case there is
the possibility to make an analytic distorsion (for instance by replacing the
underlying compact analytic manifold by a small deformation) which will not
change the spectrum (by ellipticity and analyticity) but which will replace
the given real phase space by a deformation, likely to change the Weyl law.
In one and two dimensions analytic distorsions have been used to determine
the spectrum (by making the opera re 1).in the t 1Qn.
semi-classical (case this was done mEﬁU;fb %Uf %{rll&?z#%dj%n(ﬁ% ! [dt?]nlil%zfg
shown that the resulting law is in general different from the Weyl law (naively
because a complex Bohr-Sommerfeld law relies on going out in the complex
domain while the Weyl law only uses the real cotangent space).

To illustrate this, let us consider the second order differential operator on

Sl

P? = a(x)D* 4+ b(x)D + c(z), (18.2.8)

where the coefficients a, b, ¢ are smooth (and 27-periodic when considered
as functions on R). We assume that P° is elliptic, so that a(x) # 0 and
even that the range of arga is the interval [—2«,2a] for some a € [0, 7.
Then a(x) = f(x)?, where f is smooth, non-vanishing and the range of arg f
is [~a,a]. The Bohr-Sommerfeld quantization condition, which correctly
describes the large eigenvalues when P is self-adjoint and more generally
when a > 0, would predict that the large eigenvalues ui are determined by
the condition

I(pug) =27k + O(1), k € Z, |k| > 1, (18.2.9)

21

where I(y) is the action, defined by I(u) = [ &(@, p)dz, E(w, 1) = p/ f(2),
so that p(z,&(x, p)) = p?, where p(z, &) = f(x)2£% is the principal symbol of
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P°. Notice that this simplifies to

k
iy s +O(1). (18.2.10)
We also recall that the remainder has a complete asymptotic expansion in
negative powers of k. /és we have seen, this rule is correct in the special case
of the operator @' and as we have noticed it becomes almost surely false
if we add a rangom sg:goth zero order term (at least in the symmetric case
in the sense of
However, the Bohr-Sommerfeld rule is correct u L suitable analyticity
assumptions, as we shall now review (cf. Chapter [7]): Look for a complex
change of variables x = z(t) with 0 = x(0) so that f(x)D, = kD, for a
suitable k € C\ {0}. We get

dat _ k
dr  f(x)
so the inverse t(z) is given by
t=k [ . (18.2.11)
o f(y)

1
if f is merely smooth we can still define a complex curve t(x) by (@
for real . We now determine x by the condition that ¢(27) = 27, i.e.

1
K= (18.2.12)

1/f)

Now assume that f extends to a holomorphic non-vanishing function in a
2m-periodic simply connected neighborhood € of R in C. Then ¢(z) extends
to a holomorphic function on €2, and we assume that the set {z € Q; t(z) €
R} contains (the image of) a smooth 27-periodic curve v : R — 2 such that
7(0) = 0, y(27) = 27. Also assume that b, ¢ extend to holomorphic functions
on 2. Notice that if fy > 0 is an analytic 27-periodic function and if f is
a small perturbation of fy in a fixed neighborhood of R, then f fulfills the
assumptions above. In a small neighborhood of v we can replace the variable
x by t and we get the operator

P = k2D? + b(t) D, + &(t), (18.2.13)

well-defined in a small neighborhood of R;. For this operator it is quite easy
to justify t r]éphr—Sommerfe d ll(",})lle by some version of the complex WKB-
method (cf [43] and Chapter [/]. Now the Bohr-Sommerfeld rule is clearly
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invariant under the change of variables above. Moreover, eigenfunctions of P
defined near R, are also eigenfunctions of PY with respect to the z-variables in
a neighborhood of v and since PY is elliptic in 2, they extend to holomorphic
functions in €2 and by restriction become eigenfunctions on R,. The same
remark holds for generalized eigenfunctions. Hence the eigenvalues of P
are also eigenvalues of P°. This argument works equally well in the other
direction so we can identify completely the spectra of P and of P° and this
completes the (review of the) justification of the Bohr-Sommerfeld rule (and
hence of the non—validitéf of Weyl asymptotics when arg f is non-constant)
for the operator in the analytic case.

18.3 Volume considerations

he reimainder of the chapter is mainly devoted to the proof of Theorem
“% ll . In the next section we shall perform a reduction to a semi-classical
situa '0n.and1 work with A™P? which has the semi-classical principal symbol
pin %ﬂ* An important quantity is

vol p~ (7 + D(0,1)), (18.3.1)

where D(0,t) = {z € C; |2| < t}, vy = 9l and T € C is assumed to have
piecewise smooth boundary.

Proposition 18.3.1 Let y be the curve {re? € C; 7 = g(0), 6 € S'}, where
0<geCYSY). Then

vol (p™' (v + D(0,1))) = O(t), t — 0.

Proof. This follows from the fact that the radial derivative of p is # 0. More
precisely, write 7*X \ 0 3 p = rw, w € S*X, r > 0, so that p(p) = rp(w),
p(w) #0. If p € p~H(y+D(0,t)), for 0 < t < 1, we have |p(rw) —g()e?| < t
for some 6, so

lp(rw)| = g(0)] < O(t), |argp(w) — 0] < O(1),

which implies that |p(rw)| — g(arg p(w)| < O(t). Hence, we have for some
C > 1, independent of ¢,

glargp(w)) — Ct < r™|p(w)| < glarg p(w)) + Ct,

<g(arg|2;((t;)))| - Ct) z <r< (g(arg|1;((t;)))| + C’t) = |
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when ¢ is small. So for every w € S*X, r has to belong to an interval of
length O(t). O

3
We next study the volume in @ when 7 is a radial segment of the

form [ry, r5)e®, where 0 < 71 < 75 and 6, € S*.

Proposition 18.3.2 Let 6, € S*, Ny € N and assume that P(6y, No) holds.
Then if 0 < ry < ry and 7y is the radial segment [rq, Tg]ewo, we have

vol (p~! (v + D(0,1))) = O(t'/™), t — 0.
Proof. We first observe that it suffices to show that
VOls*XF_l([QO - t, 90 + t]) = O(tl/NO).

