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Chapter 1

Introduction

In

Non-self-adjoint operators is an old, sophisticated and highly developed sub-
ject. See for instance Carleman

Ca36
[26] for an early result on Weyl type asymp-

totics for the real parts of the large eigenvalues of operators that are close
to self-adjoint ones, with later results by Markus, Matseev

MaMa79
[94],

Ma88
[93] in the

same direction. The abstract theory with the machinery of s-numbers can
be found in the book of Gohberg anf Krein

GoKr69
[49]. Other quite classical results

concern upper bounds on the number of eigenvalues in various regions of the
complex plane and questions about completeness of the set of all generalized
eigenvectors. See for instance Agmon

Ag62
[1],

Ag65
[2].

In my own work I have often encountered non-self-adjoint operators. Thus
for instance problems about analytic regularity for PDE’s with point-wise
degeneracy or in domains with conic singularities turned out to boil down
to problems about non-self-adjoint operators; estimates on their resolvents
and completeness of the set of generalized eigenvectors. See

BaSj76, BaSj77
[7, 8]. Non-

self-adjoint quadratic operators turned up naturally in the study of certain
classes of hypoelliptic operators with double characteristics,

Sj74, Bo74
[125, 22] and in

a number of recent works, this theme has been taken up again and is now
quite an active field see e.g.

Da99a, HiPr07, HiSjVi13
[32, 70, 74]. The study of resonances (scattering

poles) and later operators of Kramers-Fokker-Planck have been very beautiful
domains, where non-self-adjointness is an important ingredient.

A major difficulty in the non-self-adjoint theory, is that the norm of the
resolvent may be very large even when the spectral parameter is far from the
spectrum. This causes the spectrum (and in this book we will only consider
the discrete spectrum) to be unstable under small perturbations of the oper-
ator and this can be a source of numerical errors. Starting in the 90’ies the
perspectives have changed somewhat thanks to works by numerical analysts,
like L.N. Trefethen (see

Tr97
[147],

TrEm05
[148]) who emphasized that the pseudospec-

trum – roughly the zone in the complex plane where the resolvent norm is
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large – can be of independent interest, for instance to understand the onset of
turbulence from the (non-self-adjoint) linearizations of stationary flows. This
spurred new interest among analysts like E.B. Davies

Da99, Da99a
[31, 32], M. Zworski

and others
Zw01, Zw02, DeSjZw04
[156, 157, 39].

Given the spectral instability it has been natural to study the effect on
the eigenvalues of small random perturbations and beautiful numerical results
can be found for instance in

TrEm05
[148]. In her thesis

Ha05
[52],

Ha06a, Ha06b
[53, 54], M. Hager made

a mathemtical study of the spectrum of the sum of the simple operator hDx+
g(x) on S1 and a small random term. The spectrum of the unperturbated
operator is just an arithmetic progression of eigenvalues on the line =z =
〈=g〉 = (2π)−1

∫ 2π

0
=g(x)dx and the effect of the random perturbation is to

spread out the eigenvalues in the band {z ∈ C; inf =g ≤ =z ≤ sup=g} =
p(T ∗S1), where p(x, ξ) = ξ+ g(x) is the semi-classical principal symbol. The
main result was that if Ω is a fixed bounded domain with smooth boundary
in the interior of the band, then with probability very close to 1, the number
of eigenvalues N(Ω) of the perturbed operator in Ω is given by

N(Ω) = (2π)−1(volT ∗S1(p−1(Ω)) + o(1)), (1.0.1) In.1

in the semi-classical limit, h → 0, with an explicit estimate on the remain-
der o(1).1 We here recognize the natural non-self-adjoint version of Weyl
asymptotics in the semi-classical limit, well established for large eigenvalues
of self-adjoint differential operators since more than a century and later in
the semi-classical self-adjoint case.

This came as a big surprise since in the cases known to me, one has to as-
sume analyticity to get eigenvalue asymptotics via complex Bohr-Sommerfeld
conditions. In one dimension such eigenvalues typically sit on curves which
is incompatible with (

In.1
1.0.1) . (We here discuss genuinly non-self-adjoint op-

erators with complex valued principal symbol.)
Thus with hindsight one can say that the random perturbation will typi-

cally destroy (uniform) analyticity and hence destroy all possible asymptotic
formulas in terms of complex phase space (like complex Bohr-Sommerfeld
conditions). Among the possible remaining formulas in terms of real phase
space, the Weyl asymptotics seems to be the only possible one.

After this first result, there have been several works, by Hager
Ha06b
[54],

W. Bordeaux Montrieux
Bo08
[15],

Bo11
[16],

Bo13
[17] as well as

HaSj08
[55],

Sj08a
[131],

Sj08b
[132],

BoSj09
[18] that

treated more general situations and obtained more precise results. During
this process the methods were improved and the main purpose of this book
is to give a unified account, leaving out many other recent devolopments for

1At first, the formula appeared more complicated, depending on the method of proof,
and the simpler form was pointed out to me by E. Amar-Servat.
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non-self-adjoint operators. We also leave out some related results for res-
onances (see

Sj13
[138] and references given there). A related, very promising

approach for studying directly the expected eigenvalue density and correla-
tions can be found in T. Christiansen–Zworski

ChrZw09
[30], M. Vogel

Vo14, Vo14b, SjVo14
[149, 150, 140].

Since this approach is currently less developed for spectral problems, we will
not treat it here.

Quite naturally, the classical theory of non-self-adjoint operators (
GoKr69
[49]) is

a fundamental ingredient of the methods. We will also use some results of
complex analysis, in particular a result on counting the zeros of holomorphic
functions with exponential growth. Microlocal analysis in its classical C∞

version will be important also.
We will assume that the reader has some familiarity with standard mi-

crolocal analysis, roughly corresponding to
GrSj94
[51] and

DiSj99
[40], but we think that

even without formal prerequisites in that area, most of the book should re-
main accessible. Applications have not been our main motivation, but rather
to present a coherent piece of mathematical analysis where Weyl asymptotic
appeared first as a surprise.

The text is split into three parts.

• Part I is devoted to some functional analysis and to spectral theory in
dimension 1.

– In Chapter
sp
2 we review some notions including spectrum and the

pseudospectrum in the spirit of Davies
Da00
[33] and Trefethen

Tr97
[147].

– In Chapter
1dm
3 we discuss the original result of Hager on Weyl

asymptotics for random perturbations of the model operator hD+
g, where many ideas appear in a non-technical context.

– In Chapter
qm1d
4 we use a classical WKB-construction to construct

quasimodes for differential operators, generalizing a result of Davies
Da99
[31] for the non-self-adjoint Schrödinger operators. (The construc-
tion in any dimension is given in Chapter

qmgd
9, and goes back to

L. Hörmander
Ho60a, Ho60b
[78, 79].)

– Chapter
g1d
5 is devoted to Weyl asymptotics for more general differ-

ential operators in 1 dimension, in spirit close to
Ha06b
[54].

– In Chapter
rest1d
6 we establish a result of Bordeaux Montrieux

Bo13
[17]

about the norm of the resolvent near the boundary of the range of
the symbol. What is remarkable is that we get not only a precise
upper bound, but even the asymptotics of the norm. Later, in
Chapter

resestgd
10 we review upper bounds in any dimension.
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– In Chapter
cwkb
7 we explain the complex WKB method for ordinary

differential equations.

– In Chapter
nonsa
8 we review abstract theory of non-self-adjoint opera-

tors, following essentially
GoKr69
[49].

• Part II deals with various general facts.

– In Chapter
qmgd
9 we generalize the construction of quasimodes to any

dimension, cf.
Ho60a, Ho60b, DeSjZw04
[78, 79, 39].

– In Chapter
resestgd
10 we give resolvent bounds near the boundary of the

range of the symbol for semi-classical operators in any dimension.
We follow closely

Sj09a
[134].

– In Chapter
sg
11 we discuss some abstract questions around the

Gearhardt–Prüss–Hwang–Greiner theorem getting estimates on
semi-groups from estimates on resolvents. This is mainly joint
work with B. Helffer, originally published in

Sj09
[133] and later also

in
He13
[59]

– In Chapter
countz
12 we give a result about the number of zeros of a

holomorphic function with exponential growth. A simpler ver-
sion of this result was originally proved by Hager, see Proposition
1dm9
3.4.6. The improvements here are essential for the more precise
and general results in Chapter

pj
13 and in Part III.

– In Chapter
pj
13, we study the distribution of eigenvalues of small

random perturbations of large Jordan blocks. We show that with
probability close to 1, the eigenvalues concentrate to a certain cir-
cle and have an approximately uniform angular distribution there.
In the last section, which is joint work with M. Vogel

SjVo14
[140] we

study the expected density of eigenvalues inside that circle.

• Part III. This part deals with spectral asymptotics for differential
operators in arbitrary dimension

– In Chapter
dwe
14 we review a result of Markus and Matseev about

Weyl distribution of the real parts of the eigenfrequencies of the
damped wave equation. We choose to use Chapter

countz
12.

– In the chapters
weyloutline
15–

Chlb
17 we present and prove a general result on

Weyl asymptotics for semi-classical (pseudo-)differential operators
on a compact manifold which basically improves the main result
of

Sj08b
[132]. The proof follows the strategy of

Sj08a, Sj08b
[131, 132] with the

difference that we can now use the improved results of Chapter
countz
12
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– Chapter
lev
18 gives almost sure Weyl asymptotics for the large eigen-

values of differential operators, no longer in the semi-classical
limit. We here basically follow

BoSj09
[18].

– In Chapter
sapt
19 we apply the results to PT symmetric operators.

Such operators are generally non-self-adjoint but with an addi-
tional symmetry that forces the spectrum to be symmetric around
the real axis. They have been proposed by physicists as building
blocks in new versions of quantum mechanics and the reality of
the spectrum is then important. We first show (following

Sj12
[137])

that most PT -symmetric operators have most of their eigenvalues
away from R in the semi-classical case as well as in that of large
eigenvalues. Then we describe without detailed proofs some re-
sults of

BoMe15
[21] about the reality of eigenvalues for semi-classical PT -

symmetric analytic Schrödinger operators with a simple potential
well in dimension 1 and a result of

MeBoRaSj15
[100] about the non-reality

of the eigenvalues for semi-classical Schrödinger operators with a
double well potential.

Acknowledgements. Discussions with colleagues and sometimes cowork-
ers have been a very important basis for this work. In particular, I am grate-
ful to W. Bordeaux Montrieux, M. Hager, M. Hitrik, B. Helffer, K. Pravda
Starov, J. Viola, M. Vogel, X.P. Wang, M. Zworski, ...
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Chapter 2

Spectrum and pseudo-spectrum

sp

2.1 Operators in Hilbert spaces, a quick re-

view
sp.a

In this book all Hilbert spaces will be assumed to separable for simplicity.
In this section we review some basic definitions and properties and refer to
Ka66, ReSi, RiNa
[86, 112, 113] for much more substantial presentations.

Let H be a complex Hilbert space and denote by ‖ ·‖, (·| · ·) the norm and
the scalar product respectively. A non-bounded (or rather not necessarily
bounded) operator S : H → H is given by a linear subspace D(S) ⊂ H, the
domain of S and a linear operator S : D(S)→ H. We say that S is bounded
if D(S) = H and

‖S‖ = sup
06=x∈H

‖Sx‖
‖x‖

<∞. (2.1.1) sp.a.1

Let L(H,H) denote the corresponding normed space of bounded operators.
These definitions and many of the facts below have straight forward exten-
sions to the case of operators S : H1 → H2, where Hj are two Hilbert spaces.

If S : H → H is an unbounded operator, we introduce its graph

graph (S) = {(x, Sx); x ∈ D(S)}, (2.1.2) sp.a.2

which is a linear subspace of H×H. We say that S is closed if graph (S) is
closed. Every bounded operator S ∈ L(H,H) is closed and conversely the
closed graph theorem tells us that if S : H → H is closed and D(S) = H,
then S is bounded; S ∈ L(H,H). In the next proposition, we introduce the
adjoint S∗ of a densely defined operator:

sp.a1 Proposition 2.1.1 Let S : H → H be an unbounded operator whose domain
D(S) is dense in H. Then there exists an unbounded operator S∗ : H → H

11



characterized by:

D(S∗) = {v ∈ H; ∃C(v) ∈]0,+∞[, |(Su|v)| ≤ C(v)‖u‖, ∀u ∈ D(S)},
(2.1.3) sp.a.3

(Su|v) = (u|S∗v); ∀u ∈ D(S), v ∈ D(S∗). (2.1.4) sp.a.4

Proof. (
sp.a.3
2.1.3) is just a definition and the space D(S∗) so defined is linear.

For v ∈ D(S∗), the map H 3 u 7→ (Su|v) is a bounded linear functional, so
there is a unique element w ∈ H such that (Su|v) = (u|w) for all u ∈ H. By
definition S∗v = w and it is straight forward to see that S∗v depends linearly
on v. 2

We have the following easily verfied properties:

• S∗ is closed.

• Let S denote the closure of S, so that in general S is the relationH → H
whose graph is the closure of the graph of S; graph (S) = graph(S).
We say that S is closable if S is an operator.

If D(S∗) is dense, then S∗∗ = S. In particular, S is closable.

sp.a2 Definition 2.1.2 Let A,B : H → H be unbounded operators. We say that
A ⊂ B if graph (A) ⊂ graph (B) or equivalently if D(A) ⊂ D(B) and Ax =
Bx for all x ∈ D(A).

If D(A) is dense and A ⊂ B, then B∗ ⊂ A∗.

sp.a3 Definition 2.1.3 A densely defined operator A : H → H is symmetric if
A ⊂ A∗ and self-adjoint if A = A∗.

Notice that the densely defined operator A : H → H is symmetric iff

(Ax|y) = (x|Ay), ∀x, y ∈ D(A).

An important general problem is to determine when a symmetric operator
A : H → H has a self-adjoint extension Ã : H → H (in the sense that

A ⊂ Ã). Notice that a self-adjoint operator is always closed so every self-

adjoint extension Ã of a symmetric operator A has to contain the closure A.
The “best” case is when A is essentially self-adjoint in the sense that A has
a unique self-adjoint extension. It can be showed that when the symmetric
operator A is essentially self-adjoint, then the unique self-adjoint extension of
A is the closure A. Equivalently, the symmetric operator A is essentially self-
adjoint precisely when A is self-adjoint. Recall that many of these statements
are easy to understand if we make the observation that the orthogonal space
for the “symplectic” sesquilinear form σ((x, ξ), (y, η)) := (ξ|y) − (x|η) of
graph(A) is equal to the graph of A∗.

We have the following theorem of von Neumann, see
Ka66
[86], page 275:

12



sp.a4 Theorem 2.1.4 Let T : H → H be closed and densely defined. Then the
operator T ∗T with its natural domain D(T ∗T ) = {x ∈ D(T ); Tx ∈ D(T ∗) is
self-adjoint. Moreover D(T ∗T ) is a core for T in the sense that {(u, Tu); u ∈
D(T ∗T )} is dense in D(T ).

sp.a5 Definition 2.1.5 A closed densely defined operator T : H → H is normal
if T ∗T = TT ∗ (where the second operator TT ∗ is equipped with its natural
domain).

We notice that every self-adjoint operator is normal. Many properties of
self-adjoint operators extend to normal ones.

Spectrum, resolvent Let T : H → H be closed and densely defined. It is
often practical to equip D(T ) with then norm ‖u‖D(T ) = (‖u‖2 +‖Tu‖2)

1
2 :=

‖(u, Tu)‖H×H. We say that z0 ∈ C belongs to the resolvent set ρ(T ) of T
if T − z0 : D(T ) → H is bijective and the inverse (z0 − T )−1 : H → H is
bounded. Here we write (T − z0)u = Tu − z0u. (Notice that (T − z0)−1 is
boundedH → H precisely when it is boundedH → D(T ) and that the closed
graph theorem tells us that it is indeed bounded, once it is well defined.)

When z0 ∈ ρ(T ) we define the resolvent R(z0) = (z0 − T )−1. For z ∈ C,
we have

(z − T )R(z0) = 1 + (z − z0)R(z0), (2.1.5) sp.a.5

where “1” denotes the identity operator. Here

‖(z − z0)R(z0)‖ ≤ |z − z0|‖R(z0)‖

is < 1 when z belongs to the open disc D(z0, 1/‖R(z0)‖) and the operator
1 + (z− z0)R(z0) then has the bounded inverse given by the Neumann series

(1 + (z − z0)R(z0))−1 = 1− (z − z0)R(z0) + ((z − z0)R(z0))2 − ...

We also see that

‖(1 + (z − z0)R(z0))−1‖ ≤ 1

1− |z − z0|‖R(z0)‖
. (2.1.6) sp.a.6

(Here we use that the normed linear space L(H,H) is complete.) From
(
sp.a.5
2.1.5) it now follows that z − T : D(T )→ H has the right inverse

R̃(z) = R(z0)(1 + (z − z0)R(z0))−1 (2.1.7) sp.a.7

with norm

‖R̃(z)‖ ≤ ‖R(z0)‖
1− |z − z0|‖R(z0)‖

.
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Since 1 + (z− z0)R(z0) maps D(T ) into itself, we see that the inverse has
the same property. Using also that

R(z0)(z − T ) = 1 + (z − z0)R(z0), (2.1.8) sp.a.8

we see that R̃(z), defined in (
sp.a.7
2.1.7), is also a left inverse, so z belongs to the

resolvent set and R(z) = R̃(z).

sp.a6 Proposition 2.1.6 Let z0 ∈ ρ(T ), z ∈ D(z0, 1/‖R(z0)‖). Then z ∈ ρ(T )
and

‖R(z)‖ ≤ ‖R(z0)‖
1− |z − z0|‖R(z0)‖

.