This in turn g!a WS for instance from the Malgrange preparation theorem (see
for instance [83[): At every point wy € F~1(y) we can choose coordinates
Wi, ..., Won_1, centered at wp, such that for some k& € {1,..., Ny}, we have
99, (F — 6p)(wo) = 0 when 0 < j < k—1 and # 0 when j = k. Then by
Malgrange’s preparation theorem, we have

F(w) — 0y = G(w)(wh 4 a1 (wy, ..., wap_1 )W + ... 4 agp(wg, ..., wan_1)),
where G, a; are real and smooth, G(wp) # 0, and it follows that
vol (F~([6y — t, 60 + t]) N neigh (wy)) = O(tYF).

It then suffices to use a simple compactness argument. O

Now, let 0 < 0y < 0y <27, g € C*([b4, 62];]0, 00[) and put

TG, s = (7€% 0 <0< 05, 119(0) <7 < 1ag(0)),  (1832)

01,02;71,72

for 0 <r; <ry <oo. If 0 <r; <7y <400 and P(6;, Ny) hold for j =1,2,
then the last two propositions imply that

volp™!(ar'), + D(0,t)) = O@Y™), t — 0. (18.3.3)

,02;71,72

18.4 Semiclassical reduction

We are interested in the distribution of large eigenvalues ¢ of P?, and write

z

o 2l <1, b= I~V 0<h < 1. (18.4.1)

¢
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Then

R (P? — () =h"PY — 2z =P+ h™® — 2, (18.4.2)
where
P=h"P’ =" an(z;h)(hD)". (18.4.3)
|a|<m
Here

ao(z;h) = O(R™ 1oy in O,

18.4.4
ao(z;h) = a’(x) when |a| = m. ( )

Pisa semi'—classicgfl differential operator with semi-classical principal symbol

p(z,€) in
Our strategy will be to decompose the random perturbation

thg = 5(10.} + k’w(iﬁ),

where the two terms are independent, and with probability very close to 1,

0q., will be a semi-classical random perturbation as in Section while
ko llrrs <, (18.4.5)
and n "
€l=,p— = 18.4.6
is fixed. Then A™P2 will be viewed, as a random perturbation of h™P° +
k., and we will apply Theorem with the extension indicated right

thereafter. To achieve this without extra assumptions on the order m, we
will also have to represent some of our random variables oz? (w) as sums of
two independent Gaussian random variables.

We start by examining when

1" q0 | s < B>, (18.4.7)

for a fixed ¥ € [0,1/2].

Proposition 18.4.1 There is a constant C' > 0 such that (@ holds
with probability

1
Proof. We have
h™q), = Z%‘(w)% aj =h"al ~ Nc(0, (h™0;)?), (18.4.8)
0
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and the o are independent. Now, from Proposition @ with h fixed, we
see that

I nHmZm a5 (), (18.49)

where (p9)%a; ~ Nc¢(0, (7;)*) are independent random variables and ; =

Now recall Proposition %, (Bordeaux Montrieux fl%}l) Let dy, dq, ... be
a finite or infinite family of independent complex Gaussian random variables,
d; ~ Nc(0,(55)%), 0 < 6; < 0o, and assume that )67 < co. Then for every
t>0,

P(Z |d;|* > t) < exp < — (CO Za — t>> (18.4.10)

Here P(A) denotes the probability of the event A and Cj > 0 is a universal
constant. The estimate is interesting only when ¢t > Cj 28]2- and for such
values of ¢ it improves if we replace {dg, dy, ...} by a subfamily. Indeed, > 3?

will then decrease and 505 will maxa
Apply this to @ with %z !/Lg Sovi, t —5h4 20 Here, we recall that

o; = (19)*h™o;, and get from

(18.4.11)

max a h2

while

i&? < thi (s=p), (18.4.12)
0 0

Let N(pn) = # (O‘ <\/_) NJ0, ,u]) be the number of eigenvalues of VR in
10, 1], so that N(u) < p™, p — oo, by the standard Weyl asymptﬁtics fgr1

positive elliptic operators on compact manifolds. The last sum in
is equal to

| nant = [ 20 - 90 N
0 0
5.5
which is finite since 2(s — p) +n < 0 by @._Thus
> &< nm (18.4.13)

0
and the proposition follows from applying 1“% 1. 55 d% 1“§§ if%}

(I84.10) with ¢ = h*~2.
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We next review the choice of parameters for the random perturbation in
Theorem . This perturbation is of the form dq,,

6 =1h™N2™", 0 < 19 < B2, (18.4.14)
where Ny > 1 is constant,

W)= > awea(), laler <R, (18.4.15)

0<hud<L

and a possible choice of L, R is

L=C:nM, R=n" (18.4.16)
with C' > 1 as in @D and
3n —~  3n n
M=——— M=—+(5+¢M. (18.4.17)
S — 3 € 2 2

Here € > 0 is any fixed parameter in |0, s — %[ and g, should be subject to a
probability density on Beo (0, R) of the form C'(h)e®@?) L(da), where

Va®| = O(h™™), (18.4.18)
for some constant N; > 0.
Write
Gy = Qu + @5 (18.4.19)
= Y, awe, =) awe (18.4.20)
0<hu‘;§L h#?>L

From Proposition %and its proof, especially the observation after @

we know that

1
9O h2m—2+9) | °
(18.4.21)
When m = 2 we will take ¥ €]0,1/2[ and for m > 2 (i.e. m > 4), we will
take ¥ = 0. Write

A" 2 || gs < h*™Y with probability > 1 — exp (CO -

P+ h"q, = (P+Nh"q;) + h"q,

and recall Theorem %j] and Remark %
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The next question is then wether h™ql can be written as 7oh™*? "¢, where
Qo = D _oenpo<r @€ and |algp < R with probability close to 1. We get
9<

1
;= —hm N0 () ~ N(0,57),

(6%
T0 J

2]
ihm—Nw(Mg)—pe—(ug)m <~

To
Applying (ﬁ, we get
R*7?

P(lalgp > R?) < exp(C — a2y ) (18.4.22)
which is O(1) exp(—h~°) provided that

—~ In(1
ol + 2% ANy —n—m) < -4, (18.4.23)
n

Here 7y < h? and if we choose 79 = h? o jnore generally bounded from below
by some power of h, we see that @ holds for any fixed §, provided that
m is sufficiently large.

In order to avoid such an extra assumption, we represent Oé? for h,u? <L
as the sum of two independent Gaussian random variables. Let jo = jo(h)
be the largest j for which hu§ < L. Put

1 _
o = EhKe*Ch ’ where K > p(M +1), C>1 (18.4.24)

so that o/ < %aj for 1 < j < jo(h). The factor h" is needed only when
5 =0.
For j < jo, we may assume that of(w) = oj(w) + off(w), where o ~

N(0,(0")?), &f ~ Nc(0,(07)?) are independent random variables and

so that
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9
Now (cf @‘) we write

P+ "y = (P +h™(q; + ¢3)) + h"™q,
Theorem @ is valid for random perturbations of
Py =P+ h™(q + 45),

provided that, [|F™ (g + ¢2)|lu= < h?, which again holds with a probability
as in %‘Bﬁ and_when ||h™(q" + qw)| s < h?>7? we have the weakened
variant in Remark . The new random perturbation is h™¢/, which we
write as Toh’\?7"q,,, where ¢, takes the form

D 9wy, (18.4.25)

0<hu9<L

with new independent random variables

2
9; = lhm*Nﬁ”ag(w) ~N (0, (1th2+"a'(h)> ) . (18.4.26)

To To

Now, by dﬁ),

2,2
P(0f20 > B) < exp(O(1)D — s

O o (R

Here by Weyl’s law for the distribution of eigenvalues of elliptic self-adjoint
differential operators, we have D =< (L/h)". Moreover, L, R behave like
certain powers of h.

e In the case when 3 = 0, we choose 79 = h?. Then for any a > 0 we get

P(dlco > B) < Cexp(— )

4
for any given fixed a, provided we choose K large enough in @

e In the case 8 > 0 we get the same conclusion with 7y = h=%¢” if K is
large enough.

In b,obth cases, we see that the independent random variables ¥; in ﬂlml

Hoveeis
@ have a joint probability density C/(h)e®@" L(da), satlsfymg (18.4.13)

for some N, depending on K.
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Recall the choice of 79 above, depending on whether § = 0 or 5 > 0.
Also recall that o' = %hKe_Chfﬁ, K > +1). Let I' € C have piecewise
smooth boundary, so that GG satisfies with k = 0:

1
When ||h™(q" + ¢2)||zs < h?, which_ho]ds with a probability as in @

w

with ¥ = 2, we can apply Theorem to see that with probability

G =001) (1+

hfé
O(1)e” °om s 1 1 2/ 1
> 17 — — 2
>1 et ((h +1In h) (ln h) i G(w,I')A¢(w)L(dw) + |0T'|h2 |,
(18.4.27)

we have

0P D) - ol (70 <

—O(l) - nl -3 n1 2 w w w 3
p ((h #ing ) 07 (ing ) [ Glo.Dpavw) L) + orln )
(18429

s <

Here 0 < 0 < 1is a free parameter and ¢, g2 a ¢ fixed with || (¢ +q3
h which holds with a probability as in @

When m = 2, we settle for [|h™(q” + ¢*)||zs <.h*Y and get the weaker
statement with [O|h2 replaced with_ al’ Q%*ﬁ in (I8.4.2 [3.4.25).
Now let I' = I o,... ,, be as in (I8:3.2] and assume P(6;, No) for j = 1,2
so that holds. Then, using also (I5.3.8) with x = 0;

N2

=

we see that
/ G (w, T)Ad(w)L(dw) = O (hT) .
r
In conclusion,

Proposition 18.4.2 LetI' =Ty, 9,., 1, be asin (% and assume P(6;, No)
for 5 = 1,2. Choose § = 1oh™2™ with 19 as above. Let q’,q> satisfy
R (q" + ¢2)|| s < h27Y, which is fulfilled with a probability as in /q%
Here ¥ € [0,1/2[ and we take ¥ =0 when m >4 and ¥ > 0 when m = 2.
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Then with a probability for ¢ that is

>1—O(1)e™ /oM (18.4.29)

we have when m > 4,

‘(#G(P(s) NI — (27r1h)”V01 (p_l(F))>‘ <

O(1) 5 1,5 (0 1\ 2
m ((h +lnh)h I | h¥0 4R ).

When m = 2, we have the same conclusion, provided that h is replaced with

(18.430)

B30
—30 ~
The estimate d@_ is of interest when 5+ 0 < 1/(2 9
As noticed after Theorem , with probability a3 in and with
Ns there replaced by Ng+1/2, the conclusion (I8.4.30] holds simultaneously

for all I' = ['g, 9,00y, With 01, 05 fixed as in the propoéition and with r; < ry
varying in any fixed compact interval in ]0, 4+o00].

18.5 End of the proof

int1
Let 64,05, Ng be as in Theorem ﬁso that P(61, Ny) and P(6, Ny) hold.
| heni choosing ¥ = 0 for m > 4, ¥ = §/2 for m = 2, we get from Proposition

P

m 1 —
‘#(U(h Pw) N Fglﬁz;l,/\) - (27T—h)nVOI (p 1(Fgl,92;1,>\))‘

o@1) (. 1\°
< _— V" _h3aNg _
h (lnh) ,

= pntB+e

(18.5.1)

simultaneously for 1 < A < 2 and all (61,62) jn a sef where P (61, No),
P(63, No) hold uniformly, with probability as in (I8.4.29).

Assuming P(6,, Ny), P(62, Ny), we want to count the number of eigenval-
ues of PY in

— 19
F17>\ - F91,02;1,)\

when A — oo. Let k(\) be the largest integer k for which 2¥ < X\ and

decompose
k(A)—1

PL)\ = ( U F2k72k+1) U F2k(/\)7>\.
0
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In order to count the eigenvalues of PY in Ik or+1 we define h by h™2F =1,
h =27%"™ so that

#(o(PY) N Tk ger1) = #(a(W"P))NTyy),
1

vol (p~! (Pok g41)) = k) vol (p™*(T'12)).