It follows in particular that the resolvent set ρ(T ) is open.

sp.a7 Definition 2.1.7 Let T : H → H be a closed densely defined operator. The
spectrum σ(T ) is the closed subset of C, defined by

σ(T ) = C \ ρ(T ). (2.1.9) sp.a.9

From Proposition
sp.a6
2.1.6 we see that

‖R(z)‖ ≥ 1

dist (z, σ(T ))
, z ∈ ρ(T ), (2.1.10) sp.a.10

where dist (z, σ(T )) = infw∈σ(T ) |z − w| denotes the distance from z to the
set σ(T ). From the spectral resolution theorem for self-adjoint operators, we
have

sp.a8 Theorem 2.1.8 Let T : H → H be self-adjoint. Then σ(T ) ⊂ R and

‖R(z)‖ =
1

dist (z, σ(T ))
, z ∈ ρ(T ). (2.1.11) sp.a.11

2.2 Pseudospectrum
sp.b

Let P : H → H be closed and densely defined.

sp.b1 Definition 2.2.1 Let ε > 0. We define the ε-pseudospectrum to be the set

σε(P ) = σ(P ) ∪ {z ∈ ρ(P ); ‖(z − P )−1‖ > 1

ε
}. (2.2.1) sp.b.1
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Some authors put “≥” rather than “>” in this definition. We follow the
choice in the book of L.N Trefethen and M. Embree

TrEm05
[148], and with this

choice σε(P ) becomes an open subset of C.
From (

sp.a.10
2.1.10) it follows that

σ(P ) +D(0, ε) ⊂ σε(P ). (2.2.2) sp.b.2

It is a standard fact for non-self-adjoint operators, that the second set in
(
sp.b.2
2.2.2) may be much larger than the first one. For self-adjoint operators we

have equality by (
sp.a.11
2.1.11). Thus for general non-self-adjoint operators, the

existence of quasi-modes for P − z does not necessarily imply that z is close
to the spectrum of P . The following proposition shows though that there is
a close link between the eistence of quasi-modes and the ε-pseudospectrum.
(The notion of “quasi-mode” is implicitly defined in (

sp.b.3
2.2.3) below.)

sp.b1 Proposition 2.2.2 Let ε > 0, z ∈ C. The following two statements are
equivalent:

1) z ∈ σε(P ).

2) z ∈ σ(P ), or

∃u ∈ D(P ), such that ‖u‖ = 1 and ‖(P − z)u‖ < ε. (2.2.3) sp.b.3

Proof. It suffices to show that for z ∈ ρ(P ) the statement

z ∈ σε(P ) (2.2.4) sp.b.4

is equivalent to (
sp.b.3
2.2.3). Now (

sp.b.3
2.2.3) is equivalent to:

∃0 6= v ∈ H, such that ‖v‖ > ε, ‖(z − P )−1v‖ = 1,

which in turn is equivalent to (
sp.b.4
2.2.4) with the choice u = (z − P )−1v. 2

In the above situation we call u a quasi-mode and z the corresponding
quasi-eigenvalue. The ε-pseudospectrum is a set of spectral instability: a
small perturbation of P may change the spectrum a lot. That is formalized
in the the following easy result:

sp.b2 Theorem 2.2.3 We have for every ε > 0,

σε(P ) =
⋃

A∈L(H,H)
‖A‖<ε

σ(P + A). (2.2.5) sp.b.5
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Proof. Denote the right hand side of (
sp.b.5
2.2.5) by σ̃ε(P ). Clearly σ̃ε(P ) contains

σ(P ), so we only have to identify σε(P ) \ σ(P ) and σ̃ε(P ) \ σ(P ).
Let z ∈ σε(P )\σ(P ) so that (z−P )−1 exists and is of norm > 1/ε. Then

by Proposition
sp.b1
2.2.2, there exist a vector u as in (

sp.b.3
2.2.3). Let v = (P − z)u,

so that ‖v‖ < ε. Now we can find A ∈ L(H,H) with ‖A‖ < ε, Au = v.
For instance, we can define A by Ax = (x|u)v. Then (P + A − z)u = 0, so
z ∈ σ(P + A) and hence z ∈ σ̃ε(P ) \ σ(P ).

Now, let z ∈ C \ σε(P ), so that ‖(P − z)−1‖ ≤ 1/ε. Let A ∈ L(H,H),
‖A‖ < ε. Then

(P + A− z)(P − z)−1 = 1 + A(P − z)−1, ‖A(P − z)−1‖ < 1.

Thus 1+A(P−z)−1 : H → H has a bounded inverse and we see that P+A−z :
D(P )→ H has the bounded right inverse (P − z)−1(1 + A(P − z)−1)−1.

Similarly, (P − z)−1(P + A − z) = 1 + (P − z)−1A is bijective H → H
and D(P )→ D(P ) and P + A− z has the bounded left inverse
(1 + (P − z)−1A)−1(P − z)−1. We conclude that z 6∈ σ(P + A) and varying
A it follows that z 6∈ σ̃ε(P ). 2

Subharmonicity This property helps to use the maximum principle in
order to establish some general properties of pseudospectra, and we start be
recalling some general properties, see

Ho90
[76].

sp.b3 Definition 2.2.4 Let Ω ⊂ C be open and let u : Ω → [−∞,+∞[. We say
that u is subharmonic if

(a) u is upper semi-continuous, i.e. u−1([−∞, s[) is open for every s ∈ R,

(b) If K ⊂ Ω is compact, h ∈ C(K; R) is harmonic on the interior of K
(in the sense that ∆h = 0 there) and h ≥ u everywhere on ∂K, then
h ≥ u in K.

In this definition we can restrict K to set of closed discs contained in O.
(Theorem 1.6.3 in

Ho90
[76].) Another important property (Theorem 1.6.2 in

Ho90
[76])

is

sp.b4 Theorem 2.2.5 Let uα, α ∈ A be family of subharmonic functions such
that u := supα∈A uα is pointwise < +∞ and upper semi-coninuous. Then u
is subharmonic.

As the name indicates, every harmonic function is subharmonic.
We recall the characterization of subharmonic functions as those for which

∆u ≥ 0 in the sense of distributions (
Ho90
[76], Theorem 1.6.9–1.6.11).
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sp.b4.5 Theorem 2.2.6 Let Ω be open and connected.

(a) If u is a subharmonic function on Ω, not identically −∞, then u ∈
L1

loc(Ω) and ∆u is a positive distribution:∫
u∆vL(dz) ≥ 0, for all 0 ≤ v ∈ C2

0(Ω). (2.2.6) sp.b.6

(b) Conversely, if u ∈ L1
loc(Ω) and (

sp.b.6
2.2.6) holds, then there exists a unique

subharmonic function U on Ω which is equal to u almost everywhere.

We now return to our general closed and densely defined operator P :
H → H.

sp.b5 Proposition 2.2.7 The function z 7→ ‖(z−P )−1‖ is subharmonic on ρ(P ).

Proof. We use the variational formula

‖u‖ = sup
v∈H
‖v‖=1

<(u|v), u ∈ H,

to see that for z ∈ ρ(P ),

‖(z − P )−1‖ = sup
u,v∈H
‖u‖,‖v‖≤1

<((z − P )−1u|v).

Here ρ(P ) 3 z 7→ <((z−P )−1u|v) is harmonic for every fixed (u, v) ∈ H×H.
Moreover, ρ(P ) 3 z 7→ ‖(z − P )−1‖ is continuous and pointwise finite, so
Theorem

sp.b4
2.2.5 gives the desired conclusion. 2

Applying the maximum principle, we get

sp.b6 Theorem 2.2.8 Every bounded connected component of σε(P ) contains some
point of σ(P ).

Proof. We first remark that is z0 is a point in the spectrum of P but not in
the interior of that set, then ‖(z − P )−1‖ → +∞, ρ(P ) 3 z → z0.

Let V ⊂ C be a bounded connected component of σε(P ). We notice that
‖(z − P )−1‖ = 1/ε everywhere on the boundary of V .

If V does not intersect the spectrum of P , then the function f(z) :=
‖(z − P )−1‖ is continuous and subharmonic in a small open neighborhood
Ω of V . Thus by the maximum principle for subharmonic functions (apply
Proposition

sp.b3
2.2.4 with K = V , h = 1/ε) implies that f(z) ≤ 1/ε in V which

is in contradiction with the fact that ‖(z − P )−1‖ > 1/ε in V . 2

17



2.3 Numerical range
sp.c

Another set which has interesting connections with the spectrum and the
pseudospectrum is the numerical range. As above, let P : H → H be a
closed densely defined operator.

sp.c1 Definition 2.3.1 We define the numerical range W (P ) ⊂ C of P by

W (P ) =

{
(Pu|u)

‖u‖2
; 0 6= u ∈ D(P )

}
. (2.3.1) sp.c.1

Notice that we get the same set if we restrict u to the set of all u ∈ D(P )
with ‖u‖ = 1. The following theorem is due to Hausdorff and Toeplitz (see
HoJo85
[77]).

sp.c2 Theorem 2.3.2 W (P ) is convex.

Proof. Let z0, z1 ∈ W (P ) be two distinct points, so that zj = (Pej|ej),
ej ∈ D(P ), ‖ej‖ = 1. Then e0, e1 are linearly independent and it suffices
to show that {(Pu|u)/‖u‖2; u ∈ Σ} is convex, where Σ := Ce0 ⊕ Ce1. For
u ∈ Σ, we have (Pu|u) = (ΠΣPu|u), where ΠΣ : H → Σ is the orthogonal
projection onto Σ. Thus we may replace P by ΠΣP : Σ → Σ and we have
reduced the proof of the theorem to the case when H is a 2-dimensional
Hilbert space. After choosing some orthonormal basis in H we may identify
P with a square matrix and H with C2.

Write P = <P + i=P , where <P = (P +P ∗)/2 and =P = (P −P ∗)/(2i)
are Hermitian matrices. After conjugation by a unitary matrix, we may
assume that

<P =

(
λ1 0
0 λ2

)
where λ1 and λ2 are real. Thus for u = (u1, u2) ∈ C2 \ 0, we have

(Pu|u)

‖u‖2
=
λ1|u1|2 + λ2|u2|2

|u1|2 + |u2|2
+ i

(=Pu|u)

|u1|2 + |u2|2
. (2.3.2) sp.c.2

Now the Hermitian matrix =P takes the form

=P =

(
µ1 a
a µ2

)
, µ1, µ2 ∈ R,

so finally

(Pu|u)

‖u‖2
=

(λ1 + iµ1)|u1|2 + (λ2 + iµ2)|u2|2

|u1|2 + |u2|2
+ i

2<(−au1u2)

|u1|2 + |u2|2
. (2.3.3) sp.c.3
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When investigating the set of these values, we may assume that ‖u‖2 = 1,
so that

|u1|2 = 1− t, |u2|2 = t, 0 ≤ t ≤ 1. (2.3.4) sp.c.4

Then
|2<(−au1u2)| ≤ 2|a|

√
t(1− t).

More precisely, for every θ ∈ [−2|a|
√
t(1− t), 2|a|

√
t(1− t)] there exists a u

satisfying (
sp.c.4
2.3.4) such that 2<(au1u2) = θ and we conclude that the set of

values in (
sp.c.2
2.3.2) is equal to

{(1− t)(λ1 + iµ1) + t(λ2 + iµ2) + iθ; |θ| ≤ 2|a|
√
t(1− t), 0 ≤ t ≤ 1}. (2.3.5) sp.c.5

The function
√
t(1− t) is concave, so the set (

sp.c.5
2.3.5) is convex. More pre-

cisely, it is an ellipsoid. 2

If λ ∈ C is an eigenvalue of P , so that Pu = λu for some 0 6= u ∈ D(P ),
then it is immediate that λ ∈ W (P ). We have

sp.c4 Theorem 2.3.3 Let Ω ⊂ be a connected component of the open set C \
W (P ), so that Ω is open. If Ω contains a point z0 which is not in σ(P ), then
Ω ∩ σ(P ) = ∅ and moreover,

‖(z − P )−1‖ ≤ 1

dist (z,W (P ))
, z ∈ Ω. (2.3.6) sp.c.6

For the proof we will use the following proposition of independent interest:

sp.c5 Proposition 2.3.4 For every z ∈ C, we have

dist (z,W (P ))‖u‖ ≤ ‖(P − z)u‖, u ∈ D(P ). (2.3.7) sp.c.7

Proof. For every non-vanishing u ∈ D(P ), we have

|((z − P )u|u)| =
∣∣z‖u‖2 − (Pu|u)

∣∣ = |z − w|‖u‖2

where w = (Pu|u)/‖u‖2 belongs to W (P ). Thus by the Cauchy-Schwartz
inequality,

dist (z,W )‖u‖2 ≤ |z − w|‖u‖2 ≤ |((P − z)u|u)| ≤ ‖(P − z)u‖‖u‖.

After division with the norm of u we get (
sp.c.7
2.3.7) for non-zero u. When u = 0,

(
sp.c.7
2.3.7) holds trivially. 2
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Proof of Theorem
sp.c4
2.3.3. Let z0 ∈ Ω \ σ(P ) and let z1 ∈ Ω. Knowing that

the resolvent (z0 − P )−1 exists, we can apply (
sp.c.7
2.3.7) to see that

‖(z0 − P )−1‖ ≤ 1

dist (z0,W (P ))

and hence that D(z0, dist (z0,W (P ))) ⊂ ρ(P ). Now let γ be a C1 curve in
Ω that connects z0 to z1, then we can find finitely many points w0, w1,
..., wN with w0 = z0, wN = z1 in (the image of) γ such that wk+1 ∈
D(wk, dist (wk,W (P ))). Iteratively, we see that D(wk, dist (wk,W (P ))) ⊂
ρ(P ) for k = 1, 2, ..., N and in particular for k = N we get z1 ∈ ρ(P ) and
again by (

sp.c.7
2.3.7) that (

sp.c.6
2.3.6) holds when z = z1. Now z1 is an arbitrary point

in Ω and the theorem follows. 2

2.4 A simple example of a large matrix
sp.d

Consider a Jordan block A0 : CN → CN that we identify with its matrix

A0 =


0 1 0 0 ... 0
0 0 1 0 ... 0
0 0 0 1 ... 0
. . . . ... .
0 0 0 0 ... 1
0 0 0 0 ... 0

 . (2.4.1) sp.d.1

It was observed by M. Zworski
Zw02
[157] that the open unit disc is a region of

spectral instability for A0 so we expect the eigenvalues to move in a vicinty
of that disc when we add a small perturbation to A0. Here we shall just look
at the simple case of

A0
δ =


0 1 0 0 ... 0
0 0 1 0 ... 0
0 0 0 1 ... 0
. . . . ... .
0 0 0 0 ... 1
δ 0 0 0 ... 0

 , δ > 0 (2.4.2) sp.d.2

and we will study more general random perturbations in Chapter
pj
13. If we

identify CN with `2({1, 2, ..., N}) in the natural way, then A0
δu(j) = u(j+1),

j = 1, ..., N − 1, A0
δu(N) = δu(1).

Since A0 is a Jordan block, we already know that the spectrum of A0 is
reduced to the eigenvalue λ = 0 which has the algebraic multiplicity N .
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We look for the eigenvalues of A0
δ , δ > 0. λ ∈ C is such an eigenvalue iff

there exists 0 6= u ∈ `2({1, ..., N} such that

u(j + 1) = λu(j), 1 ≤ j ≤ N − 1

δu(1) = λu(N).

The spectrum of A0
δ consists of the N distinct simple eigenvalues

λk = δ
1
N e

2πik
N , k = 0, ..., N − 1

which are equidistributed on the circle of radius δ1/N . If δ > 0 is fixed and
N → +∞, then “the spectrum converges to S1”.

We next look at the ε-pseudospectrum of A0: Using that AN0 = 0, we find
for z 6= 0:

(z − A0)−1 =
1

z
(1− 1

z
A0)−1 =

1

z
(1 +

1

z
A0 + ...+

1

zN−1
AN−1

0 ),

which has the matrix 

1
z

1
z2

1
z3

1
z4 ... 1

zN

0 1
z

1
z2

1
z3 ... 1

zN−1

0 0 1
z

1
z2 ... 1

zN−2

. . . . ... .
0 0 0 0 ... 1

z2

0 0 0 0 ... 1
z


Applying this to the u with u(j) = 0 for 1 ≤ j ≤ N − 1, u(N) = 1, we see
that

‖(z − A0)−1‖ ≥ 1

|z|N
(2.4.3) sp.d.3

Moreover,

‖(z − A0)−1‖ ≤ 1

|z|
+
‖A0‖
|z|2

+ ...+
‖AN−1

0 ‖
|z|N

=
1

|z|
+

1

|z|2
+ ...+

1

|z|N
.

(2.4.4) sp.d.4

(
sp.d.3
2.4.3) shows that the resolvent is large inside D(0, 1) when N is large,

while (
sp.d.4
2.4.4) implies

‖(z − A0)−1‖ ≤ 1

|z| − 1
, |z| > 1. (2.4.5) sp.d.5
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Combining (
sp.d.3
2.4.3) and (

sp.d.5
2.4.5) we see that for 0 < ε < 1:

D(0, ε
1
N ) ⊂ σε(A0) ⊂ D(0, 1 + ε). (2.4.6) sp.d.6

Let us next study the numerical range of A0
δ . Notice that A0

1 describes
translation by −1 on `2(Z/NZ) with the natural identification Z/NZ ≡
{1, ..., N}, so A0

1 is unitary and hence normal. It has the eigenvalues λk =
e2πik/N , 0 ≤ k ≤ N − 1 (already computed) and the eigenvectors ek given by
ek(j) = N−1/2e2πijk/N . Since A0

1 is normal we can use the spectral resolution
theorem, to see that

W (A0
1) = ch {e

2πik
N ; 0 ≤ k ≤ N − 1} (2.4.7) sp.d.7

which is contained in the unit disc and contains a disc D(0, 1−O(1/N2)).
We have similar estimates for W (A0

δ), 0 ≤ δ ≤ 1:

1) W (A0
δ) ⊂ D(0, ‖A0

δ‖) = D(0, 1) (except in the trivial case N = 1).

2) (A0
δek|ek) = λk − ((A0

1 − A0
δ)ek|ek) = λk + (1 − δ)εk,N , where |εk,N | :=

|ek(1)ek(N)| ≤ 1/N , so W (A0
δ) contains the polygon with the set of

vertices contained in {λk + (1− δ)εk,N ; k = 0, 1, ..., N − 1}.

We conclude that

D

(
0, 1−O

(
1

N

))
⊂ W (A0

δ) ⊂ D(0, 1). (2.4.8) sp.d.8

We shall return to A0 and its perturbations in Chapter
pj
13 and as a prepa-

ration we establish some slightly more refined bounds on the resolvents.
When |z| > 1 we can estimate the sum in (

sp.d.4
2.4.4) by that of the corre-

sponding infinite series. When |z| < 1 we can write it as |z|−N
∑N−1

j=0 |z|j
and estimate the sum by that of the corresponding infinite series. However,
(which is of interest when |z| − 1 = O(1/N)) the finite sums can also be
estimated by N and we get:

‖(z − A0)−1‖ ≤ F (|z|), F (R) :=

{
1
R

min(N, R
R−1

), R ≥ 1,
1
RN

min(N, 1
1−R), R ≤ 1.