(2m)"

k&
Thus, with probability > 1 — Ce 2™ /¢ we have

1
|#(O(P£) N Dok grs1) — () ——volp~ (F2k72k+1)|
o (852
< C 2(”4‘5"’5)*2 2Nom | — | .
o m
Similarly, with probability > 1 — Ce2"Nm) ¢ we have

[#(o(PY) N ngm,x) — ——volp ' Ty )|

1
(2m)m ’ (18.5.3)

< OARATINTT (In)?,

simultaneously for all X € [ 0
Now, we proceed as in [I6], using essentially the Borel-Cantelli lemma.
Use that

oo

$5 -wmie _ oyersnr
)4

3
S gy (E) = QAR \ B (I )P

m
2k <\
5L
to conclude that with probability > 1 — Ce 2™/ ¢ we have

#(0(P2) N Tyey)| < CAi A (57 DA + O(w)

intl
for all A > 2¢. This state ept implies Theorem ﬁ’ O
Proof of T Jieorem This is just a minor modification of the proof
%f Tgforem 8, LI Ipdeed we already used the second part of Proposition

to get ﬂimp with the probability indicated there. In that e timate
we are free to vary (g, 61, 02) in G and the same holds for th estimate

With these modifications, the same proof gives Theorem i O
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Chapter 19

Spectral asymptotics for PT
symmetric operators

19.1 Introduction

PT—symmetry.ha%eggﬁgggp,r%%ﬁg?g as an alterpative for .self—adjoint'l.'le_ss in
quantum physics [I0; [I1]. Thus for instance, if we consider a Schrodinger
operator on R",

P=—-h*A+V(2), (19.1.1)

the usual assumption of self-adjointness (implying that the potential V' is
real valued) can be replaced by that of PT-symmetry:

Vo=V, (19.1.2)

where ¢+ : R® — R" is an isometry with (> = 1 # . If we introduce the
parity operator Pu(x) = u(c(z)) and the time reversal operator Tu = T,
then this can be written

[P,P.T]=0. (19.1.3)

Under very weak assumptions it is easy to see that the spectrum of a
PT-symmetric operator is invariant under reflexion in the real axis. (We
only need P to be closed and to commute with P7 in the natural sense,
including that the domain of P is invariant under P7.) From the point of
view of physics it seems important that the spectrum is real, and a natural
mathematical question is then to determine when so is the case. Results on

reality a?ﬁog?négﬁz%g;c&?f CEI&%S%(;(’:%%H% 1%f PT-symmetric operators can be

found in [122] 24, 25, IL1[
In Sections @,‘ we consider operators with random perturbations
ou \
ii% and “g

and show, by adapting the results of Chapters that most such
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operators have non-real eigenvalues, in the semi-classical case and in th cage
of large eigenvalyes. These two sections are an adaptation of the note TS?]
In Sectlon%ﬁ/e describe without proofs some recent results for the semi-
classical Schrodinger operator with one or two potential wells: In the case of
one well the spectrum is real provided that the potential is analyticﬂ, while
in the double well case, we get non-real spectrum when the coupling constant
is larger than some exponentially small quantity. A very interesting question
is to give criteria for P7T symmetric operators with analytic coefficients in
any dimension to have real spectrum or not.

19.2 The semi-classical case with random per-
turbations

Let X be a compact smooth manifold of dimension n. Let ¢+ : X — X be a
smooth involution; (? = id, with ¢+ # id. Fix a smooth positive density dz
on X which is invariant under ¢ and let us take L? norms with respect to
dx. Let P be a a differential gperator on X of order m > 2 with smooth
coefficients as in %"%H\LD . The operator I' in Aﬁ[} is now denoted
T, to stick to the PT- termmology. Also assume that

PP =PP*, where Pu(x) = Pu(z) = u(t(x)). (19.2.1)
It follows from (ﬁ"%[), (ﬁﬁiﬂ’? that P is PT symmetric:
[PT,P]=0. (19.2.2)

Example 19.2.1 P = —h?A + V(z) on T" where RV is even_and SV is
odd, V(—z) = V(z). Then P is symmetric in the sense of and PT-
symmetric with ¢(z) =

Let R be an auxiliary h-independent positive elliptic second order differ-
ential operator on X which commutes with P. We also assume that R is
real, or equivalently that

[T,R] = 0. (19.2.3)

Then R has an orthonormal basis of real eigenfunctions e; such that Pe; =
(=1)*We; where k(j) = 1 or k(j) = —1. We say that e; is even in the first
case and odd in second case. Put €; = e; when ¢; is even and ¢; = ie; when

IThis is not in contradiction with the result in Sections @_ﬁ since the random
perturbation typically destroys uniform analyticity
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e; is odd. Then {e;} is also an orthonormal basis and a linear combination
V =3 aje; is PT symmetric iff the coefficients a; are real: P(V) = V.

Let Q € C be a fixed oper, simply connected set and define ¢ up to a
linear function as in iilgg(l ).

By Bgra(0,7) we denote the open ball in R? with center 0 and radius 7.
Let g, be a random potential of the form,

()= Y ap(we(r), a(w) = (ak(w))ocum<r € Bro(0,R), (19.2.4)

0<pp<L

where p, > 0 are the square roots of the eigenvalues of h2R. We choose
L = L(h), R = R(h) in the interval ([5.2,5) for some € €]0,s — 2[, s > %,
and recall that the dimension D in (I5.2.4]) is of the order of magnitude

(L/h)". We introduce the small parameter § = 7oh™¥>™™, 0 < 75 < h?, where
Ny > Ny(n, s, €) is sufficiently large.
The randomly perturbed PT symmetric operator is
Ps = P+ 4q,. (19.2.5)
Ns is chosen large enough so that:
1R gz < OMRT 2[R gy < O(1).
The random variables a;(w) will have a joint probability distribution
P(da) = C(h)e® ™M L(da), (19.2.6)

where for some N, > 0,
IV, ®| = O(h™), (19.2.7)

and L(da) is the Lebesgue measure. (C(h) is the normalizing constant,
assuring that the probability of Bgrn (0, R) is equal to 1.)

et I' € Q be a Lipschitz domain of constant scale v/h and define G as
in @D W]th these modifications, the main result of this section reads

as Theorem . We repeat the formulation for convenience.

Theorem 19.2.2 Let 6 > 0. Then with probability

B0

v ( 1/ 1)\? )
>1-0)h N [In— (m—) /G(w,F)A¢(w)L(dw)+|amhz e ow.
h) Ja

To

the number of eigenvalues of Py in I’ (counted with their algebraic multiplic-
ity) satisfies

'#(U(Pa) T -

1 -1
ol D) <

) , 1 (19.2.8)
% (h‘5 Wl (m%) / G (w, T)Ad(w) L(dw) + |6P|h2> -

To
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Remark % emains valid also and we do not repeat it.

From Example we see that it is easy to find PT-symmetric opera-
tors in any given dimension which have plenty of non-real eigenvalues.
Proof of Theorem|[I9,2.2 We just have to make some small modifications in
the proof of Theorem [I5.3.1| and only mention the points where a difference
appears. The proof uses three ingredients:

1) The co stéruction of a special perturbation of the form dq, with ¢, as
in @but with « in the complez ball Bep (0, R) for which e have
nice lower bounds on the small singular values of Ps in % see
Proposition %

2) A complex variable argument in the « variables using the existence
of the special perturbation in step 1), which permits to conclude that
we have nice lower bounds on a relative determinant for Py — z, with
probability close to 1.

3) Application of Theorem %about the number of zeros of holomor-

phic functions with exponential growth.

PT-symmetric, that is we want the coefficients o in (19.2.4)) to be real. All
the parts of the proofs in step 1 immediately carry over to the case of real
a except the following result which is the basic ingredient in the iterative
process leading to the propositions mentioned above:

Let ey, ...,ex be an ON family in L?*(X) such that

N
1 Aes

1
where the constant O(1) is independent of the family and especially of N.

Then there exists
q= Z aje;, a; € C, (19.2.9)

0<p; <L

with |lal|cp < R with the parameters as in @D, such that ﬁ[}

holds,

In the present situation we want our special pert uéb%i%n dq.(x) to be

m: <O Alev

lgllm; < O()R"ENL 2

and such that the matrix

M, = ( / 4(@)e; (2)en())dr) 1< pen
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and its singular values
[Mgl| = s1(Mg) = ..

ne 10 sy 12
satisty ((7°2.29), (Fr2-10)
[My]l < O(1)Nh™™,

se(My) > h"/O(1), for 1 < k < N/2. (19.2.10)

Write ¢ = ¢1 + ig2 where g1 = > (Rey))ej, g2 = D (Svj)e;, so that ¢; and
g2 are PT-symmetric. The upper bounds on [|g||z; and on || M,|| follow from
the bound ||af| < R and therefore carry over to ;. Since My = My, + iM,,
we can apply the Ky Fan inequalities (Corollary [8.2. %@?%End get

h™ N
m < sop—1(My) < si(Mgy) + 55(My,), 1 <k < e

Since the singular values are enumerated in decreasing order, it follows that
for 5 equal to 1 or 2, we have

Sk(M

h" N
qj) = Z

1<Ek< 19.2.11
oy TSRS (19.2.11)

This means that step 1 can be, carried out and we get a P7T symmetric
operator Py as in Proposition the only slight difference is that rather
than taking € in ]0,1/4] we have to confine this parameter to the smaller
interval ]0, 1/8].

Step 2 now works because of Remark% and its proof, where the main
point is the reality of the coefficients «; while the assumption of reality of the
basis elements is not necessary, and was made there only because we mainly
have in mind a real perturbation for resonance theory (not treated in this
book).

Step 3 can be carried out without any modifications. O

19.3 Weyl asymptotics for large eigenvalues

Let P° be an elliptic differential operator on X of order m > 2 with smooth
coefficients and with principal symbol p,,(z, ). In local coordinates we get,
using standard multi-index notation,

P° = Z al()D*,  pm(z,€) = Z al (z)€>. (19.3.1)

lo|<m |o|l=m
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Recall that the ellipticity of P° means that p,,(z,&) # 0 for £ # 0. We
assume that
pm(T*X) # C. (19.3.2)

As before we assume symmetry,

(P°)" = TPT, (19.3.3)
and that
PP =P(P°), (19.3.4)
1
with P = P, as in Section @‘ Then P? is PT symmetric,
Let R be a reference operator as in and around and define ¢; as
there. Write B
Re; = (19)%€;, 0 < pg < p] <pj <. (19.3.5)

8
so that py, = hul where py, are given after (@’ Our randomly perturbed
operator is
P) =P’ + ¢(x), (19.3.6)

where w is the random parameter and
Q(r) = Za?(w)ej. (19.3.7)
0

Here we assume that af(w) are independent real Gaussian random variables
of variance 0]2 and mean value 0:

af ~ N(0,073), (19.3.8)

levint .8 /Bevint 9

where (as in (IS.T.9), (I8.1.10]),

1 5
m(ﬂ?)_pe(ugwﬂ <o, <O (1)), (19.3.9)
an — %
M=—"2 0<B<s p>n (19.3.10)
—2—¢

2
where s, p, € are fixed constants such that

n< < n D<ex n
—<s - — €< s— —.
2 Py 2

i L%t H*(X) be the standard Sobolev space of order s. As we saw in Section

where the random variables af were complex valued), ¢, € H*(X)
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ptlal

almost surely since s < p — 7. Hence q° € L>® almost surely, implying that
PY has purely discrete spectrum.

Consider the function F'(w) = argp,,(w) on S*X. For given 6, € S' ~
R/(2rZ), Ny € N := N\ {0}, we recall the property P(f, Np):

Z IVEF(w)] # 0 on {w € S*X; F(w) = 6,}. (19.3.11)

We can now.s ate t gsnb%in result of this section, which is an adaptation
of Theorem cf. [18

Theorem 19.3.1 Assume that m > 2. Let 0 < 0.1 < 0y < 27 and assume
that P (61, No) and P(0, Ng) hold for some Ny € N. Also assume that 5 €
[0, min(3, F)[ Let g € C*([01,02];]0,00[) and put

9 gron = 17€%;01 <0< 0s, 0 <7 < \g(0)}.

Then for every § €0 ,2N — B there exists C' > 0 such that almost surely:
3C(w) < oo such that for all X € [1,00]:

1 _
|#(‘7<PB) N Pgl,eg;o,)\) - WVOlpml(Pgl,eg;o,A)|

< O(w) + Cxm w79,

(19.3.12)

We also have an extension Q families I' gl’(,g . that satisfy the asumptions
uniformly. Cf. Theorem

Theorem 19.3.2 Assume that m > 2. Let © be a compact subset of [0, 27].
Let Ny € N and assume that P(0, Ny) holds uniformly for 0 € ©. Let G be
a subset of {(g,61,602); 0; € ©,6; < b, g € C®([0h,6];]0,00])} with the
property that g and 1/g are uniformly bounded in C*([0y, 62];]0, 00[) when
(g,01,05) varies in G. Then for every 6 €]0, ﬁ — B] there exists C > 0
such that almost surely: 3C(w) < uch, that for all A € [1,00[ and all
(g,01,02) € G, we have the estimate O(%