(2.4.9) pj.0

A straight forward calculation gives the more explicit expression:

F (R) =



1

RN(1−R)
, R ≤ N−1

N
,

N/RN , N−1
N
≤ R ≤ 1,

N/R, 1 ≤ R ≤ N
N−1

,

1/(R− 1), R ≥ N
N−1

.

(2.4.10) pj.0.5
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We see that this is a continuous strictly decreasing function on ]0,+∞[ with
range ]0,+∞[.

Consider the perturbation

Aδ = A0 + δQ, (2.4.11) pj.1

where Q is a general complex N ×N -matrix, so that

z − Aδ = (z − A0)(1− (z − A0)−1δQ).

If
F (|z|)δ‖Q‖ < 1, (2.4.12) pj.2

(having in mind also the case |z| < 1 below) we can expand the last factor
in a Neumann series and get

‖(z − Aδ)−1‖ ≤ F (|z|) 1

1− F (|z|)δ‖Q‖
. (2.4.13) pj.2.5

When |z| > 1, we have F (|z|) ≤ 1/(|z| − 1) and (
pj.2.5
2.4.13) gives

‖(z − Aδ)−1‖ ≤ 1

|z| − 1

1

1− δ‖Q‖
|z|−1

=
1

|z| − 1− δ‖Q‖
. (2.4.14) pj.3

The spectrum of Aδ is confined to the disc D(0, R), if δ‖Q‖F (|z|) < 1 for
every z outside that disc. Since F is strictly decreasing, we conclude that
σ(Aδ) ⊂ D(0, R) if

F (R) =
1

δ‖Q‖
. (2.4.15) pj.82

In view of (
pj.0.5
2.4.10), this equation splits into four different cases,

RN(1−R) = δ‖Q‖, if R ≤ 1− 1

N
or equivalently δ‖Q‖ ≤

(
1 +O( 1

N

)
eN

,

RN

N
= δ‖Q‖, if 1− 1

N
≤ R ≤ 1 or equivalently

1 +O( 1
N

)

eN
≤ δ‖Q‖ ≤ 1

N
,

R = Nδ‖Q‖, if 1 ≤ R ≤ N

N − 1
or equivalently

1

N
≤ δ‖Q‖ ≤ 1

N − 1
,

R = 1 + δ‖Q‖, if R ≥ N

N − 1
or equivalently

1

N − 1
≤ δ‖Q‖.

(2.4.16) pj.83

In the four cases we get respectively,

(δ‖Q‖)1/N ≤ R ≤ (δ‖Q‖)1/NN1/N ,

R = (δ‖Q‖)1/NN1/N ,

R = Nδ‖Q‖,
R = 1 + δ‖Q‖.

(2.4.17) pj.84
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2.5 The non-self-adjoint harmonic oscillator
sp.e

We consider the non-self-adjoint harmonic oscillator on R:

Pc = D2
x + cx2 : L2(R)→ L2(R). (2.5.1) sp.e.1

Pc is a closed operator with the dense domain B2 ⊂ L2(R), where we define
for general k ∈ N:

Bk = {u ∈ L2(R); xνDµu ∈ L2, ν + µ ≤ k}. (2.5.2) sp.e.2

(For 0 > k ∈ Z, we define Bk ⊂ S ′(R) to be the dual space of B−k.) Here
we use the notation D = Dx = 1

i
d
dx

, and we assume that c ∈ C\]−∞, 0].
We will use the following facts, see for example

Sj74
[125]:

1) Bk are Hilbert spaces when equipped with the natural norms and we
have the compact inclusion maps: Bk ↪→ Bj when k > j.

2) Pc − z : B2 → L2 are Fredholm operators of index 0, depending holo-
morphically on z ∈ C. (Here the assumption that c /∈]−∞, 0] guaran-
tees a basic ellipticity property.)

3) The spectrum of Pc : L2 → L2 is discrete:

– It is a discrete subset σ(Pc) of C.

– Each element λ0 of σ(Pc) is an eigenvalue of finite algebraic mul-
tiplicity in the sense that the spectral projection

Πλ0 =
1

2πi

∫
∂D(λ0,ε)

(z − P )−1dz

is of finite rank. Here ε > 0 is small enough so that σ(Pc) ∩
D(λ0, ε) = {λ0}.

4) When c = 1 we get a self-adjoint operator with spectrum {λk =
2k+ 1; k = 0, 1, 2, ...} and a corresponding orthonormal basis of eigen-
functions is given by

e0 =
1√
2π
e−x

2/2, ek = Ck

(
x− d

dx

)k
(e0) for k ≥ 1,

where x − d
dx

is the creation operator and Ck > 0 are normalization
constants.

ek =: pk(x)e−x
2/2 (2.5.3) sp.e.4

are the Hermite functions and pk are the Hermite polynomials. Notice
that pk is of order k of the form pk,kx

k + pk,k−2x
k−2 + ..., pk,k > 0 and

that pk is even/odd when k is even/odd respectively.
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Calculation of the spectrum of Pc. When c > 0 this is easy by means
of a dilation: Put x = c−1/4y, so that Dx = c+1/4Dy. Then we get

Pc = c1/2(D2
y + y2), (2.5.4) sp.e.5

and we conclude that the eigenvalues and eigenfunctions of Pc are given by

λ(k, c) = c
1
2λk =: c

1
2 (2k + 1), ek,c(x) = c

1
8 ek(c

1
4x). (2.5.5) sp.e.6

Here c1/8 is the normalization constant, assuring that {ek,c}k∈N is an or-
thonormal basis in L2.

A more formal proof of this is to introduce the unitary operator

Uu(x) = c
1
8u(c

1
4x) (2.5.6) sp.e.7

and to check that

PcU = c
1
2UP1, Pc = c

1
2UP1U

−1. (2.5.7) sp.e.8

In the general case when c is no longer real, we can no longer define Uu
as in (

sp.e.7
2.5.6) for general L2 functions u, but (

sp.e.6
2.5.5) still makes sense because

ek is an entire function. When defining the fractional powers of c we here
use the convention that arg c ∈] − π, π[, so that the argument of c1/4 is in
[−π/4, π/4[. We still have that ek,c ∈ B2 and

(Pc − λ(k, c))ek,c = 0, (2.5.8) sp.e.9

so λ(k, c) are eigenvalues of Pc. We shall prove (cf
Sj74, Bo74, Da99a
[125, 22, 32])

sp.e1 Proposition 2.5.1

σ(Pc) = {λ(k, c); k ∈ N}.

Proof. It remains to prove that there are no other eigenvalues. (The fact
3) above tells us that every element of σ(Pc) is an eigenvalue.) For that,
we shall use the (formal) adjoint of Pc which is given by P ∗c = Pc and more
precisely that

(Pcu|v) = (u|Pcv), ∀u, v ∈ B2. (2.5.9) sp.e.10

We have

sp.e2 Lemma 2.5.2 {ek,c; k ∈ N} spans a dense subspace of L2(R).
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Proof. Let L ⊂ L2(R) be the space of all finite linear combinations of the
ek,c, k ∈ N. Then u belongs to the orthogonal space L⊥ iff

(u|ek,c) = 0, ∀k ∈ N, (2.5.10) sp.e.11

and it suffices to show that this fact implies that u = 0. Rewrite (
sp.e.11
2.5.10) as

0 =

∫
u(x)e−c

1/2x2/2pk,c(x)dx, (2.5.11) sp.e.12

where we used that ek,c = ek,c.
It is easy to see that the Fourier transform v̂(ξ) of the function v(x) =

u(x)e−c
1/2x2/2 can be extended to all of Cξ as an entire function and (

sp.e.12
2.5.11)

means that
pk,c(−Dξ)v̂(0) = 0, ∀k. (2.5.12) sp.e.13

Now, every polynomial can be expressed as a finite linear combination of
the pk,c, k ∈ N, so (

sp.e.13
2.5.12) means that

(Dα
ξ v̂)(0), ∀α ∈ N. (2.5.13) sp.e.14

In other words, the power series expansion of the entire function v̂(ξ) vanishes
identically, hence v̂ = 0, hence v = 0 and finally u = 0. 2

Now we can finish the proof of the proposition: Let λ ∈ σ(Pc)\{λ(k, c); k ∈
N} so that

(Pc − λ)u = 0, (2.5.14) sp.e.15

for some 0 6= u ∈ B2. Then, for every k ∈ N:

(u|ek,c) =
1

λ(k, c)− λ
(u|(Pc − λ)ek,c) =

1

λ(k, c)− λ
((Pc − λ)u|ek,c) = 0,

so Lemma
sp.e2
2.5.2 shows that u = 0. 2

sp.e.2.5 Remark 2.5.3 The arguments in the proof can be pushed further to show
that the generalized eigenspaces (i.e. the ranges of the spectral projections)
corresponding to λ(k, c) are one dimensional:

Let λ0 = λ(k0, c) ∈ σ(Pc) and let u be a corresponding eigenfunction, so
that (Pc−λ0)u = 0. As in the proof above, we see that (u|ek,c) = 0, ∀k 6= k0.
By unique holomorphic extension with respect to c from ]0,+∞[, we have
also that

(ek,c|e`,c) =

{
0, if ` 6= k,

1, if ` = k.
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Hence we can find d ∈ C such that (u− dek0,c|ek,c) = 0 for all k ∈ N and as
above we get the conclusion that u− dek0,c = 0.

Furthermore there can be no Jordan blocks: If (Pc − λ0)2u = 0 for some
u ∈ B2 with Pcu ∈ B2, then

(u|ek,c) =
1

(λ(k, c)− λ0)2
(u|(Pc − λ0)2ek,c) = 0,

for k 6= k0 and as above we see that u = dek,c.
A different way to reach the same conclusion would be to choose a con-

tinuous deformation [0, 1] 3 t 7→ ct ∈ C\]−∞, 0] with c0 = 1, c1 = c and to
notice that the corresponding spectral projections Πλ(k,ct) vary continuously
with t for every fixed k ∈ N. Then the rank of Πλ(k,ct) is independent of t
and equal to 1 for t = 0. Thus Πλ(k,c) = Πλ(k,c1) is also of rank 1.

The numerical range We have the following result of L. Boulton
Bou02
[20]:

sp.e.3 Proposition 2.5.4

W (Pc) = {t+ sc; t, s > 0, ts ≥ 1

4
}.

We have already recalled that the lowest eigenvalue of P1 is one and
this implies (by the spectral resolution theorem) that (P1u|u) ≥ ‖u‖2 for all
u ∈ B2. By integration by parts, we also have (P1u|u) = ‖Du‖2 + ‖xu‖2.
We now recall an additional inequality, the uncertainty relation:

sp.e4 Lemma 2.5.5 We have

‖u‖2 ≤ 2‖xu‖‖Du‖ ≤ ‖Du‖2 + ‖xu‖2, ∀u ∈ B1. (2.5.15) sp.e.16

Proof. The second inequality follows from “2ab ≤ a2 + b2” and since S is
dense in B1 it suffices to show the first inequality for every u in S. For such
a function, we have by Cauchy-Schwartz,

|(xDu|u)| = |(Du|xu)| ≤ ‖xu‖‖Du‖
|(Dxu|u)| = |(xu|Du)| ≤ ‖xu‖‖Du‖.

Thus,
|(Dx− xD)u|u)| ≤ 2‖xu‖‖Du‖.

But Dx − xD = [D, x] = 1/i, so |((Dx − xD)u|u)| = ‖u‖2, and the lemma
follows. 2
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Proof of the proposition. For u ∈ B2, ‖u‖ = 1, we have

(Pcu|u) = ‖Du‖2 + c‖xu‖2 = t+ sc,

with t = ‖Du‖2, s = ‖xu‖2 and (
sp.e.16
2.5.15) implies that 1 ≤ 4ts. It is then clear

that

W (Pc) ⊂ {t+ sc; t, s > 0, ts ≥ 1

4
}.

In order to show the opposite inclusion, we first notice that if u = e0, we
have equalities in (

sp.e.16
2.5.15). Indeed, the first expression is equal to 1 since e0

is normalized in L2, and the last expression is equal to ((D2 + x2)e0|e0) =
(e0|e0) = 1, so the inequalities have to be equalities for this choice of u. Since
‖De0‖ = ‖xe0‖, we also have

‖De0‖ = ‖xe0‖ =
1√
2
. (2.5.16) sp.e.18

Now dilate and consider the functions

fλ(x) := λ
1
2 e0(λx), λ > 0. (2.5.17) sp.e.19

Using the same change of variables as in the calculation of the L2 norms, we
see that

‖xfλ‖ = λ−1‖xe0‖ = λ−1 1√
2
,

‖Dfλ‖ = λ‖De0‖ = λ
1√
2
.

Hence we still have equality in the first part of (
sp.e.16
2.5.15),

‖fλ‖2 = 2‖xfλ‖‖Dfλ‖, (2.5.18) sp.e.20

and
(Pcu|u) = ‖Dfλ‖2 + c‖xfλ‖2 = t+ sc,

where now t = ‖Dfλ‖2 = λ2/2 and s = ‖xfλ‖2 = 1/2λ2 can take arbitrary
positive values with ts = 1/4.

We conclude that {t+ sc; t, s > 0, ts = 1/4} is contained in W (Pc). The
convex hull of (i.e. the smallest convex set containing) this set is precisely
{t+sc; t, s > 0, ts ≥ 1/4} and the latter set is therefore contained in W (Pc).
2
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Chapter 3

Weyl asymptotics and random
perturbations in a
one-dimensional semi-classical
case

1dm

We consider a simple model operator in dimension 1 and show how random
perturbations give rise to Weyl asymptotics in the interior of the range of
p. We follow rather closely the work of Hager

Ha06b
[54] with some inputs also

from Bordeaux Montrieux
Bo08
[15] and Hager–Sj

HaSj08
[55]. Some of the general ideas

appear perhaps more clearly in this special situation.
Let P = hDx + g(x), g ∈ C∞(S1), S1 ' R/2πZ, with symbol p(x, ξ) =

ξ + g(x), and assume that =g has precisely two critical points; a unique
maximum and a unique minimum. Here and at many other places of this
book we work in the semi-classical limit, i.e. for h > 0 sufficiently small,
even though we may sometimes omit the wording “then for for h > 0 small
enough”. We notice that P is a closed operator: L2(S1) → L2(S1) with
domain equal to the Sobolev space H1(S1). The spectrum is discrete and
confined to the line

=z = =〈g〉, 〈g〉 :=
1

2π

∫ 2π

0

g(x)dx.

More precisely, the eigenvalues are simple and given by

zk = 〈g〉+ kh, k ∈ Z
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Let Ω b {z ∈ C; min=g < =z < max=g} be open. Put

Pδ = Pδ,ω = hDx + g(x) + δQω,

Qωu(x) =
∑

|k|,|`|≤C1
h

αk,`(ω)(u|ek)e`(x), (3.0.1) 1dm.1

where C1 > 0 is sufficiently large, ek(x) = (2π)−1/2eikx, k ∈ Z, and αj,k ∼
NC(0, 1) are independent complex Gaussian random variables, centered with
variance 1 (cf (

1dm.14
3.4.1 below). Qω is compact, so Pδ has discrete spectrum. Let

Γ b Ω have smooth boundary.

1dm1 Theorem 3.0.6 Let κ > 5/2 and let ε0 > 0 be sufficiently small. Let δ =
δ(h) satisfy e−ε0/h � δ � hκ and put ε = ε(h) = h ln(1/δ). Then there exists
a constant C > 0 such that for h > 0 small enough, we have with probability
≥ 1−O( δ2

√
εh5 ) that the number of eigenvalues of Pδ in Γ satisfies

|#(σ(Pδ) ∩ Γ)− 1

2πh
vol(p−1(Γ))| ≤ C

√
ε

h
. (3.0.2) 1dm.2

The conclusion in the theorem is of interest when

δ2

√
εh5
� 1,

√
ε� 1,

and that is satisfied when

κ >
11

4
.

If instead, we let Γ vary in a set of subsets that satisfy the assumptions
uniformly, then with probability ≥ 1−O( δ2

εh5 ) we have (
1dm.2
3.0.2) uniformly for

all Γ in that subset. The remainder of the Chapter is devoted to the proof
of this result.

1dm2 Remark 3.0.7 The estimate on the probability in Theorem
1dm1
3.0.6 is quite

rough and can be improved by adapting the arguments in
HaSj08
[55] as we will do

in Sections
g1drp
5.5,

rpd
13.7.

3.1 Preparations for the unperturbed opera-

tor
prepup

For z ∈ Ω, let x+(z), x−(z) ∈ S1 be the solutions of the equation =g(x) =
=z, with ±=g′(x±) < 0. We sometimes view x± as elements in R (unique
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mod 2πZ) chosen so that x− < x+ < x−+2π. Define ξ±(z) by ξ±+<g(x±) =
<z. Putting ρ± = (x±, ξ±), we have

p(ρ±) = z, ±1

i
{p, p}(ρ±) > 0.

Here, {a, b} = ∂ξa ∂xb−∂xa ∂ξb denotes the Poisson bracket of two sufficiently
smooth functions a(x, ξ), b(x, ξ).

Let χ ∈ C∞0 (neigh (0,R)) be equal to 1 in a neighborhood of 0 and
consider the function

u(x) = u(x, z;h) = χ(x− x+(z))e
i
h
φ+(x),

where

φ+(x) = φ+(x, z) =

∫ x

x+(z)

(z − g(y))dy.

Then

=φ+(x) � |x− x+(z)|2,
x ∈ neigh (x+(z),R) := some neighborhood of x+(z) in R

and we choose the support of χ small enough, so that this holds on supp (χ(·−
x+(z)). Then ∫

|u(x)|2dx =

∫
|χ(x− x+(z))|2e−

2
h
=φ+(x)dx.

Applying the Morse lemma (here in a simple one-dimensional situation) as
explained for instance in Chapter 2 of

GrSj94
[51] and Exercise 2.4 of that book, we

see that ∫
|u(x)|2dx = h

1
2 b(z;h),

where the symbol b satisfies

b(z;h) ∼ b0(z) + hb1(z) + ... in C∞(Ω),

and in particular,

∂αz ∂
β
z b = Oα,β(1), for all α, β ∈ N

Here the subscripts α, β indicate that the estimate is uniform for each fixed
(α, β), but not uniformly with respect to these parameters. Moreover,

b0(z) =

√
2π√

2=∂2
xφ+(x+(z))

> 0.
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In particular b(z;h) > 0 on Ω for h > 0 small enough (since the above
holds in a relatively compact neighborhood of Ω) and we can form a(z;h) =
(b(z;h))−1/2 which satisfies

a(z;h) ∼ a0(z) + ha1(z) + ... in C∞(Ω), a0(z) = b0(z)−1/2.

Put
ewkb(x) = h−1/4a(h)χ(x− x+(z))e

i
h
φ+(x).

Then ‖ewkb‖ = 1 where we take the L2 norm over ]x−(z), x+(z) + 2π[. More-
over,

(P − z)ewkb = O(e−
1
Ch ),

where the remainder to the right comes from the cutoff function χ(x− x+).
Define z-dependent elliptic self-adjoint operators

Q = (P − z)∗(P − z), Q̃ = (P − z)(P − z)∗ : L2(S1)→ L2(S1),

with domain D(Q), D(Q̃) = H2(S1) (the usual Sobolev space of order 2).
They have discrete spectrum ⊂ [0,+∞[ and smooth eigenfunctions. (It is
a standard fact that elliptic formally self-adjoint differential operators on
a compact manifold M with smooth coefficients are essentially self-adjoint
with domain Hm(M), where m is the order of the operator. Furthermore
the spectrum is discrete.) Using that P − z : H1 → L2 is Fredholm of index

zero (exercise!), we see that dimN (Q) = dimN (Q̃) ≤ 1. Here N (A) denotes
the kernel of the linear operator A and we shall let R(A) denote the range.
By elliptic regularity we know that the kernel of P − z in H1 agrees with
that of Q in H2. If µ 6= 0 is an eigenvalue of Q, with the corresponding
eigenfunction e ∈ C∞, then f := (P − z)e is an eigenfunction for Q̃ with the
same eigenvalue µ. Pursuing this observation, we see that

σ(Q) = σ(Q̃) = {t20, t21, ...}, 0 ≤ tj ↗ +∞.

1dm3 Proposition 3.1.1 There exists a constant C > 0 such that t20 = O(e−1/(Ch)),
t21 − t20 ≥ h/C for h > 0 small enough.

Proof. We have Qewkb = r, ‖r‖ = O(e−1/Ch) and since Q is self adjoint
we deduce that t20 is exponentially small. (Cf. (

sp.a.11
2.1.11).) If e0 denotes the

corresponding normalized eigenfunction uniquely determined up to a factor
of modulus 1, we see that (P − z)e0 =: v with ‖v‖ exponentially small.
Considering this ODE on ]x−(z)− 2π, x−(z)[, we get

e0(x) = Ch−
1
4a(h)e

i
h
φ+(x) + Fv(x), C = C(h), (3.1.1) prepup.1
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Fv(x) =
i

h

∫ x

x+

e
i
h

(φ+(x)−φ+(y))v(y)dy, (3.1.2) prepup.2

where φ+(x) =
∫ x
x+

(z − g(y))dy. We observe that =(φ+(x) − φ+(y)) ≥ 0 on
the domain of integration.

1dm3.2 Lemma 3.1.2 We have

‖F‖L(L2,L2) = O(h−1/2).

Proof. We have

Fw(x) =

∫
K(x, y)w(y)dy,

where

K(x, y) =
i

h

(
1{x+≤y≤x≤x−}(x, y)− i

h
1{x−−2π≤x≤y≤x+}(x, y)

)
e
i
h

(φ+(x)−φ+(y)).

By treating the three cases

• x, y = x+ +O(h1/2),

• x, y = x− +O(h1/2),

• x, y = x− − 2π +O(h1/2)

separately, we check that for some C > 0,

= (φ+(x)− φ+(y)) ≥ h
1
2

C
|x− y| − Ch, on suppK.

It follows that

sup
x

∫
|K(x, y)|dy = O(h−

1
2 ), sup

y

∫
|K(x, y)|dx = O(h−

1
2 )

and the Shur lemma tells us that ‖F‖L2 is bounded by the geometric mean
of these two quantities. 2

For our particular v, we see that Fv is exponentially decaying in L2 and
hence, since e0 is normalized, that C in (

prepup.1
3.1.1) satisfies |C| = 1+O(e−1/O(h)).

Replacing e0 by eiθe0 for a suitable θ ∈ R and recalling the form of ewkb(x)
we conclude that ‖e0 − ewkb‖ is exponentially small.

To show that t21 − t20 ≥ h/C, it suffices to show that (Qu|u) ≥ h
C
‖u‖2

when u ⊥ e0 or in other words, that

‖u‖ ≤
√
C

h
‖(P − z)u‖. (3.1.3) ldm.3
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If v := (P − z)u, we again have on ]x−(z)− 2π, x−(z)[:

u = Ch−
1
4a(h)e

i
h
φ+(x) + Fv

for some constant C and the orthogonality requirement on u implies that

0 = (1 +O(h∞))C + (Fv|e0),

where (Fv|e0) = O(h−
1
2 )‖v‖, so C = O(h−1/2)‖v‖ and we get the desired

estimate on ‖u‖. 2

3.2 Grushin (Shur, Feschbach, bifurcation) ap-

proach
1dmgr

Let {e0, e1, ...} and {f0, f1, ...} be orthonormal bases of eigenfunctions of Q =

(P − z)∗(P − z) and Q̃ = (P − z)(P − z)∗ respectively, so that ej, fj ∈ H2,

Qej = t2jej, Q̃fj = t2jfj. As observed prior to Proposition
1dm3
3.1.1, we have

(P − z)ej = αjfj, (P − z)∗fj = βjej, αjβj = t2j ,

and combining this with ((P−z)ej|fj) = (ej|(P−z)∗fj), we see that αj = βj.
Replacing fj by eiθjfj for suitable real values of θj, we can arrange so that
αj = βj = tj, which will somewhat simplify the notations.

1dm3.5 Proposition 3.2.1 Define R+ : H1(S1)→ C, R− : C→ L2(S1) by

R+u = (u|e0), R−u− = u−f0.

Then

P(z) :=

(
P − z R−
R+ 0

)
: H1 ×C→ L2 ×C

is bijective with the bounded inverse

E(z) =

(
E E+

E− E−+

)
=

(
O(h−

1
2 ) O(1)

O(1) O(e−1/Ch)

)
,

where the estimates refer to the norms in L(L2, H1), L(C, H1), L(L2,C),
L(C,C) respectively. Moreover,

E+v+ = v+e0, E−v = (v|f0).

Here we use the semi-classical norm on H1:

‖u‖H1
h

=
(
‖u‖2 + ‖hDu‖2

) 1
2 .
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It is a general feature of such auxiliary (Grushin) operators that

z ∈ σ(P )⇔ E−+(z) = 0.

Indeed, it is easy to show the formulas

(P − z)−1 = E − E+E
−1
−+E−, E

−1
−+ = −R+(P − z)−1R−,

under the assumptions that E−+ is bijective and that (P − z)−1 is bijective
respectively.
Proof of the proposition. We shall show that for every (v, v+) ∈ L2 × C,
there is a unique solution (u, u−) ∈ H1 ×C of the system{

(P − z)u+R−u− = v

R+u = v+

(3.2.1) 1dm.4

and give estimates and explicit formulae for the solution. Actually, it suffices
to find a unique solution (u, u−) ∈ L2 × C, since we can then deduce that
hDu ∈ L2 from the first equation in (

1dm.4
3.2.1).

Express u and v in the bases above:

u =
∞∑
0

ujej = u0e0 + u⊥, v =
∞∑
0

vjej = v0e0 + v⊥,

and recall that ‖v‖2 =
∑∞

0 |vj|2 = |v0|2 + ‖v⊥‖2, vj = (v|ej), and similarly
for u. Then (

1dm.4
3.2.1) becomes{∑∞

0 tjujfj + u−f0 =
∑∞

0 vjfj,

u0 = v+

i.e.
t0v+ + u− = v0 , tjuj = vj for j ≥ 1,

so we get the unique solution

u0 = v+, u
⊥ =

∞∑
1

vj
tj
fj, u− = v0 − t0v+,

from which we deduce the expressions for E, E±, E−+:

Ev = u⊥, u− = E−v + E−+v+, E+v+ = v+e0, E−+ = −t0.

It then suffices to recall that tj ≥
√
h/C for j ≥ 1. 2
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3.3 d-bar equation for E−+
dbar

We will use the following notations for the holomorphic and anti-holomorphic
derivatives in the complex variable z:

∂z =
∂

∂z
=

1

2

(
∂

∂<z
+

1

i

∂

∂=z

)
,

∂z =
∂

∂z
=

1

2

(
∂

∂<z
− 1

i

∂

∂=z

)
.

Also recall the expressions for the Laplace operator on C ' R2,

∆ =

(
∂

∂<z

)2

+

(
∂

∂=z

)2

= 4
∂

∂z

∂

∂z
.

1dm4 Proposition 3.3.1 We have

∂zE−+(z) + f(z)E−+(z) = 0, (3.3.1) 1dm.5

where

f(z) = f+(z) + f−(z), f+(z) = (∂zR+)E+, f−(z) = E−∂zR−. (3.3.2) 1dm.6

Thus,
∂z(e

F (z)E−+(z)) = 0 if ∂zF (z) = f(z). (3.3.3) 1dm.7

Moreover,

<∆F (z) = 4<∂zf =
2

h

(
1

1
i
{p, p}(ρ+)

− 1
1
i
{p, p}(ρ−)

)
+O(1). (3.3.4) 1dm.8

Proof. (
1dm.5
3.3.1), (

1dm.6
3.3.2), (

1dm.7
3.3.3) follow from the general formula for the differ-

entiation of the inverse of an operator, here:

∂zE + E(∂zP)E = 0.

Let Π(z) : L2 → Ce0 be the spectral projection of Q corresponding to
the exponentially small eigenvalue t20, and choose e0 to be the normalization
of Π(z)ewkb. It is easy to see that the various z and z derivatives of ewkb have
at most temperate growth in 1/h. The same fact holds for Π(z):

1dm4.2 Lemma 3.3.2 For every (α, β) ∈ N ×N, there exists a constant Nα,β ≥ 0
such that

‖∂αz ∂
β
z Π(z)‖L(L2,L2) = O(h−Nα,β), z ∈ Ω.
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Proof. By Cauchy-Riesz functional calculus,

Π(z) =
1

2πi

∫
γ

(w −Q(z))−1dw, (3.3.5) 1dm.8.2

where γ is the oriented boundary of D(0, h/C) for a fixed sufficiently large
constant C > 0. For w ∈ γ, we have

‖(w −Q(z))−1‖L(L2,H1
h) = O

(
1

h

)
,

where we recall that H1 = H1
h is equipped with the natural semi-classical

norm. (This even holds with H1
h replaced by H2

h = D(Q), equipped with its
natural semi-classical norm, but will not be needed.)

On the other hand, ∂αz ∂
β
zQ(z) vanishes when max(|α|, |β|) ≥ 2 and for

(α, β); (α, β) ∈ {(1, 0), (0, 1), (1, 1)} we see that

∂αz ∂
β
zQ(z) = O(1) : H1

h → L2.

For (α, β) 6= (0, 0), ∂αz ∂
β
z (w −Q(z))−1 is a linear combination of terms,

(w −Q(z))−1(∂α1
z ∂

β1

z Q(z))(w −Q(z))−1...(∂αNz ∂βNz Q(z))(w −Q(z))−1,

with (αj, βj) 6= (0, 0), α1 + ...+ αN = α, β1 + ...+ βN = β. It now suffices to

apply ∂αz ∂
β
z to (

1dm.8.2
3.3.5) and use that the norm of the resolvent there is bounded

by O(1/h) in L(L2, H1
h) when w ∈ γ (and hence dist (w, σ(Q)) ≥ h/O(1)).

2

Since e0 is the normalization of Π(z)ewkb we see that the various (z, z)-
derivatives of e0 and hence also of e0 − ewkb are of temperate growth. The
last quantity is exponentially small in L2 and by elementary interpolation
estimates for the successive derivatives in z, z we get the same conclusion for
the higher derivatives of e0 − ewkb. (Cf.

GrSj94
[51].)

It follows that

f+(z) = (e0(z)|∂ze0(z)) = (ewkb(z)|∂zewkb(z)) +O(e−
1
Ch ), (3.3.6) 1dm.8.5

and the various z, z-derivatives of the remainder are also exponentially de-
caying.

Using the same simple variant of the method of stationary phase as in
Section

prepup
3.1, we get

(ewkb|∂zewkb) = O(1)− i

h

∫
|χ(x− x+(z))|2∂zφ+(x, z)e−

2
h
=φ+(x,z)dx

= − i
h

(∂zφ+)(x+(z), z) +O(1),

(3.3.7) 1dm.9
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where the remainder has a complete asymptotic expansion in powers of h;
∼ r0(z) + hr1(z) + ... in the space of smooth functions and in particular, it
remains bounded after taking z, z derivatives.

Using that φ+(x+(z), z) = 0, (φ+)′x(x+(z), z) = ξ+(z), we get after apply-
ing ∂z to the first of these relations, that

(∂zφ+)(x+(z), z) = −ξ+(z)∂zx+(z). (3.3.8) 1dm.10

On the other hand, if we apply ∂z and ∂z to the equation, p(x+(z), ξ+(z)) = z,
we get {

p′x∂zx+ + p′ξ∂zξ+ = 1

p′x∂zx+ + p′ξ∂zξ+ = 0
(3.3.9) 1dm.11

and using that x+(z) and ξ+(z) are real valued,{
p′x∂zx+ + p′ξ∂zξ+ = 1

p′x∂zx+ + p′ξ∂zξ+ = 0
(3.3.10) 1dm.12

which has the solution

∂zx+ =
p′ξ
{p, p}

(ρ+), ∂zξ+ =
−p′x
{p, p}

(ρ+). (3.3.11) 1dm.12.5

Combining (
1dm.8.5
3.3.6)–(

1dm.10
3.3.8), we get f+ = O(1) + i

h
ξ+∂zx+, where the O(1)

is stable under differentiation. To this we apply ∂z, take real parts and notice
that ∂z∂zx+ is real:

<∂zf+ = O(1) + < i
h
∂zξ+∂zx+.

It now suffices to apply (
1dm.12.5
3.3.11), to get the second (non-trivial) identity

in (
1dm.8
3.3.4) for the contribution from f+. The one from f− can be treated

similarly. 2

Using the expressions for the z-derivatives of x+, ξ+ and the analogous
ones for x−, ξ−, we have the following easy result relating (

1dm.8
3.3.4) to the

symplectic volume:

1dm5 Proposition 3.3.3 Writing z = x+ iy, we have:

dξ+(z) ∧ dx+(z) =
2

1
i
{p, p}(ρ+)

dy ∧ dx,

−dξ−(z) ∧ dx−(z) = − 2
1
i
{p, p}(ρ−)

dy ∧ dx,

so by (
1dm.8
3.3.4),

<∆F (z)dy ∧ dx =
1

h
(dξ+ ∧ dx+ − dξ− ∧ dx−) +O(1). (3.3.12) 1dm.13
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3.4 Adding the random perturbation

Let X ∼ NC(0, σ2) be a complex Gaussian random variable, meaning that
X has the probability distribution

X∗(P(dω)) =
1

πσ2
e−
|X|2

σ2 d(<X)d(=X). (3.4.1) 1dm.14

Here σ > 0. For t < 1/σ2, we have the expectation value

E(et|X|
2

) =
1

1− σ2t
. (3.4.2) 1dm.15

Bordeaux Montrieux
Bo08
[15] observed that we have the following possibly clas-

sical result (improving a similar statement in
HaSj08
[55]).

1dm6 Proposition 3.4.1 There exists C0 > 0 such that the following holds: Let
Xj ∼ NC(0, σ2

j ), 1 ≤ j ≤ N <∞ be independent complex Gaussian random
variables. Put s1 = maxσ2

j . Then for every x > 0, we have

P(
N∑
1

|Xj|2 ≥ x) ≤ exp(
C0

2s1

N∑
1

σ2
j −

x

2s1

).

Proof. For t ≤ 1/(2s1), we have

P(
∑
|Xj|2 ≥ x) ≤ E(et(

∑
|Xj |2−x)) = e−tx

N∏
1

E(et|Xj |
2

)

= exp(
N∑
1

ln
1

1− σ2
j t
− tx) ≤ exp(C0

∑
σ2
j t− tx).

It then suffices to take t = (2s1)−1. 2

Recall that

Qωu(x) =
∑

|k|,|j|≤C1/h

αj,k(ω)(u|ek)ej(x), ek(x) =
1√
2π
eikx. (3.4.3) 1dm.16

Since the Hilbert-Schmidt norm of Qω is given by ‖Qω‖2
HS =

∑
|αj,k(ω)|2,

we get from the preceding proposition:

1dm7 Proposition 3.4.2 If C > 0 is large enough, then

‖Qω‖HS ≤
C

h
with probability ≥ 1− e−

1
Ch2 . (3.4.4) 1dm.17
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Actually, we get a sharper statement: If λ ≥
√

2C0(1 + C1/h), then
‖Qω‖HS ≤ λ with probability ≥ 1− e−λ2/4.

Now, we work under the assumption that ‖Qω‖HS ≤ C/h and recall that
‖Qω‖L(L2,L2) ≤ ‖Qω‖HS. Assume that

δ � h3/2, (3.4.5) 1dm.18

so that ‖δQω‖ � h1/2. Then, by simple perturbation theory, from Proposi-
tion

1dm3.5
3.2.1 we see that

Pδ(z) =

(
Pδ − z R−
R+ 0

)
: H1

h ×C→ L2 ×C

is bijective with the bounded inverse

Eδ =

(
Eδ Eδ

+

Eδ
− Eδ

−+

)

Eδ = E +O(
δ

h2
) = O(h−1/2) in L(L2, L2)

Eδ
+ = E+ +O(

δ

h3/2
) = O(1) in L(C, L2)

Eδ
− = E− +O(

δ

h3/2
) = O(1) in L(L2,C)

Eδ
−+ = E−+ − δE−QE+ +O(

δ2

h5/2
).