The condition dﬁ 5allows us to chqose o; decaying faster than any
negative power of ,u?. Then as in Chapt %ﬁt follows that g, (z) is almost
surely a smooth function. Theorem says roughtly that for almost ev-
ery P7T symmetric elliptic operator of order > 2 with smooth coefficients gn
a compact manifold which satisfies the conditions G% (%6%? , (}%5%‘%',
the large eigenvalues distribute according to Weyl’s law in sectors with lim-
iting directions that satisfy a weak non-degeneracy condition.
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Proof of T corem %] As already Ogn&boned, the theorem is a variant

of Theorem cf. Theorem 1.1 in TSﬁ._The difference is just that we
now use real random variables in_the perturbation ¢° in order to gssure the
PT-symmetry and use Theorem instead of Theorem [ O

The proof of Theorem %] is a modification as in the proof of Theorem

"
19.4 PT-symmetric potential wells

In this section we discuss some recent results about real and non-real eigen-
values of PT-symmetric deterministic perturbations of a P-symmetric self-
adjoint Schrodinger operator in the semi-classical limit. Let X be either R"
or a compact smooth Riemannian manifold of dimension n. As the unper-
turbed operator, we take

Py = —h*A + Vp(x) (19.4.1)

on X, where A is the Laplace-Beltrami operator, V5 € C*(X;R). Assume
that
Voo =W, (19.4.2)

where ¢ : X — X is an isometry with
Z=id # . (19.4.3)

We are interested in the spectrum of P7T-symmetric perturbations of F, near
some fixed real energy Ejy. To assure that the spectrum is discrete near FEj
when X = R"”, we assume in that case that

a = liminf Vy(x) > Ej. (19.4.4)

T—00

The perturbed operator is
Ps = —h*A + Vs(z), (19.4.5)

where

Vs(x) = Vo(x) + idW (z), (19.4.6)
JeR, |0 < 1and W € C*(X;R) is bounded and odd with respect to ¢,

Woir=—-W. (19.4.7)

(We will also allow W to be unbounded in one of the results below.) We
define P, as a self-adjoint operator by taking the Friedrichs extension of
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(ﬁ%ﬁ)'—lﬁ"om C3°(X). Then 0e(Fy) C [a, +oo[ and o(Ps) is contained in
R+ D(0,d||W||1~) and is purely discrete in a fixed neighborhood of Ey when
0], h < 1.

In the self-adjoint case (6 = 0) very detailed informations about the
eigenvalues can be obtained from “tunneling analysis”: Assume that

Vi) =o0,0) = | JU;, #J < o0, (19.4.8)
jed

where the potential wells U; are closed (and hence compact by (%;)é and

mutually disjoint;
UinU, =0, j #k. (19.4.9)

eSj84

We refer to Wmfﬁhere further references can be found. An important in-
gredient here is the Lithner-Agmon metric Vy(z), dz? where da? denotes the
Riemannian metric on X and as usual a; = max(a,0) for a € R. The

corresponding distance d(z,y) > 0 is symmetric and satisfies the triangle
inequality but may be degenerate in the sense that

d(z,y) # v =y.
We assume that U; are “connected” in the sense that

19.4.1 Simple well in one dimension

We describe a recent result by N. Boussekkine and N. Mecherout P[SQOTMJeivghich
says very roughly that when X = R, «(x) = —z, J = {0} and V{, and W are
real analytic near Uy, then for |0], h small enough, the spectrum ofﬁlgﬁ' a
fixed complex neighborhood of Ej is purely real. See also O. Rouby Tf6]g;0r
a more general result. We give a more detailed for laﬁt'on. 4

Let Vo € C*°(R;R) be smooth and satisfy ﬁ%%%}f(&@%with t(x) =

—x. Assume

(H1) 3mg > 0 such that Vo € N, 3C, > 0 such that
|02 Vol < Cafx)™ ™", on R.
When mg > 0 we strengthen %Aby assuming that
Vo(z) > Cio|x|mo for |2] > C,
form some positive constant Cj,
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(H2) Vy — Ejy has exactly one potential well, more precisely,
‘/071<] - OovEU]) = [05876(())] = U07
%ﬁl(] — 00, EUD :]a8768[7
where —oo < af) < 8§ < co. Moreover,

Vs(ap) <0, V5(Bg) > 0.

(H3) Vj is analytic near U.

As before, Vs(z) = Vo(x) + W (x), where we assume
(H4) W € C*(R;R) is odd, W(—2z) = =W (z),

(H5) W satisfies the first part of (H1) with the same my,
(H6) W is analytic near U.

Let VG, W also denote holomorphic extensions to a complex neighborhood of
Up. Then for E,0 € C with |E — Ey| and || small enough, we have unique
solutions ag(E, ), Bo(E,§) in complex neighborhoods of o), 30 respectively,
of the equations

‘/5(050<E75)) =z, %(ﬁU(E76)) =z,

and «y, By are holomorphic functions of (z, ).
For (E,d) € neigh ((Ep,0), C?), we put

Bo(E.5) 1
I(E, §) = 2/ (E — Vy(x))bdz, (19.4.11)
ao(E,0)

where we integrate along the straight line segment from «ao(E, d) to fo(E,0)
and choose the branch of the square root which has argument close to 0.
(When F is real and 6 = 0, this is a real integral with a positive integrand.)
It is easy to check that Iy(FE,d) is a holomorphic function of (E,J).

We define Ps = —h*A + Vs as the unbounded closed operator L?(R) —
L*(R) with domain,

D(P;) = {u € L* ', u", (x)™u € L?},

and again the spectrum of Pj is purely discrete in a fixed complex neighbor-
hood of Ey, when |d|, h are small enough.
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even and odd respectively and satisfy (19.7.2)-(19.4.4), (H1)-(HG6). Define
Io(E,b) as above, where Vs(x) = Vo(z)+idW (x) and (E,§) € neigh ((Ey,0), C?).
There exists a function I(E,0;h) on neigh ((Ey,0,0),C x C x R), holomor-
phic in (E,9) such that

I(E,5;h) ~ Io(E,8) + hI,(E,5) + ... (19.4.12)

in the space of holomorphic functions defined near (Ey,0), such that I(E, d; h)
real when E, § are real and such that for 6 €] — &y, 6] with 0 < §y < 1, the
eigenvalues E in neigh (Ey, C) are given by the Bohr-Sommerfeld condition

I(E,5;h) = 2n(k + 1/2h, k € Z. (19.4.13)

These eigenvalues are real.