(3.4.6) 1dm.19

In fact,

Pδ ◦ E = 1 +K, K =

(
δQωE δQωE+

0 0

)
,

Kn =

(
(δQωE)N (δQωE)n−1δQωE+

0 0

)
and Proposition

1dm3.5
3.2.1 implies that 1 + K : H0 × C → H0 × C is bijective

with inverse 1−K +K2.... Hence Pδ has the right inverse

Eδ = E(1 +K)−1 =

(
Eδ Eδ

+

Eδ
− Eδ

−+

)
,
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where

Eδ = E
∞∑
0

(−δQωE)n,

Eδ
+ =

∞∑
0

(−EδQω)nE+,

Eδ
− = E−

∞∑
0

(−δQωE)n,

Eδ
−+ = E+ − E−δQωE+ + E−δQωEδQωE+...

Similarly, we see that Pδ has a left inverse, necessarily equal to Eδ.
As before the eigenvalues of Pδ are the zeros of Eδ

−+ and we have the
d-bar equation

∂zE
δ
−+ + f δ(z)Eδ

−+ = 0,

f δ(z) = ∂zR+E
δ
+ + Eδ

−∂zR− = f(z) +O(
1

h

δ

h3/2
).

We can solve ∂zF
δ = f δ (making eF

δ
Eδ
−+ holomorphic) with

F δ = F +O(
δ

h5/2
) = F +O(

δ

h3/2
)
1

h
. (3.4.7) 1dm.20

1dm7.2 Remark 3.4.3 We define the multiplicity of a zero z0 of Eδ
−+(z) as the

multiplicity of z0 as a zero of the holomorphic function eF
δ(z)Eδ

−+(z). As we
observed after Proposition

1dm3.5
3.2.1, the set of eigenvalues of Pδ in Ω and the set

of zeros of Eδ
−+(z) agree and this follows from the formulae

(Pδ − z)−1 = Eδ(z)− Eδ
+(z)

(
Eδ
−+(z)

)−1
Eδ
−(z), (3.4.8) 1dm.20.1

Eδ
−+(z) = −R+(Pδ − z)−1R−, (3.4.9) 1dm.20.2

valid respectively when Eδ
−+(z) and Pδ − z are bijective (and implying the

equivalence of these two properties). If z0 is an eigenvalue, its (algebraic)
multiplicity is given by

m(z0) = tr Π(z0),

where

Π(z0) =
1

2πi

∫
γ

(z − Pδ)−1dz,
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and γ is the oriented boundary of a small disc, centered at z0. Choose
γ = γr = ∂D(z0, r) and let 0 < r → 0. (Here we follow an idea of M. Vogel
Vo14
[149], to exploit the fact that ∂zE

δ
−+(z0) = 0.) By (

1dm.20.1
3.4.8),

m(z0) = lim
r→0

tr
1

2πi

∫
γr

Eδ
+

(
Eδ
−+

)−1
Eδ
−dz

= lim
r→0

1

2πi

∫
γr

tr
(
Eδ
−+

)−1
Eδ
−E

δ
+dz.

(3.4.10) 1dm.20.3

For the last identity we used the fact that the integrand is a composition of
trace class operators, to move the trace inside the integral and then apply
the cyclicity of the trace.

Differentiating the identity EδPδ = 1, we get

∂zE
δ
−+ = Eδ

−E
δ
+ − ((∂zR+)Eδ

+ + Eδ
−∂zR−)Eδ

−+.

If we insert this in (
1dm.20.3
3.4.10), we see that the last term gives the contribution

0, so

m(z0) = lim
r→0

1

2πi

∫
γr

(
Eδ
−+

)−1
∂zE

δ
−+dz. (3.4.11) 1dm.20.4

On the other hand, the multiplicity m̃(z0) of z0 as a zero of Eδ
−+ is given

by

m̃(z0) = lim
r→0

1

2πi

∫
γr

(
eF

δ

Eδ
−+

)−1

∂z

(
eF

δ

Eδ
−+

)
dz

= lim
r→0

1

2πi

∫
γr

(
Eδ
−+

)−1
∂zE

δ
−+dz + lim

r→0

1

2πi

∫
γr

∂zF
δdz,

(3.4.12) 1dm.20.5

and the last term in the last member vanishes and hence

m̃(z0) = m(z0).

1dm7.5 Proposition 3.4.4 Assume that 0 < t� 1, δ � h3/2,

δt� e
− 1
C0h , t� δ

h5/2
, (3.4.13) 1dm.21

where C0 � 1 is fixed. Then for h > 0 small enough we have with probability

≥ 1− e−
1

Ch2 that

|Eδ
−+(z)| ≤ e−

1
Ch +

Cδ

h
, ∀z ∈ Ω. (3.4.14) 1dm.22

For every z ∈ Ω, we have with probability ≥ 1−O(t2)− e−
1

Ch2 , that

|Eδ
−+(z)| ≥ tδ

C
. (3.4.15) 1dm.23
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Proof. We have by Proposition
1dm7.5
3.4.4

E−QωE+ = (Qωe0|f0)

=
∑

|k|, |`|≤C1
h

α`,k(ω)(e0|ek)(e`|f0)

=
1

2π

∑
|k|, |`|≤C1

h

α`,k(ω)ê0(k)f̂0(`),

where ê0(k), f̂0(`) are the Fourier coefficients of e0, f0. This is a sum of in-

dependent Gaussian random variables ∼ NC

(
0,
(

1
2π
|ê0(k)| |f̂0(`)|

)2
)

. Now,

if X =
∑M

1 Xj, where Xj ∼ NC(0, σ2
j ) are independent Gaussian random

variables, then X ∼ NC(0,
∑M

1 σ2
j ).

Thus, E−QωE+ ∼ NC(0, σ2), where

σ2 =
1

(2π)2

∑
|k|, |`|≤C1

h

|ê0(k)|2 |f̂0(`)|2

=

 1

2π

∑
|k|≤C1

h

|ê0(k)|2


 1

2π

∑
|`|≤C1

h

|f̂0(k)|2

 .

(3.4.16) 1dm.24

If C1 is large enough, we get by repeated integration by parts that for
every N ∈ N,

|êwkb(k)| ≤ CN

(
h

〈k〉

)N
, |k| > C1

h
,

and similarly for f̂wkb. Since ‖ewkb‖ = ‖fwkb‖ = 1, we get by Parseval’s
formula that

1

2π

∑
|k|≤C1

h

|êwkb(k)|2 = 1− 1

2π

∑
|k|>C1

h

|êwkb(k)|2 = 1−O(h∞),

and similarly for fwkb. On the other hand we know that

‖e0 − ewkb‖, ‖f0 − fwkb‖ = O(h∞),

so
1

2π

∑
|k|≤C1

h

|ê0(k)|2 = 1−O(h∞)
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and similarly for f0. (
1dm.24
3.4.16) now shows that

σ = 1−O(h∞). (3.4.17) 1dm24.5

To finish the proof, we combine this with the last equation in (
1dm.19
3.4.6) and

the fact that |E−+| ≤ e−1/Ch, to see that with probability ≥ 1− e−1/(Ch2),

|Eδ
−+(z)| ≤ e−

1
Ch +

Cδ

h
+O

(
δ2

h5/2

)
, z ∈ Ω.

Since δ � h3/2, we get (
1dm.22
3.4.14). Similarly, for every z ∈ Ω, we have with

probability ≥ 1−O(t2)− e−1/(Ch2) that

|Eδ
−+(z)| ≥ tδ − e−1/(Ch) −O

(
δ2

h5/2

)
,

which together with (
1dm.21
3.4.13) implies (

1dm.23
3.4.15). 2

1dm8 Proposition 3.4.5 Let κ > 5/2 and fix ε0 ∈]0, 1[ sufficiently small. Let
δ = δ(h) satisfy e−ε0/h � δ � hκ, and put ε = ε(h) = h ln 1

δ
. Then with

probability ≥ 1− e−1/(Ch2) we have |Eδ
−+| ≤ 1 for all z ∈ Ω.

For any z ∈ Ω, we have |Eδ
−+| ≥ e−Cε/h with probability ≥ 1−O(δ2/h5).

This follows from Proposition
1dm7.5
3.4.4 by choosing t such that

max(
1

δ
e
− 1
C0h ,

δ

h5/2
, CδC−1)� t ≤ O(

δ

h5/2
),

which is possible to do since

1

δ
e
− 1
C0h , CδC−1 � δ

h5/2
.

Under the same assumptions, we also have with probability≥ 1−e−1/(Ch2),

|Fδ − F | ≤ O(
δ

h3/2
)
1

h
≤ O(ε)

1

h
.

Thus for the holomorphic function u(z) = eFδ(z)Eδ
−+(z) we have

• With probability ≥ 1− e−1/(Ch2) we have |u(z)| ≤ exp(<F (z) + Cε/h)
for all z ∈ Ω.

• For every z ∈ Ω, we have |u(z)| ≥ exp(<F (z)−Cε/h) with probability
≥ 1−O(δ2/h5).
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To conclude the proof of Theorem
1dm1
3.0.6, we will use the following result

of M. Hager (
Ha06b
[54], Proposition 6.1) with φ = h<F .

1dm9 Proposition 3.4.6 Let Γ b C have smooth boundary and let φ be a real
valued C2-function defined in a fixed neighborhood of Γ. Let z 7→ u(z;h) be
a family of holomorphic functions defined in a fixed neighborhood of Γ, and
let 0 < ε = ε(h)� 1. Assume

• |u(z;h)| ≤ exp( 1
h
(φ(z) + ε)) for all z in a fixed neighborhood of ∂Γ.

• There exist z1, ..., zN depending on h, with N = N(h) � ε−1/2 such
that ∂Γ ⊂ ∪N1 D(zk,

√
ε) and such that |u(zk;h)| ≥ exp( 1

h
(φ(zk) − ε)),

1 ≤ k ≤ N(h).

Then, the number of zeros of u in Γ satisfies

|#(u−1(0) ∩ Γ)− 1

2πh

∫
Γ

∆φ(z)dxdy| ≤ C

√
ε

h
.

End of the Proof of Theorem
1dm1
3.0.6. Consider the holomorphic function

u(z) = eFδ(z)Eδ
−+(z)

and put
φ(z) = h<F.

Then with probability ≥ 1− e−1/(Ch2), we have

|u(z)| ≤ e
1
h

(φ(z)+Cε) for all z ∈ Ω

and for each z ∈ Ω, we have

|u(z)| ≥ e
1
h

(φ(z)−Cε) with probability ≥ 1−O(δ2/h5).

Choose z1, z2, ..., zN ∈ ∂Γ such that ∂Γ ⊂ ∪N1 D(zk,
√
Cε), N = O(ε−1/2).

Then with probability ≥ 1−NO(δ2/h5) ≥ 1−O(δ2/(
√
εh5)), we have

|u(zj)| ≥ e
1
h

(φ(zj)−Cε), j = 1, 2, ..., N. (3.4.18) 1dm.24.6

Having already identified the eigenvalues of Pδ with the zeros of u and
their multiplicities in Remark

1dm7.2
3.4.3, we conclude from Proposition

1dm9
3.4.6 that

with probability as in the theorem,∣∣∣∣#(σ(Pδ) ∩ Γ)− 1

2π

∫
Γ

∆(<F )(z)L(dz)

∣∣∣∣ ≤ C
√
ε

h
. (3.4.19) 1dm.24.7
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Returning to (
1dm.13
3.3.12), we notice that the maps z 7→ (x+(z), ξ+(z)) and z 7→

(x−(z), ξ−(z)) have Jacobians of different sign, so when passing to densities,
this relation shows that the direct image under p of 1/h times the symplectic
volume density is equal to <∆FL(dz) +O(1). Consequently,

O(1) +

∫
Γ

∆(<F )L(dz) =
1

h
vol p−1(Γ).

and the theorem follows. 2

Proof of Proposition
1dm9
3.4.6. Define φj(z) by iφj(z) = φ(zj)+2∂zφ(zj)(z−zj).

Then

φ(z) = <(iφj(z)) +Rj(z), Rj(z) = O((z − zj)2)

φ′j(z) =
2

i
∂zφ(z) +O((z − zj)).

Consider the holomorphic function

vj(z;h) = u(z;h)e−
i
h
φj(z).

Then |vj(z;h)| ≤ e
1
h

(φ(z)−<iφj(z)) = e
1
h
Rj ≤ e

Cε
h , when z − zj = O(

√
ε), while

|vj(zj;h)| ≥ e−
Cε
h .

In a
√
ε-neighborhood of zj we put v = vj and make the change of variables

w = (z − zj)/
√
ε, ṽ(w) = v(z), so that

|ṽ(w)| ≤ eCε/h on D(0, 2), |ṽ(0)| ≥ e−Cε/h. (3.4.20) 1dm.24.8

Using Jensen’s formula, (used in Chapter
nonsa
8 and to be used in Section

iub
13.5) we see that the number of zeros w1, ..., wN of ṽ in D(0, 3/2) (repeated
with their multiplicity) is O(ε/h). Factorize:

ṽ(w) = eg(w)

N∏
1

(w − wk). (3.4.21) 1dm.25

In order to estimate g and g′, we need to find circles on which we have
good lower bounds on the product above. This is a classical argument in
complex analysis and we follow

Sj01
[129], Section 5.

1dm10 Lemma 3.4.7 Let x1, x2, ..., xN ∈ R and let I ⊂ R be an interval of length
|I| ∈]0,+∞[. Then there exists x ∈ I such that

N∏
j=1

|x− xj| ≥ e−N(1+ln 2
|I| ).
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Proof. Consider the function

F (x) =
N∑
j=1

ln
1

|x− xj|
.

We have ∫
I

ln
1

|x− xj|
dx ≤ 2

∫ |I|/2
0

ln
1

t
= |I|

(
1 + ln

2

|I|

)
,

since the first integral takes its largest possible value when xj is the midpoint
of I. It follows that

1

|I|

∫
I

F (x)dx ≤ N

(
1 + ln

2

|I|

)
.

We can therefore find x ∈ I such that F (x) ≤ N(1 + ln(2/|I|)),

N∏
1

|x− xj| = e−F (x) ≥ e−N(1+ln 2
|I|).

2

The lemma shows that ∃ r ∈ [4/3, 3/2] such that for every w ∈ ∂D(0, r),∣∣∣∣∣
N∏
1

(w − wk)

∣∣∣∣∣ ≥
N∏
1

|r − |wk|| ≥ e−N(1+ln 4
3) ≥ e−O(ε)/h.

Consequently, for |w| = r,∣∣eg(w)
∣∣ ≤ eO(ε)/h|ṽ(w)| ≤ eO(ε)/h,

and by the maximum principle, this estimate extends to D(0, r):

<g(w) ≤ O(ε)

h
, |w| ≤ r.

If C > 0 is large enough, Cε
h
−<g(w) is a non-negative harmonic function

on D(0, r) which in view of (
1dm.24.8
3.4.20), (

1dm.25
3.4.21) satisfies

Cε

h
−<g(0) ≤ O(ε)

h
.

We can then apply Harnack’s inequality to conclude that

Cε

h
−<g(w) ≤ O(ε)

h
, |w| ≤ 5

4
,
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i.e.

<g(w) ≥ −O(ε)

h
, |w| ≤ 5

4
,

and hence,

|<g(w)| ≤ O(ε)

h
, |w| ≤ 5

4
. (3.4.22) 1dm.26

Representing <g(w) by means of a Poisson kernel for D(0, 5/4):

<g(w) =

∫
∂D(0,5/4)

K(w, ω)<g(ω)|dω|,

and using the smoothness of the kernel K(w, ω) for w in the interior of the
disc, we see that

∇<g =
O(ε)

h
, |w| ≤ 6/5,

and hence by the Cauchy-Riemann equations,

g′ =
O(ε)

h
, |w| ≤ 6/5. (3.4.23) 1dm.27

We now return to (
1dm.25
3.4.21). If γ : [0, 1] 3 t 7→ γ(t) ∈ D(0, 6/5) with γ̇ and

1/γ̇ uniformly bounded and which avoids the zeros wk, then on one hand,

1

2π
var argγ ṽ =

1

2π

∫
γ

=d(ln ṽ) = < 1

2πi

∫
γ

d ln ṽ = < 1

2πi

∫
γ

ṽ′

ṽ
dw,

and on the other hand,

1

2π
var argγ ṽ = < 1

2πi

∫
γ

gdw +
N∑
1

var argγ(w − wk) =
O(ε)

h
.

We notice that these relations are invariant under the substitution z =
zj+
√
εw. Now cover ∂Γ by � 1/

√
ε discs D(zj,

√
ε) with zj ∈ ∂Γ. Then there

at most O(ε/h) zeros of u in each such disc and we assume for simplicity that
none of them is situated on ∂Γ. We equip ∂Γ with the positive orientation
and partion it into segments γ̃j so that γ̃j ⊂ D(zj,

√
ε). Then

< 1

2πi

∫
γj

v′j
vj
dz = O

( ε
h

)
.
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Writing u = vje
iφj/h along γ̃j, we get

< 1

2πi

∫
γ̃j

u′

u
dz = < 1

2πh

∫
γ̃j

φ′jdz + < 1

2πi

∫
γ̃j

v′j
vj︸ ︷︷ ︸

=O( εh)

= < 1

2πh

∫
γ̃j

(
2

i
∂zφ(z) +O((z − zj))

)
dz +O

( ε
h

)
= < 1

2πh

∫
γ̃j

2

i
∂zφ(z)dz +O

( ε
h

)
.

Summing over j, we get the number of zeros of u in Γ:

< 1

2πi

∫
∂Γ

u′(z)

u(z)
dz = < 1

2πh

∫
∂Γ

2

i
∂zφ(z)dz +O(

√
ε

h
)

=
1

2πh

∫
∆φ(x)dxdy +O(

√
ε

h
).

Here, we used Stokes’s formula for the last equality:

d
2

i
∂zφ(z)dz =

2

i
∂z∂zφ(z)dz ∧ dz = 4∂z∂zφ(z)dx ∧ dy = ∆φ(z)dx ∧ dy.

2
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Chapter 4

Quasi-modes and spectral
instability in one dimension

qm1d

4.1 Asymptotic WKB solutions
wkb

In this section we describe the general WKB construction of approximate
“asymptotic” solutions to the ordinary differential equation

P (x, hDx)u =
m∑
k=0

bk(x)(hDx)
ku = 0, (4.1.1) wkb.2

on an interval α < x < β, where we assume that the coefficients bk ∈
C∞(]α, β[). Here h ∈]0, h0] is a small parameter and we wish to solve (

wkb.2
4.1.1)

up to any power of h. We look for u of the form

u(x;h) = a(x;h)eiφ(x)/h, (4.1.2) wkb.3

where φ ∈ C∞(]α, β[) is independent of h. The exponential factor describes
the oscillations of u and when φ is complex valued it also describes the
exponential growth or decay. a(x;h) is the amplitude and should be of the
form

a(x;h) ∼
∞∑
ν=0

aν(x)hν in C∞(]α, β[). (4.1.3) wkb.4

The sum to the right is in general not convergent and (
wkb.4
4.1.3) says that a is

the asymptotic sum in the following sense:

For all N,M ∈ N and every interval K b]α, β[

there is a constant C = CK,N,M such that

|
(
d

dx

)M
(a(x;h)−

N∑
ν=0

aν(x)hν)| ≤ ChN+1,∀x ∈ K.
(4.1.4) wkb.5
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For any sequence aν ∈ C∞(]α, β[) there exists an asymptotic sum by
virtue of the following Borel lemma (see e.g.

DiSj99
[40]):

wkb1 Lemma 4.1.1 Let a0, a1, a2, ... ∈ C∞(]α, β[). Then there exists a(x;h) ∈
C∞(]α, β[), 0 < h ≤ h0, such that (

wkb.4
4.1.3) holds as defined in (

wkb.5
4.1.4).

Thus, a(x;h) is smooth in x for every h ∈]0, h0] and that is in general
enough in practice. A closer look at the proof below shows that we can
choose a smooth also in h and even in both variables simultaneously; a ∈
C∞(]α, β[×[0, h0]).

Let us make a remark about the unicity of a: If ã(x;h) is a second function
with ã ∼

∑∞
0 aνh

ν , then

∀N,M ∈ N, K b]α, β[, ∃CK,N,M such that

|
(
d

dx

)N
(a(x;h)− ã(x;h))| ≤ CK,N,Mh

N+1, x ∈ K.
(4.1.5) wkb.6

We will write this more briefly as

ã = a+O(h∞) locally uniformly on ]α, β[

and similarly for all the derivatives,

or simply
ã = a+O(h∞) in C∞(]α, β[).

To P we associate its leading semi-classical symbol:

p(x, ξ) =
m∑
k=0

bk(x)ξk ∈ C∞(]α, β[×R) (4.1.6) wkb.8

which is a polynomial of degree m in ξ with coefficients that depend smoothly
on x. More generally, we can let bk depend on h and consider the semi-
classical differential operator

P = P (x, hD;h) =
m∑
k=0

bk(x;h)(hD)k,

bk(x;h) ∼
∞∑
ν=0

bk,ν(x)hν , bk,ν ∈ C∞(]α, β[)

(4.1.7) wkb.9

and its leading semi-classical symbol

p(x, ξ) =
m∑
k=0

bk,0(x)ξk, (4.1.8) wkb.10
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as well as its full symbol

P (x, ξ;h) =
m∑
k=0

bk(x;h)ξk ∼ p(x, ξ) + hp1(x, ξ) + ... (4.1.9) wkb.11

where pν(x, ξ) =
∑m

k=0 bk,ν(x)ξk, and we will sometimes write p = p0. The
last asymptotic sum takes place in the Fréchet space of smooth functions
on ]α, β[×R that are polynomials of order m in ξ. If we consider a second
semi-classical differential operator

Q = Q(x, hD;h) =
m̃∑
k=0

ck(x;h)(hD)k, (4.1.10) wkb.12

then by using Leibnitz’ formula we hall prove that the composition R := P ◦Q
is a semi-classical differential operator of order m+ m̃ with full symbol

R(x, ξ;h) =
∞∑
µ=0

hµ

µ!
(∂µξ P (x, ξ;h))Dµ

xQ(x, ξ;h), (4.1.11) wkb.13

where the sum is finite. (When considering pseudodifferential operators,
one encounters infinite sums of the same type and they can be defined as
asymptotic sums.) Here Dx = i−1∂x denotes partial derivative with respect
to x. Writing Q ∼

∑k
0 h

kqk(x, ξ), r ∼
∑k

0 h
krk(x, ξ) similarly to (

wkb.11
4.1.9), we

get from the composition formula above, that

r0(x, ξ) = p0(x, ξ)r0(x, ξ), (4.1.12) wkb.14

r1(x, ξ) =
1

i
∂ξp0(x, ξ)∂xq0(x, ξ) + p0(x, ξ)q1(x, ξ) + p1(x, ξ)q0(x, ξ). (4.1.13) wkb.15

Proof of (
wkb.13
4.1.11). It suffices to treat the case when P = a(x)(hDx)

k,
Q = b(x)(hDx)

`. Leibnitz’ formula gives

P ◦Qu(x) = a(x)(hDx)
k(b(x)(hDx)

`u(x))

=
k∑
j=0

a(x)
k!

j!(k − j)!
((hDx)

jb(x))(hDx)
k−j+`u(x).

Thus the symbol of P ◦Q is

k∑
j=0

hj

j!
a(x)

k!

(k − j)!
ξk−jDj

xb(x)ξ` =
k∑
j=0

hj

j!
∂jξ(a(x)ξk)Dj

x(b(x)ξ`)

=
∞∑
j=0

hj

j!
(∂jξP )(x, ξ)Dj

xQ(x, ξ).
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2

Here is a more sophisticated but perhaps more intuitive proof of (
wkb.13
4.1.11):

We observe that

e−ixξ/h ◦P (x, hDx;h) ◦ eixξ/h = P (x, ξ+ hDx;h) =
∞∑
j=0

hj

j!
∂jξP (x, ξ;h)(hDx)

j,

where the sum is finite. In particular P (x, ξ;h) = P (x, ξ+hDx;h)(1). More-
over,

R(x, ξ+hDx) = e−ixξ/h◦(P (x, hD)Q(x, hD))◦eixξ/h = P (x, ξ+hDx;h)Q(x, ξ+hDx;h),

and in particular,

R(x, ξ;h) = P (x, ξ + hDx)Q(x, ξ + hDx;h)(1)

= P (x, ξ + hDx;h)(Q(x, ξ;h)) =
∞∑
j=0

1

j!
(∂jξP )(x, ξ;h)hjDj

xQ(x, ξ;h),

which proves (
wkb.13
4.1.11).

If φ ∈ C∞(]α, β[), we have

e−iφ(x)/h ◦ hDx ◦ eiφ(x)/h = hDx + φ′(x)

which is a semi-classical differential operator of order 1 with full symbol
ξ + φ′(x). From the composition result above we see that more generally

e−iφ(x)/h ◦ (hDx)
k ◦ eiφ(x)/h = (hDx + φ′(x))k, k ∈ N,

is a semi-classical differential operator of order k. We can apply this to the
conjugated operator

P φ := e−iφ(x)/hP (x, hDx;h)eiφ(x)/h =
m∑
k=0

bk(x;h)(hDx + φ′(x))k. (4.1.14) wkb.17

to see that P φ is also a semi-classical differential operator of order m with
symbol

P φ(x, ξ) ∼
∞∑
ν=0

hνpφν (x, ξ), (4.1.15) wkb.18

where pν(x, ξ) is a polynomial of order m in ξ with smooth coefficients.
Moreover,

pφ(x, ξ) := pφ0(x, ξ) = p(x, φ′(x) + ξ). (4.1.16) wkb.19
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Now assume that we have found a function φ as above such that

p(x, φ′(x)) = 0, x ∈]α, β[ (4.1.17) wkb.21

and in addition
p′ξ(x, φ

′(x)) 6= 0, on ]α, β[, (4.1.18) wkb.22

where we use the notation p′ξ = ∂ξp. Then for the conjugated operator above,
we get

pφ(x, 0) = 0, ∂ξp
φ(x, 0) 6= 0. (4.1.19) wkb.23

We now look for a(x;h) ∼
∑∞

ν=0 aν(x)hν with a0(x) non-vanishing on
]α, β[, such that

P φ(x, hDx;h)(a(x;h)) ∼ 0, (4.1.20) wkb.24

in the sense of asymptotic sums and for that we write P φ as an asymptotic
sum of h-independent differential operators of order ≤ m,

P φ(x, hDx;h) ∼ Q0(x,Dx) + hQ1(x,Dx) + h2Q2(x,Dx) + ... (4.1.21) wkb.25

Here Q0 = pφ(x, 0) = p(x, φ′(x)) = 0,

Q1 = ∂ξp
φ(x, 0)Dx + pφ1(x, 0) = p′ξ(x, φ

′(x))Dx + pφ1(x, 0), (4.1.22) wkb.26

where we used (
wkb.19
4.1.16). Applying (

wkb.25
4.1.21) to a(x;h) ∼

∑∞
ν=0 aν(x)hν and

regrouping the terms in powers of h, we get the sequence of transport equa-
tions

Q1a0 = 0,

Q1a1 +Q2a0 = 0,

Q1a2 +Q2a1 +Q3a0 = 0,

...

(4.1.23) wkb.27

Each equation is of first order and can be solved explcitly. From the first one
we get

a0(x) = C0 exp−i
∫ x

x0

pφ1(t, 0)

∂ξpφ(t, 0)
dt, (4.1.24) wkb.28

where C0 ∈ C is an arbitrary integration constant and x0 an arbitrary point
in ]α, β[. We fix C0 6= 0.

wkb1.5 Remark 4.1.2 Let a(x;h) ∼ a0(x)+ha1(x)+... where a0, a1, ... are obtained
by solving the transport equattions (

wkb.27
4.1.23) and where a0 is non-vanishing.

Then the general solution is of the form ã(x;h) ∼ c(h)a(x;h), where c(h) ∼
c0 + hc1 + ... for any complex numbers c0, c1, ...
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wkb2 Example 4.1.3 Let,

P = −h2

(
d

dx

)2

+ V (x)− E

P (x, ξ) = p(x, ξ) = ξ2 + V (x)− E.
(4.1.25) wkb.29

where V ∈ C∞(]α, β[; R) and E ∈ R.

a) Assume that V (x) < E on ]α, β[. We are in the classically allowed region
and the equation p(x, ξ) = 0 has two real solutions ξ = ξ± = ±

√
E − V (x),

and we have two solutions ±φ(x) of the eikonal equation (
wkb.21
4.1.17), given by

φ(x) =
∫ x
x0

√
E − V (y)dy. The WKB constructions above can be applied

and we find two oscillatory solutions

u±(x;h) = a±(x;h)e±iφ(x)/h (4.1.26) wkb.30

with u− = u+, that satisfy

Pu± = O(hN) (4.1.27) wkb.31

locally uniformly on the interval for every N ∈ N together with all their
derivatives. (We will express this more briefly by saying that Pu± = O(h∞)
locally uniformly together with all its derivatives.)

In this case, we have P φ
0 = (hDx+φ′)2 +V −E = h(2φ′(x)Dx+ 1

i
φ′′(x))+

(hDx)
2 and we get a0 = C(φ′)−

1
2 .

b) Let V (x) > E on ]α, β[. we are in the classically forbidden region (in the
sense that there are no points in the real phase space where p vanishes). Now
the equation p(x, ξ) = 0 has the two non-real solutions ξ = ±i

√
V (x)− E.

Let ψ(x) =
∫ x
x0

√
V (y)− Edy. The WKB method produces two functions

v±(x;h) = b±(x;h)e±ψ(x)/h

such that
P (x, hDx;h)(b±(x;h)eψ(x)/h) = r±(x;h)e±ψ(x)/h,

where r±(x;h) = O(h∞) locally uniformly with all their derivatives.

Again, b0 = C(ψ′)−
1
2 .

Notice that if for some (x0, ξ0) ∈]α, β[×C

p(x0, ξ0) = 0, p′ξ(x0, ξ0) 6= 0, (4.1.28) wkb.32
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then there is a small open interval I ⊂]α, β[ containing x0 such that the
equation p(x, ξ) = 0 has a solution ξ = ξ(x) ∈ C depending smoothly on
x ∈ I with ξ(x0) = ξ0, p′ξ(x, ξ(x)) 6= 0. If we let φ ∈ C∞(I) be a primitive of
ξ(x), so that φ′(x) = ξ(x), then we get

p(x, φ′(x)) = 0, p′ξ(x, φ
′(x)) 6= 0.

Summing up the discussion, we have

wkb3 Theorem 4.1.4 Consider the semi-classical differential operator

P = P (x, hD;h) =
m∑
k=0

bk(x;h)(hD)k, x ∈]α, β[, (4.1.29) wkb.33

where bk(x;h) ∼
∑∞

ν=0 bk,ν(x)hν, bk,ν ∈ C∞(]α, β[) and its leading semi-
classical symbol

p(x, ξ) =
m∑
k=0

bk,0(x)ξk. (4.1.30) wkb.34

Let (x0, ξ0) ∈]α, β[×C be a point where (
wkb.32
4.1.28) holds. Then there exists an

open interval I with x0 ∈ I ⊂]α, β[ and a function φ ∈ C∞(I) such that

p(x, φ′(x)) = 0, p′ξ(x, φ
′(x)) 6= 0, φ′(x0) = ξ0.

This function is uniquely determined up to a constant.
For any such (I, φ) there exists a(x;h) ∼

∑∞
0 aν(x)hν with a0 6= 0 on I

such that

P (x, hD;h)(eiφ(x)/ha(x;h)) = r(x;h)eiφ(x)/h, r = O(h∞),

locally uniformly on I with all its derivatives.

4.2 Quasimodes in one dimension
qd

E.B. Davies
Da99
[31] observed that for the one-dimensional Schrödinger operator

we may construct quasimodes for values of the spectral parameter that may
be quite far from the spectrum of the operator. M. Zworski

Zw01
[156] observed

that this result can be viewed as a special case of more general and older
results of L. Hörmander

Ho60a, Ho60b
[78, 79] and generalized the result of Davies to more

general operators in the semi-classical limit in arbitrary dimension, by adap-
tation of Hörmander’s results via a known reduction. In

DeSjZw04
[39] a direct proof

was given. (See Chapter
qmgd
9.) Here we explain the result in the simpler one

dimensional case.
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Consider an operator as in (
wkb.9
4.1.7). The formal complex adjoint is given

by

P (x, hD;h)∗ =
m∑
0

(hDx)
kbk(x;h) =

m∑
0

ck(x;h)(hDx)
k, (4.2.1) qd.2

where ck(x;h) ∼ ck,0(x) + hck,1(x) + ... in C∞(]α, β[) and ck,0(x) = bk,0(x).
The (semi-classical) principal symbol of P ∗ is equal to p(x, ξ) (when ξ is real),
where p(x, ξ) is the one of P . Motivated by the notion of normal operators,
we are interested in the commutator [P, P ∗].

qd1 Proposition 4.2.1 Let

Q(x, hD;h) =
m̃∑
0

ck(x;h)(hDx)
k,

ck(x;h) ∼ ck,0(x) + hck,1(x) + ... in C∞(]α, β[),

(4.2.2) qd.3

be a second semi-classical differential operator of the same type as P . Then

[P,Q] = h
m+m̃−1∑

0

dk(x;h)(hDx)
k =: hR(x, hDx;h) (4.2.3) qd.4

where R is a semi-classical differential operator of order m + m̃ − 1 of the
same type and whose principal symbol is given by

r(x, ξ) =
1

i
{p, q} =

1

i
(p′ξq

′
x − p′xq′ξ). (4.2.4) qd.5

This result follows easily from the composition formula (
wkb.13
4.1.11) and es-

pecially from (
wkb.14
4.1.12), (

wkb.15
4.1.13). Notice that the Poisson bracket {a, b} :=

a′ξ(x, ξ)b
′
x(x, ξ) − a′x(x, ξ)b

′
ξ(x, ξ) of two smooth functions a and b is anti-

symmetric
{a, b} = −{b, a} (4.2.5) qd.8

and in particular,
{a, a} = 0. (4.2.6) qd.8

From the proposition and the fact that the principal symbol of P ∗ is equal
to p(x, ξ), we get

[P, P ∗] = hR, r =
1

i
{p, p}, (4.2.7) qd.7

where r denotes the principal symbol of R. Notice that r is real-valued
(reflecting the fact that [P, P ∗] is formally self-adjoint). We also have the
formula

1

i
{p, p} = −2{<p,=p} (4.2.8) qd.9
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qd2 Example 4.2.2 Let

P = −h2

(
d

dx

)2

+ V (x), V ∈ C∞(]α, β[). (4.2.9) qd.9.5

Then p(x, ξ) = ξ2 + V (x) and an easy computation gives

1

i
{p, p} = −4ξ=V ′(x). (4.2.10) qd.10

Back to the general case, let (x0, ξ0) ∈]α, β[×R = T ∗]α, β[ be a point
where

p(x0, ξ0) = 0,
1

i
{p, p} > 0. (4.2.11) qd.11

In particular,
p′ξ(x0, ξ0) 6= 0, (4.2.12) qd.12

so we are in the situation of Theorem
wkb3
4.1.4. Let ξ(x) ∈ C∞(neigh (x0, ]α, β[))

(using the notation “neigh(x,A)” for “some neighborhood of x in A”) be the
solution of p(x, ξ(x)) = 0 with ξ(x0) = ξ0 and p′ξ(x, ξ(x)) 6= 0. Let

φ(x) =

∫ x

x0

ξ(y)dy (4.2.13) qd.13

be the corresponding solution of

p(x, φ′(x)) = 0, φ(x0) = 0, φ′(x0) = ξ0. (4.2.14) qd.14

qd2 Proposition 4.2.3 In the situation above,

=φ′′(x0) > 0. (4.2.15) qd.15

Proof. We differentiate (
qd.14
4.2.14) and get for x = x0:

p′x(x0, ξ0) + p′ξ(x0, ξ0)φ′′(x0) = 0,

φ′′(x0) = −p
′
x(x0, ξ0)

p′ξ(x0, ξ0)
= −

p′xp
′
ξ

|p′ξ|2
.