BoMelb5
Theorem 19.4.1 (Boussekkine, Mecherout bfzj‘ Let Vo, W e C®(R;R) be

Outline of the proof., wl‘glis is an application of the complex WKB method,
explained in Chapter ﬁ_Let A > supsupp Uy, so that —A < inf supp Uy
by parity and assume that A i small enough so that 1V, W are analytic
near [—A, A]. We can then consider the Dirichlet realization PP of P5 on
L*([—A, A]). Then, as explained at the end of Section @, the eigenvalues of
PP near Fj are given by a Bohr-Sommerfeld condition

IP(E,6;h) =2r(k +1/2)h, k € Z,

where I”, denoted by I (E;h) in d@, has the general properties of I
in the theorem. Keeping track of the PT-symmetry, it is easy to show that
IP (e, d; h) is real when E, § are real, and we get the conclusion of the theorem
for PP.

To get the theorem, we need to complete the complew WKB methods
with a study of the exponential asymptotics of null solutions of Ps — E that
are of class L? near +0o0 or near —oo. This can be done by applying th :
fundamental idea of the complex WKB-method, as explained in Section@
and it is here that we use (H1), (H@Bo Lig extension is indicated in [2I
and carried out in detail in the work [[T00] and allows to make an asymptotic
study of the Wronskian of two null solutions of P — § — E that are L* near
—oo and +o00 respectively. O

The analyticity assumptions about V), W are essential, as can be seen
by applying Theorem [T9.2.9f] to —h%A + Vj + ido(W + 8q,,), where &5 > 0 is
small and fixed and dq,, is a random perturbation. (When extending Theorem

1
ZWe here neglect the fact that Theorem %as established for operators on compact
manifolds and not on R"
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%to the case of R™ a suitable ¢ %fgfunction has to be inserted in the
random perturbation and we refer to TBT]%)
On the other hand, if V' I{V are merely smooth but satisfy the other

assumptions in Theorem then it seems clear that the conclusion there
remains valid for |§] < O(1)hIn(1/h).

19.4.2 Double wells in arbitrary dimension
We consider the general §it ati nsdgscribed in the beginning of this section,
in particular in 1|I§§I H'i%.ﬁ. iiii.' Also assume that V has a double-well

structure at energy Fy = 0, and that the two wells are exchanged by ¢. More
precisely, J = {—1,1}, Uy; # 0, and

WU) =T (19.4.14)

To describe the spectrum of Py, we introduce two self-adjoint reference
operators. Let x41 € C5°(X; [0, 1]) satisfy:

Xj = 1 near Uj, (19.4.15)
supp x; C B(Uj, p) =: U7 (19.4.16)
where p > 0 is small. Here
B(Uj,p) ={z € X; d(U;,x) < p}.

Put L
f)j :P[)’j :P0+/\X—j7 j::tl, (19417)

where A\ > 0 is a constant, large enough so that

If we define
Pu=uou, uc L*(X), (19.4.18)

then P is unitary on L?*(X) with P # 1 = P? and we have
POPOIP()OP, (19419)

PoPj=P_joP, j==+l. (19.4.20)

The last relation implies that 15_1 and ]31 have the same spectrum.
Assume that
w(h) = o(h) (19.4.21)
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is a simple eigenvalue of P (and hence of [5,1), and that there exist Cy, Ny >
0 such that

0 (Psa) N Tf(R) = B/ Co, fi(h) + h™ | Col= {Ti(h)}. (19.4.22)
For h > 0 small enough, F, has exactly two eigenvalues in the interval
Jfi(h) = 1™ /(2Co), fi(h) + 1™/ (2Cy)],
namely the eigenvalues p(h) =+ |t(h)| of the interaction matrix,
%)
t(h) p(h))’

where p(h) € R, t(h) € C satisty,

p(h) = fi(h) + Op(elP1720I0) - e(p) =0, p =0,

Vo > 0, t(h) = O, (el@=50/h),

So=d(Uy,U_) (19.4.23)

is the Lithner-Agmon distance between the two wells Uyq. Quite often we
also have a lower bound on [t(h)|:

Here,

Va > 0, [t(h)|™F = Oq(elet50)/h),

184 eSj84 184
See for example [124], ﬁ[ ]J_r the review paper fTZ?] and the references
therein.

.6.5
Concerning the perturbation W, we assume d%ﬁ
ou, N. Boussekinne, N. Mecherout, T. Ramond

The result of E}F%bgrrf
and J. Sjostrand% % thoe 10 [lowing:

e

oMeRaSj15
Theorem 19.4.2 [957 Under the above assumptions, the operator Py has ex-

actly two eigenvalues (counted with their algebraic multiplicity) in D(ji, h™¥o /C')
for C > 0 and for § real such that |5| < h™°. These eigenvalues are equal
to the eigenvalues of the matrix

and hence of the form
Ar = Ra + /|02 — (Sa)?.
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Here a(0) = a(d; h), b(6) = b(d; h) satisfy,

a(0;h) = p(h), b(0;h) =t(h),
dsa = z’/W(x)re“l (z))*dz + O(Sh™V°) + O (D) =250)/h),

Osb = @56(6(5)—50)/h’

Jor all 6 > 0, where €(0) = 0, § — 0. Further, €, is the normalized eigen-
function with (P, — p(h))ey = 0.
If W >0 on Uy, then

/ W (2)|f (2) 2 = 1, (19.4.24)

1
and if we assume that (%’holds, then there exists 04 > 0 with the

asymptotics,

5y = (14 O5(el® SO)/h))fW(55|§|<£)(|x)|2dx’ €(6) = 0, 6 — 0,

such that
e The two eigenvalues are real and distinct for |0] < 0.
o They are double and real when |0| = ..

o They are non-real and complex conjugate, when &, < |§] < h™o.

Outline of the proof. The proof i assgﬁa' ht 5 rward application of the
analysis of multiwell Hamiltonians in \[blj (ct 4UJ) that we extend slightly to
non-self-adjoint operators, keeping track of the P7T-symmetry.

Let e; = €;(h) be normalized eigenfunctions of P; corresponding to the
eigenvalue u(h):

(P;—p)e; = 0. (19.4.25)
Pe; =e_;. (19.4.26)

Using exponential decay estimates, one can prove that

(€1]e1) = O(e=%/™), (19.4.27)

where O(e=5/") denotes a quantity which is (’)(e(g—so)/h) for every 6 > 0.