Hence,

=φ′′(x0) = |p′ξ|−2 1

2i
(−p′xp′ξ + p′ξp

′
x)

= |p′ξ|−2 1

2i
{p, p}(x0, ξ0) > 0.
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2

Let

f(x;h) = h−
1
4a(x;h)eiφ(x)/h, x ∈ neigh (x0, ]α, β[) =: J (4.2.16) qd.16

be an asymptotic solution of

P (x, hDx;h)f(x;h) = O(h∞)eiφ(x)/h. (4.2.17) qd.17

It follows from (
qd.14
4.2.14), (

qd.15
4.2.15), (

qd.16
4.2.16) that there exists a constant C > 0

such that
1

C
≤ ‖f(x;h)‖2

L2(J) ≤ C, (4.2.18) qd.18

and for every δ > 0,∫
|x−x0|≥δ

|f(x;h)|2dx = O(h−
1
2 e−

δ2

Ch ), 0 < h� 1. (4.2.19) qd.19

From (
qd.17
4.2.17) we conclude that

‖P (x, hDx;h)f‖L2(J) = O(h∞). (4.2.20) qd.20

Thanks to (
qd.19
4.2.19), the estimates (

qd.20
4.2.20), (

qd.18
4.2.18) remain valid if we

replace f by χf , where χ ∈ C∞0 (J) is equal to 1 in a neighborhood of x0.
Assume now that we have a closed operator P = Ph : L2(I)→ L2(I) with

D(P ) ⊃ C∞0 (I), I =]α, β[, such that Pu = P (x, hDx;h)u when u ∈ C∞0 (I).
Using the quasi-mode χf , we get

qd3 Theorem 4.2.4 For every N > 0, we have 0 ∈ σhN (P ) when h is sufficiently
small depending on N .

We can have other values than 0 for the spectral parameter. It suffices
to find ρ(z) = (x(z), ξ(z)) ∈ T ∗I such that

p(x(z), ξ(z)) = z,
1

i
{p, p}(x(z), ξ(z)) > 0. (4.2.21) qd.21

Here we observe that if we identify p with the smooth map F : T ∗I 3
(x, ξ) 7→ (<p(x, ξ),=p(x, ξ)) ∈ R2, then dF (x, ξ) is bijective precisely at
the points where i−1{p, p}(x, ξ) 6= 0. By the implicit function theorem the
points for which we can solve (

qd.21
4.2.21) form an open set Σ+ ⊂ C and locally

we can choose the solution (x(z), ξ(z)) to depend smoothly on z ∈ Σ+. The
preceding theorem can be generalized:

qd4 Theorem 4.2.5 For every N > 0 and every compact set K ⊂ Σ+, there
exists h = h(N,K) > 0 such that K ⊂ σhN (P ) for 0 < h ≤ h(N,K).

59



Exercise Show that if z = p(x, ξ), then there exists u ∈ C∞0 (R) which is
normalized in L2, such that ‖(P − z)u‖ = O(h1/2).

Identifying p again with the map T ∗I 3 (x, ξ) 7→ (<p,=p) ∈ R2, we see
from Sard’s theorem that the image N under p of {ρ ∈ T ∗I; i−1{p, p} = 0}
is of (Lebesgue) measure 0. We get

qd5 Proposition 4.2.6 Let Σ± = {p(ρ); ρ ∈ T ∗I, ±i−1{p, p}(ρ) > 0}. Then

R(p) = Σ+ ∪ Σ− ∪N , (4.2.22) qd.24

where N is of measure 0.

If p(x, ξ) is an even function of ξ, then i−1{p, p} is odd and we have
Σ+ = Σ−, so (

qd.24
4.2.22) becomes R(p) = Σ+ ∪N . In particular this is the case

for the semi-classical Schrödinger operator in Example
qd2
4.2.3.

Noticing that var argγ(p − z) = ±2π if γ = ∂D(ρ, ε) is the positively
oriented boundary of a small disc centered at a point ρ ∈ p−1(z) where
±i−1{p, p} is > 0, it is possible to show that Σ+ = Σ− under more general
assumptions.

Now return to the non-self-adjoint harmonic oscillator P = Pc in (
sp.e.1
2.5.1)

with c ∈ C\] − ∞, 0]. We have p(x, ξ) = ξ2 + cx2 and Σ := R(p) = {t +

sc; t, s ≥ 0} and it is easy to see that Σ+ = Σ− =
◦
Σ is the interior of Σ.

Assume that =c > 0 in order to fix the ideas. A first result of Davies
Da99a
[32]

was that if 0 < θ < arg (c), then in the case h = 1, we have

‖(Ph=1 − E)−1‖ → +∞, E = eiθF, F → +∞.
It is now easy to see that we have the following improvement when E tends
to infinity along the half-ray eiθ[0,+∞[:

For every N ∈ N, there exists c = c(N, θ) > 0, such

that ‖(Ph=1 − E)−1‖ ≥ c|E|N , E = eiθF, F ≥ 1.
(4.2.23) qd.25

Here, we adopt the convention that ‖(Ph=1−E)−1‖ = +∞ when E ∈ σ(Ph=1).
In fact, the equation (Ph=1 − E)u = v reads

(D2
x + cx2 − E)u = v,

and the change of variable x = |E|1/2x̃ (which changes the L2 norms of u
and v with the same factor) gives

(|E|−1D2
x̃ + c|E|x̃2 − E)u = v,

that we can write

((hDx̃)
2 + cx̃2 − eiθ)u = hv, h = 1/|E|.

Since eiθ ∈ Σ+, we can find u ∈ B2 with ‖u‖ = 1 such that ‖v‖ ≤ CNh
N and

(
qd.25
4.2.23) follows.
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Chapter 5

Spectral asymptotics for more
general operators in one
dimension

g1d

In this chapter, we generalize the results of Chapter (
1dm
3). The results and the

main ideas are close, but not identical, to the ones of Hager
Ha06b
[54]. We will use

some h-pseudodifferential machinery, see for instance
DiSj99
[40].

5.1 Preliminaries for the unperturbed oper-

ator
prelunpert

We will work in L2(R). Only minor modifications are required if we wish
to replace R by the compact manifold T. Actually, the discussion in this
section extends to the case of Rn and general smooth compact manifolds
respectively.

Let m ∈ C∞(R2
x,ξ; ]0,+∞[) be an order function, so that for some fixed

C0 ≥ 1, N0 ≥ 0,

m(X) ≤ C0〈X − Y 〉N0m(Y ), X, Y ∈ R2. (5.1.1) g1d.1

Here, for X = (x, ξ), we write 〈X〉 = (1 + X2)1/2, X2 = x2 + ξ2. Basic
examples of such functions are

• m(X) = 〈ξ〉m0 , where 〈ξ〉 = (1 + ξ2)1/2,

• m(X) = 〈X〉m0 ,

where m0 ∈ R.
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We say that P ∈ C∞(R2) belongs to the symbol space S(m), where m is
an order function, if for all α, β ∈ N, there exists Cα,β = Cα,β(P ) such that

|∂αx∂
β
ξ P (x, ξ)| ≤ Cα,βm(x, ξ), ∀(x, ξ) ∈ R2. (5.1.2) g1d.2

When P depends on additional parameters (like the semi-classical parameter
h ∈]0, h0], h0 > 0), we say that P ∈ S(m) if (

g1d.2
5.1.2) holds uniformly. S(m) is

a Fréchet space with the smallest possible constants Cα,β(P ) as seminorms.
We say that P ∈ hNS(m) = S(hNm), when P depends on h and (

g1d.2
5.1.2)

holds uniformly with m there replaced by hNm.
If P ∈ S(m), we define a corresponding h-pseudodifferential operator, by

using the Weyl quantization,

P (x, hD)u(x) =
1

2πh

∫∫
e
i
h

(x−y)·θP (
x+ y

2
, θ)u(y)dydθ

=
1

2π

∫∫
ei(x−y)·θP (

x+ y

2
, hθ)u(y)dydθ.

(5.1.3) g1d.3

As explained for instance in
DiSj99
[40], this gives a continuous operator P : S(R)→

S(R), which extends to S ′(R)→ S ′(R), and we use the same letter, to denote
the extension. The semi-classical version of the Calderón-Zygmund theorem
tells us that when m = 1 then P : L2(R)→ L2(R) is bounded and the norm
is bounded by a constant times a finite sum of the Cα,β(P ).

In the h-dependent case, we say that P = Ph ∈ S(m) is a classical symbol,
and write P ∈ Scl(m), if there exist p0, p1, ... ∈ S(m) independent of h, such
that

P ∼
∞∑
0

hkpk in S(m), (5.1.4) g1d.4

in the sense that for every N ∈ N,

P −
N∑
0

hkpk ∈ hN+1S(m). (5.1.5) g1d.5

The leading term p := p0 is called the semi-classical principal symbol.
We assume

m ≥ 1 (5.1.6) g1d.5.5

and that
∃z0 ∈ C such that p− z0 is elliptic (5.1.7) g1d.6

in the sense that (p(X)− z0)−1 = O(1/m(X)) uniformly for X ∈ R2. Then
it is standard to check that (p − z0)−1 ∈ S(1/m) (noticing that 1/m is an
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order function). We also know that when h > 0 is small enough, then P − z0

is bijective S → S, S ′ → S ′ and the inverse Q = (P − z0)−1 is a classical
h-pseudodifferential operator with symbol

Q ∼ q0 + hq1 + ... in S(1/m), q := q0 =
1

p− z
.

For h small enough, we can define the semi-classical Hilbert space H(m) =
(P − z0)−1L2(R), which does not depend on the choice of P − z0 as above:
After regularization and without changing the order of magnitude of m, we
can assume that m ∈ S(m), then define H(m) = m−1L2(R), where m =
m(x, hD) and m−1 = (m(x, hD))−1. We also have,

g1d1 Proposition 5.1.1 For h small enough, the closure of P as an unbounded
operator in L2 with domain S is given by P : H(m) → H(1) = L2 with
domain D(P ) = H(m). (We use the same letter to denote the closure.)

Again, this follows from standard elliptic theory of h-pseudodifferential
operators. Having now a closed operator in L2, we can consider its spectrum
σ(P ).

Let
Σ = Σ(p) = p(R2). (5.1.8) g1d.7

g1d2 Proposition 5.1.2 • p− z is elliptic for every z ∈ C \ Σ(p),

• If K ⊂ C is compact, h-independent and disjoint from Σ(p), then for
h small enough, P − z : H(m)→ L2 is bijective for every z ∈ K.

Here, the first property is elementary and quite easy to verify. The second
property is a standard elliptic result (as in Proposition

g1d1
5.1.1).

Define

Σ∞(p) = the set of accumulation points of p(ρ), ρ→∞, (5.1.9) g1d.8

so that
Σ∞(p) ⊂ Σ(p). (5.1.10) g1d.9

g1d3 Proposition 5.1.3 Let W b C be independent of h with smooth boundary
and assume that

• W is open and simply connected,
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• W 6⊂ Σ,

• W ∩ Σ∞ = ∅.

Then, for h small enough, the spectrum of P in W is discrete, i.e. given by
a discrete set (in W ) of eigenvalues of finite algebraic multiplicity.

Proof. Let z0 ∈ W \Σ and let κ : C \ {z0} → C \ {z0} be a diffeomorphism
onto its image such that

• κ(W \ {z0}) ∩W = ∅,

• κ(z) = z, for z ∈ C \ W̃ , where W̃ is a neighborhood of W that we can
choose arbitrarily small.

We choose W̃ with its closure disjoint from Σ∞. Then p̃ := p ◦ κ is equal to

p outside a compact set and p̃− z is elliptic for z ∈ W̃ . Let

P̃ (x, hD) = P (x, hD) + (p̃− p)(x, hD).

The symbol p̃− p has compact support and we know (cf. e.g.
DiSj99
[40]) that the

corresponding operator is compact and even of trace class. For h > 0 small
enough, P̃ − z : H(m) → H(1) is bijective for every z ∈ W . Write on the
operator level,

P − z = (1 + (p− p̃)(P̃ − z)−1)(P̃ − z), z ∈ W.

Here W 3 z 7→ 1 + (p − p̃)(P̃ − z)−1 is a holomorphic family of Fredholm
operators, invertable for at least one value of z (in W \ Σ). By analytic
Fredholm theory, reviewed in Chapter

nonsa
8, we know that (for each h small

enough), 1 + (p − p̃)(P̃ − z)−1 is bijective for z ∈ W away from a discrete
set Γ(h) and since the spectrum of P in W has to be contained in Γ(h), it

is a discrete set. Moreover the singularities of 1 + (p − p̃)(P̃ − z)−1 at Γ(h)
are poles of finite order with finite rank Laurent coefficients, so we have the
same property for

(P − z)−1 = (P̃ − z)−1(1 + (p− p̃)(P̃ − z)−1)−1,

and in particular the spectral projections

Π(z) =
1

2πi

∫
∂D(z,ε)

(z − P )−1dz, 0 < ε� 1,

have finite rank (equal to the algebraic multiplicity of z as an eigenvalue of
P ) for every z ∈ Γ(h). 2
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5.2 The result
g1dr

We treat the case of operators on R and indicate later the modifications to
be made in the case of T. Let W be as in Proposition

g1d3
5.1.3. Then p−1(W )

is compact. Let Ω ⊂ W be open, h-independent, simply connected with
smooth boundary We assume:

Ω ⊂ Σ and for every ρ ∈ p−1(Ω), we have
1

i
{p, p}(ρ) 6= 0. (5.2.11) g1dr.1

This means that d<p, d=p are linearly independent at every point of p−1(Ω)
and by the implicit function theorem, we conclude that p−1(z) is a finite set
for every z ∈ Ω, whose cardinality is independent of z. Since Ω is simply con-
nected, we can write p−1(z) = {ρ1(z), ..., ρM(z)}, where ρj(z) are mutually
distinct and depend smoothly on z ∈ Ω.

g1d4 Proposition 5.2.1 The cardinality of p−1(z) is even = 2N for every z ∈ Ω,
and we can write

p−1(z) = {ρ+
1 (z), ..., ρ+

N(z), ρ−1 (z), ..., ρ−N(z)},

where ρ±j (z) depend smoothly on z and ±i−1{p, p}(ρ±j (z)) > 0.

Proof. We only have to prove that the number points in p−1(z) with
i−1{p, p}(ρ) > 0 is equal to the number of points with i−1{p, p}(ρ) < 0.
For that, we notice that if ρ ∈ p−1(z) and γ is a simple closed positively
oriented loop around ρ in R2 \ {ρ}, confined to a small neighborhood of ρ,
then

1

2π
var argγ(p− z) = sign

(
1

i
{p, p}(ρ)

)
. (5.2.1) g1dr.1

Here, to define positive orientation of a closed contour, we take for granted
that notion in the case of contours in C and make the corresponding con-
vention that (2i)−1dz ∧ dz = dy ∧ dx > 0. As for R2

x,ξ the corresponding
positive form is the symplectic one, σ = dξ ∧ dx. (Or more down-to-earth,
we identify R2

x,ξ ' R2
<z,=z ' C.) Then (

g1dr.1
5.2.1) follows by direct calculation,

or by the identity,
1

2i
dp ∧ dp =

1

2i
{p, p}dξ ∧ dx, (5.2.2) g1dr.2

cf. Proposition
1dm5
3.3.3.

Let γ be the positively oriented boundary of ∂BR2(0, R), for R � 1.
Then,

1

2π
var argγ(p− z) =

M∑
1

1

2π
var argγj(p− z), (5.2.3) g1dr.3
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where γj are the oriented boundaries of BR2(ρj(z), ε), 0 < ε � 1. On the
other hand, p = p̃ along γ when R is large enough, so

1

2π
var argγ(p− z) =

1

2π
var argγ(p̃− z) = 0. (5.2.4) g1dr.4

Indeed, BR2(0, R) is contractible and z is not in its image under p̃. The result
follows from (

g1dr.1
5.2.1), (

g1dr.3
5.2.3), (

g1dr.4
5.2.4). 2

From the proposition and its proof, in particular (
g1dr.2
5.2.2), we get

p∗(|σ|) =
N∑
1

(
2i

{p, p}(ρ+
j (z))

− 2i

{p, p}(ρ−j (z))

)
L(dz), (5.2.5) g1dr.5

where L(dz) = |d=z ∧ d<z| is the Lebesgue measure and |σ| = |dξ ∧ dx| is
the sympplectic volume element.

Let L > 0 be large enough, so that πx
(
p−1(Ω)

)
⊂] − πL, πL[, where

πx : R2
x,ξ → Rx is the natural projection. Let χ ∈ C∞0 (R; [0, 1]) be equal to

1 on [−πL, πL]. Our perturbed operator is given by

Pδ = P (x, hD;h) + δQω, (5.2.6) g1dr.6

Qωu(x) =
∑

|k|, |`|≤C1
h

α`,k(ω)(χu|ek)(χe`)(x), (5.2.7) g1dr.7

where C1 > 0 is sufficiently large, ek(x) = (2πL)−1/2eikx/L, k ∈ Z, and
αj,k ∼ NC(0, 1) are independent complex Gaussian random variables.

Notice that ek form an orthonormal family in L2([−πL, πL[). Alterna-
tively, we could have taken

Qωu =
∑

k,`≤C1
h

α`,k(ω)(u|ẽk)ẽ`,

where ẽj(x;h) = h−1/4ej(x/
√
h) and ej is the sequence of L2-normalized

Hermite functions (reviewed in Section
sp.e
2.5), so that ẽj is an orthonormal

family of eigenfunctions of the semi-classical harmonic oscillator.

g1d5 Theorem 5.2.2 Let Γ b Ω have smooth boundary, e−ε0/h ≤ δ � h7/2 where
ε0 > 0 is a sufficiently small constant. For 2Nh ln(1/δ) ≤ ε ≤ 1, we have
with probability ≥ 1−O(ε−1/2)e−ε/2h that∣∣∣∣#(σ(Pδ) ∩ Γ)− vol p−1(Γ)

2πh

∣∣∣∣ ≤ O(1)

√
ε

h
. (5.2.8) g1dr.8
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If instead, we let Γ vary in a set of subsets that satisfy the assumptions
uniformly, then with probability ≥ 1−O(ε−1)e−ε/2h we have (

g1dr.8
5.2.8) uniformly

for all Γ in that subset. The remainder of the Chapter is devoted to the
proof of this result that will follow the general strategy in Chapter

1dm
3 with an

improvement of the probabilistic discussion.

g1d5.5 Example 5.2.3 Let Pc be the semi-classical variant of the non-self-adjoint
harmonic oscillator in (

sp.e.1
2.5.1),

Pc = (hD)2 + cx2, with =c > 0.

This operator fulfills the general assumptions with order function m(x, ξ) =
1 + x2 + ξ2 and

Σ∞ = ∅, Σ = [0,+∞[+[0,+∞[×c.