We choose ¢; so that
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We know that for h small enough, the spectrum of Fy in
hNo B hNo

]M_Q_Q)’M+QCO[

(19.4.28)

consists of two simple or one double double eigenvalue. Let E(h) C L?(M) be
the corresponding 2-dimensional spectral subspace and let Ty(h) : L*(M) —
L?(M) be the associated spectral projection. Since P is self-adjoint, ITj is
orthogonal, Iy = II§.

The functions Ilye;, j = %1 form a basis in & (h) and Ilge; — €; is expo-
nentially small with a geometrically determined decay rate that we shall not
descibe in thi j@%g@%mequenﬂy IIpe; form an almost orthonormal basis
in &(h) (see %9 , 40[ Tor more details) and this basis can be orthonomalized
by using the square root of the Gram matrix (which is very close to the
identity), in order to produce an orthonormal basis e;,e_; such that e; —¢;
is exponentially small. The matrix of £o(h) with respect to this basis is

plh) i(h)
(% u(h)) , (19.4.29)

where

(k) = fi(h) + O(e= 25/ (19.4.30)

is real and the tunneling coefficient fulfills

t(h) = O(e=50/m), (19.4.31)

. RisSio9 ~ . Co
See Theorem 6.10 in [40]." Here O(e~2%/") denotes a quantity which is
O(elP)=2%)/1 where e(p) — 0, p — 0.

25
The Ewo %'g%values of Py(h) in the interval @Ere the ones of the

matrix
p+1(h) = p(h) £ |t(h)]. (19.4.32)

We now turn to the perturbed operator Ps, and we assume for simplicity,
that |W||L~ < 1. As for §, we require that

6] < Ao, (19.4.33)

We know that the spectrum of Pj is discrete in some fixed (h-independent)
ne%%%o%ood of 0 when h and |J] are small enough. From the assumption

4.33)), it follows that Ps has precisely two eigenvalues, counted with their
(algebraic) multiplicity, in the disc D(j, h™°/(2C)) and these eigenvalues
belong to the smaller disc D(u(h), [t(h)|+6). Let E5(h) be the corresponding
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2-dimensional spectral subspace and let Ils(h) : L*(M) — &s(h) be the
spectral projection, where we recall the Riesz formula

11 ! (z— P5)"'d oD n ks (19.4.34)
= — z — z = — ] . 4.
0 I . 0 » Y My 20
5799
Using the Riesz formula (cf. HDZ:ILU,J?&]) we obtain
|TTs — IIp|| = O(6h ) < 1. (19.4.35)
Thus, introducing
e = Ilse;, (19.4.36)
we see that 3, e, for aB})asis for & (h) which is close to be orthonormal.
Differentiating in , we see that
O511; = O(h™™0), (19.4.37)

32
which also implies (%7

The functions ej, j = £1, form an orthonormal basis for £5(h) when

0 = 0 but not necessarily when 6 # 0. Recalling that P = P_5, we let
10, f°, € £_s(h) be the dual basis to €}, §°, € Es(h):

(f7led) = bk, d- k€ {=1,1}. (19.4.38)

Let Ms = (mg?k) denote the matrix of Py = Es(h) — &s(h) with respect
to the basis €J, ¢ ;. Then

mi = (Pseq] f7) = ()| P f}). (19.4.39)

Note that f = ) since ef, ”; is an orthonormal basis, and that My is the

matrix in }
The PT-symmetry of Ps induces a corresponding symmetry for M. The

general form of Mj is
_ (a(d) b(3)
M;s = <b(5) 5(5)> . (19.4.40)

Using tunneling analysis we can show that
a(8) = p(h) + 0 / W ()|ed(x) Pz + O@h0) + 6D (25, (19.4.41)

dsb, Os|b| = O(e=50/M), (19.4.42)
b(0) = t(h) + 6O (e~ %My, (19.4.43)
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38
and that K@Tam be formally differentiated with respect to 0. 7
The eigenvalues of Py £5(n) A1€ equal to the ones of Mj (cf. :

A = Ra + /[0 — (Sa)2. (19.4.44)

Assume now that

W >0 on Uy (19.4.45)

and hence also on a fixed neighborhood of that set. Since e is exponentially

concentrated to a neighborhood of Uy, we conclude that

/W(ZL‘)|€(1)(I)|26ZZE = 1 (19.4.46)
38
and differentiation of @_(which is allowed) shows that

05Sa = /W|e§’\2da¢ + O(hNo) 4+ O(e=2%/M) < 1. (19.4.47)

We can now discuss when the two eigenvalues (cf. @% are real or
complex. Since we are dealing with a P7T symmetric operator, we know
that they are either real or form complex conjugate pairs. This means that
P_s; = P§ and Ps have the same spectrum. Consequently, we can restrict
the attention to the region 0 < & < h™. The reality or not of our two
eigenvalues is determined by the sign of

1b] — (Sa)? = (|b] + Sa)(Jb] — Sa). (19.4.48)

Recall that Ja vanishes when 6 = 0 and is a strictly increasing function of
d whose derivative is =< 1, while b(§) and its derivative with respect to § are
exponentially small. Thu iggve first consider the case when t(h) = 0, we see
that both factors in @Wamsh for § = 0 (corresponding to a double real
eigenvalue of F) and for 6 > 0 the first factor.is positive while the second
one is negative, so the two eigenvalues in are non-real and complex
conjugate for § > 0.

Let now ¢(h) # 0 (bu still exponentially small as we recalled in (%g?
Then the first factor in %‘18 strictly positive for 0 < § < h™°. Denote
the second factor by f(9) = |b| — Sa. Then f(0) = |t(h)] > 0 and

f1(6) = —/W(x)|e?|2dx + O6hNo) + O (e %My < 1. (19.4.49)

.21
3This also follows from the more general assumption (@7
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Hence there exists a point d;(h) > 0 such that f(0) > 0 for 0 < § <
6y, f(64) = 0, f(0) < 0 for e, < & < hMo. In the first region we have
two real and distinct eigenvalues, at the point 6, we have a real double
eigenvalue, while in the last region we have a pair of complex conjugate
non-real eigen

values.
28 ptweti;46 ~
In view of @and e know that &, (h) = O(e~%/") and
if we restﬁigt %%}6 ptention to the exponentially small interval [0,24,] we can

sharpen 0
£0) = [ Wa)leh(w)da + O,
which implies that

op = (1+ (5(e‘50/h))fW(gfzf)(’xmdx, (19.4.50)

and this finishes the outline of the proof. O
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