Let Ω be open, bounded, simply connected, h-independent with smooth
boundary, such that

Ω ⊂
◦
Σ .

Then we can find W as in Proposition
g1d3
5.1.3, containing Ω.

If z ∈ Ω, then p−1(z) consists of the 4 points (±x,±ξ), where x = x(z) >
0, ξ = ξ(z) > 0 are determined by

(=c)x2 = =z, ξ2 + (<c)x2 = <z.

The Poisson bracket {p, p}/(2i) is positive at two of these points, namely at
(x,−ξ) and (−x, ξ) and negative at the other two. Theorem

g1d5
5.2.2 shows that

after adding a small random perturbation, the eigenvalues will obey a Weyl
law in Ω, while the eigenvalues of the unperturbed operator are confined to
the bisector of Σ, as we saw in Proposition

sp.e1
2.5.1.

5.3 Preparations for the unperturbed opera-

tor
g1dp

To each point ρ+
j (z) = (x+

j (z), ξ+
j (z)), z ∈ Ω, we associate a quasi-mode

ej(x, z;h) = aj(x, z;h)e
i
h
φj(x,z) as in Theorem

wkb3
4.1.4, Proposition

qd2
4.2.3, so

that
(P − z)(ej) = O(h∞) in L2(neigh (x+

j )). (5.3.1) g1dp.1

Here φj satisfies the eikonal equation

p(x, ∂xφ
j(x))− z = 0, x ∈ neigh (x+

j ), (5.3.2) g1dp.2
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and

φj(x+
j (z), z) = 0, ∂xφ

j(x+
j (z), z) = ξ+

j (z), =φj(x, z) � (x−x+
j (z))2. (5.3.3) g1dp.3

Actually, this follows from the quoted results only when P is a semi-classical
differential operator and we need to appeal to some more microlocal analysis
in the pseudodifferential case. (

g1dp.2
5.3.2) makes sense when p is analytic in

ξ, since ∂xφ
j is complex-valued, and for a more general pseudodifferential

operator considered here, we have to weaken that equation to

p(x, ∂xφ
j(x))− z = O

(
(x− x+

j (z))∞
)
, (5.3.4) g1dp.2w

in the sense of formal Taylor expansions. We refer to
MeSj75
[101],

DiSj99
[40] for more

details.
To get a globally well-defined quasi-mode we let χ be a standard smooth

cut-off, equal to one near 0, and notice that by the last property in (
g1dp.3
5.3.3),

the above properties remain unchanged if we insert the cut-off χ(x− x+
j (z))

and obtain:

ej(x, z;h) = χ(x− x+
j (z))h−1/4aj(x, z;h)e

i
h
φj(x,z). (5.3.5) g1dp.4

we can then arrange so that aj is a classical symbol of order 0, with

‖ej‖L2(R) = 1, (5.3.6) g1dp.5

and so that (
g1dp.1
5.3.1) holds globally:

(P − z)(ej) = O(h∞) in L2(R). (5.3.7) g1dp.6

In the construction, we can arrange so that

∂kz∂
`
ze
j = O(h−k−`) in L2. (5.3.8) g1dp.7

Naturally, we have the analogous constructions of quasi-modes for (P −
z)∗, where we replace the ρ+

j by the ρ−j . We have quasimodes of the form

f j(x, z;h) = χ(x− x−j )h−
1
4 bj(x, z;h)e

i
h
ψj(x,z), (5.3.9) g1dp.8

where bj is a classical symbol of order 0,

p∗(x, ∂xψ
j)− z = 0 near x−j , (5.3.10) g1dp.9

ψj(x−j (z), z) = 0, ∂xψ
j(x−j (z), z) = ξ−j (z), =ψj(x−j (z), z) � (x− x−j (z))2,

(5.3.11) g1dp.10
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‖fj‖L2 = 1, ∂kz∂
`
zf

j = O(h−k−`) in L2, (5.3.12) g1dp.11

(P − z)∗(f j) = O(h∞) in L2. (5.3.13) g1dp.12

Here we write p∗(x, ξ) = p(x,, ξ), to be understood in the sense of Taylor
series, when p is not analytic. Also when p is not analytic in ξ, (

g1dp.9
5.3.10)

should be weakened to

p∗(x, ∂xψ
j(x, z), z)− z = O((x− x−j )∞), (5.3.14) g1dp.13

in the sense of Taylor expansions at x−j (z).
By construction,

(ej|ek), (fj|fk), (eν |fµ) = O(h∞), j 6= k, (5.3.15) g1dp.14

so approximately, we can say that {ej}N1 , {fj}N1 are orthonormal families,
which are mutually orthogonal.

Define R+ : L2 → CN , R− : CN → L2, by

R+u(j) = (u|ej), u ∈ L2, (5.3.16) g1dp.15

R−u− =
N∑
1

u−(j)fj, u− ∈ CN . (5.3.17) g1dp.16

Note that R+R
∗
+ − 1, R∗−R− − 1 are O(h∞) in L(CN ,CN) and that in par-

ticular, ‖R+‖L(L2,CN ) = 1 +O(h∞), ‖R−‖L(CN ,L2) = 1 +O(h∞).
Define

P(z) =

(
P − z R−
R+ 0

)
: H(m)×CN → L2 ×CN , (5.3.18) g1dp.17

and notice that P(z) is uniformly bounded in L(H(m)×CN , L2×CN) when
h is small and z varies in any fixed compact subset of Ω.

g1d6 Proposition 5.3.1 P(z) is bijective for z ∈ Ω with an inverse

E(z) =

(
E(z) E+(z)
E−(z) E−+(z)

)
, (5.3.19) g1dp.18

satisfying,

E(z) = O(h−
1
2 ) : L2 → H(m),

E+(z)−R∗+(z) = O(h∞) : CN → H(m),

E−(z)−R∗−(z) = O(h∞) : L2 → CN ,

E−+(z) = O(h∞) : CN → CN .

(5.3.20) g1dp.19
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The proof contains some microlocal analysis that we shall not develop in
detail here. Using the h-pseudodifferential calculus (

DiSj99
[40]) we first see that

Q+ := (P − z)∗(P − z), Q− := (P − z)(P − z)∗

are essentially self-adjoint with domain H(m2). Here we make use of the
ellipticity assumption (

g1d.6
5.1.7). (Here and in the following, it is tacitly assumed

that h is small enough.) Moreover because of the ellipticity assumption and
the fact that m ≥ 1, we know that these operators have purely discrete
spectrum in some h-independent neighborhood of 0. We also notice that
Q± ≥ 0, so the spectra are contained in [0,+∞[.

For a given fixed constant C > 0, the eigenvalues in [0, Ch[ have complete
asymptotic expansions in integer powers of h and can be described in the
following way: The operators Q± have the same principal symbol q(x, ξ, z) =
|p(x, ξ) − z|2 which vanishes precisely at the points ρ±j , j = 1, 2, ..., N , that
we will also label ρν , 1 ≤ ν ≤ 2N whenever convenient. These points are also
nondegenerate minima for q(·, z). Therefore, as for semi-classical Schrödinger
operators (

HeSj84
[61],

Si83
[123]) and in later works for more general pseudodifferential

operators
Hi04
[69],

HeSjSt05
[67], each such point generates a sequence of eigenvalues of

Q±,
λ±ν,k(z;h) ∼ hλ1,±

ν,k (z) + h2λ2,±
ν,k (z) + ..., k = 0, 1, 2, ...

where λ1,±
ν,k (z) are the eigenvalues (arranged in increasing arithmetic progres-

sion) of a harmonic oscillator, appearing as a quadratic approximation of Q±
at ρν . These quadratic approximations are P ∗νPν and PνP

∗
ν for Q+ and Q−

respectively, where Pν = ∂xp(ρν)x+ ∂ξp(ρν)Dx. When ρν = ρ+
j , then Pj is of

annihilation type (surjective H(〈(x, ξ)〉) → L2 with a 1-dimensional kernel,
generated by a Gaussian function), while P ∗j is of creation type (injective),

and we then know that λ1,+
ν,0 = 0, λ1,+

ν,k > 0 for k ≥ 1, while λ1,−
ν,k > 0 for

k ≥ 0. When ρν = ρ−j , then P ∗j , Pj are annihilation and creation operators

respectively and we get λ1,+
ν,k > 0 for k ≥ 0, λ1,−

ν,0 = 0, λ1,−
ν,k > 0 for k ≥ 1.

Thus if C > 0 is large enough, each of Q+, Q− has precisely N eigen-
values in [0, h/C] and these eigenvalues are O(h2). However, the existence
of approximately orthonormal systems {ej}N1 , {fj}N1 with Q+ej = O(h∞),
Q+fj = O(h∞), shows that these eigenvalues are actually O(h∞).

Let S± be the N -dimensional subspace of L2 corresponding to the eigen-
values of Q± that are O(h∞). We observe that S± ⊂ H(mk), ∀ k ∈ N, by the
ellipticity of Q± near∞. Let t21 ≤ t22 ≤ ... ≤ t2N , with 0 ≤ tj ≤ O(h∞) be the
corresponding eigenvalues of Q+ and let 0 ≤ N0 ≤ N be the number of zero
eigenvalues, so that (whenN0 ≥ 1) 0 = t1 = t2 = ... = tN0 < tN0+1 ≤ ... ≤ tN .
N0 is then also equal to the dimension of the kernel of P − z. By Fredholm
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theory and ellipticity, we know that P − z : H(m) → H(1) is Fredholm of
index 0 for z ∈ Ω and this implies that dim Ker(P ∗ − z) = dim Ker(P − z).
It follows that Q− has precisely N0 vanishing eigenvalues.

We have the intertwining property

Q−(P − z) = (P − z)Q+,

and a similar one with (P ∗ − z). It follows that if Q+εj = t2jεj for some
j ≥ N0 + 1, then Q−(P − z)εj = t2j(P − z)εj, and hence that (P − z)εj is an
eigenvector for Q− with the same eigenvalue t2j . Since P − z is injective on
the eigenspace corresponding to (Q+, t

2
j) we see that the multiplicity of t2j as

an eigenvalue Q− is ≥ that of t2j as an eigenvalue of Q+. The sum of all the
multiplicities is equal to N for each of Q+ and Q− so the multiplicities have
to agree.

Pursuing this argument, we see that we can find orthonormal bases {εj}N1
in S+ and {γj}N1 in S− such that

(P − z)εj = tjγj, (P − z)∗γj = tjεj.

Let {εj}N1 and {γj}N1 be orthonormal bases in S+ and S− respectively.
For instance, we can take

{εj}N1 equal to the Gram orthonormalization of {ΠS+ej}N1 ,
{γj}N1 equal to the Gram orthonormalization of {ΠS−fj}N1 ,

(5.3.21) g1dp.20

where ΠS± denotes the orthogonal projection onto S±. With that choice, we
have

εj − ej, γj − fj = O(h∞) in L2. (5.3.22) g1dp.21

With εj, γj as in (
g1dp.20
5.3.21), (

g1dp.21
5.3.22) we define R̃+ : L2 → CN , R̃− : CN →

L2 by

R̃+u(j) = (u|εj), R̃−u− =
N∑
1

u−(j)γj, (5.3.23) g1dp.22

so that

‖R+ − R̃+‖L(L2,CN ), ‖R− − R̃−‖L(CN ,L2) = O(h∞). (5.3.24) g1dp.23

Using the spectral and orthogonal decompositions L2 = S+ ⊕ S⊥+ , L2 =
S− ⊕ S⊥− , we see that

P̃(z) =

(
P − z R̃−
R̃+ 0

)
: H(m)×CN → L2 ×CN (5.3.25) g1dp.24
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is bijective with an “explicit” inverse

Ẽ(z) =

(
Ẽ(z) Ẽ+(z)

Ẽ−(z) Ẽ−+(z)

)
, (5.3.26) g1dp.25

where

Ẽ(z) ' (P − z)−1 : S⊥− → S⊥+ ,

Ẽ±(z) = R̃∗±,

Ẽ−+(z) = (((P − z)εk|γj))Nj,k=1 ' P − z : S+ → S−.

It follows that

Ẽ = O(h−
1
2 ) : L2 → H(m),

Ẽ+ = O(1) : CN → H(m),

Ẽ− = O(1) : H(1)→ CN ,

Ẽ−+ = O(h∞).

Using this together with (
g1dp.23
5.3.24), we see that P(z) has an inverse E(z) such

that E − Ẽ = O(h∞) and we get Proposition
g1d6
5.3.1.

5.4 d-bar equation for E−+
g1db

We shall generalize the discussion in Section
dbar
3.3. The proof of Proposition

1dm4
3.3.1 leads to the d-bar equation,

∂zE−+ + E−+(∂zR+)E+ + E−(∂zR−)E−+ = 0. (5.4.1) g1db.1

We are interested in the eigenvalues of P as the zeros of detE−+. Using
the identity ∂z ln detE−+ = tr

(
E−1
−+∂zE−+

)
, the cyclicity of the trace and

(
g1db.1
5.4.1), we get

∂z(ln detE−+) + f(z) = 0, where

f(z) = tr ((∂zR+)E+ + E−∂zR−) ,
(5.4.2) g1db.2

away from the zeros of detE−+(z), which can also be written,

∂z(detE−+(z)) + f(z) detE−+ = 0, (5.4.3) g1db.3

valid also near the zeros of detE−+, either by continuity or by direct compu-
tation without explicit use of logarithms. Again, eF detE−+ is holomorphic,
if F solves

∂zF = f. (5.4.4) g1db.4
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The multiplicity m(z0) of a zero z0 of E−+ is by definition equal to the
multiplicity of z0 as a zero of eF detE−+. We have (using an observation of
M. Vogel

Vo14
[149]),

m(z0) = lim
ε→0

∫
∂D(z0,ε)

∂z(e
F detE−+)

eF detE−+

dz

2πi
= lim

ε→0

∫
∂D(z0,ε)

∂z(detE−+)

detE−+

dz

2πi
,

(5.4.5) g1db.5

since
∫
∂D(z0,ε)

∂zFdz → 0, ε→ 0. On the other hand, inview of the standard

identity
(z − P )−1 = −E(z) + E+(z)E−+(z)−1E−(z),

the algebraic multiplicity m̃(z0) of z0 as an eigenvalue of P , is equal to

tr lim
ε→0

∫
∂D(z0,ε)

(z − P )−1 dz

2πi
= tr lim

ε→0

∫
∂D(z0,ε)

E+(z)E−+(z)−1E−(z)
dz

2πi

= lim
ε→0

∫
∂D(z0,ε)

tr
(
E+E

−1
−+E−

) dz
2πi

= lim
ε→0

∫
∂D(z0,ε)

tr
(
E−1
−+E−E+

) dz
2πi

.

(5.4.6) g1db.6

Now by the same proof as for (
g1db.1
5.4.1),

E−E+ = ∂z(E−+) + E−+(∂zR+)E+ + E−(∂zR−)E−+,

and using this in the last integral together with the cyclity of the trace in
one of the resulting terms, we get

m̃(z0) = lim
ε→0

∫
∂D(z0,ε)

tr
(
E−1
−+∂zE−+

) dz
2πi

= m(z0). (5.4.7) g1db.7

Here we also used the classical identity,

(detE−+)−1 ∂z (detE−+) = tr
(
E−1
−+∂zE−+

)
.

The formula (
1dm.8
3.3.4) and its derivation have straight forward generaliza-

tions, and we get

g1d7 Proposition 5.4.1 We have (
g1db.2
5.4.2), so that eF detE−+ is holomorphic when

(
g1db.4
5.4.4) holds. The zeros of detE−+ coincide with the eigenvalues of P in Ω

and the multiplicities agree, cf. (
g1db.5
5.4.5)–(

g1db.7
5.4.7). Moreover,

<∆F (z) =
1

h

N∑
j=1

(
2i

{p, p}(ρ+
j (z))

− 2i

{p, p}(ρ−j (z))

)
+O(1). (5.4.8) g1db.8
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5.5 Adding the random perturbation
g1drp

We still have Proposition
1dm7
3.4.2 and we make the assumption (

1dm.18
3.4.5),

δ � h
3
2 , (5.5.1) g1drp.1

to be strengthened later on. Proposition
1dm7
3.4.2 is applicable and we shall work

under the assumption
‖Qω‖HS ≤ C/h.

With R± as above, we introduce the perturbed Grushin matrix,

Pδ(z) =

(
Pδ − z R−
R+ 0

)
: H(m)×CN → L2 ×CN , (5.5.2) g1drp.2

which is bijective with a bounded inverse (cf. (
1dm.19
3.4.6),

Eδ =

(
Eδ Eδ

+

Eδ
− Eδ

−+

)
,

such that

Eδ = E +O(
δ

h2
) = O(h−1/2) in L(L2, H(m))

Eδ
+ = E+ +O(

δ

h3/2
) = O(1) in L(CN , H(m))

Eδ
− = E− +O(

δ

h3/2
) = O(1) in L(L2,CN)

Eδ
−+ = E−+ − δE−QE+ +O(

δ2

h5/2
) in L(CN ,CN).

(5.5.3) g1drp.3

The eigenvalues of Pδ in Ω coincide with the zeros there of detEδ
−+ and the

multiplicities agree. We have the d-bar equation,

∂z
(
detEδ

−+(z)
)

+ f δ detEδ
−+(z) = 0,

f δ(z) = tr
(
(∂zR+)Eδ

+ + Eδ
−∂zR−

)
,

(5.5.4) g1drp.4

and from (
g1drp.3
5.5.3) and the boundedness of E±, we have

f δ(z) = f(z) +O
(
δ

h
5
2

)
. (5.5.5) g1drp.5

We can solve ∂zF
δ = f δ (making eF

δ
detEδ

−+ holomorphic) with (cf. (
1dm.20
3.4.7))

F δ = F +
1

h
O
(
δ

h
3
2

)
. (5.5.6) g1drp.6
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We next look at the second term in the expression for Eδ
−+ in (

g1drp.3
5.5.3).

From (
g1dp.19
5.3.20), (

g1dp.15
5.3.16), (

g1dp.16
5.3.17), we get for the matrix E−QE+,

E−QE+(j, k) = (Qek|fj) +O(h∞). (5.5.7) g1drp.7

Here, by (
g1dr.7
5.2.7),

(Qek|fj) =
∑

|ν|, |µ|≤C1
h

αν,µ(ω)(χek|eµ)(eν |χfj)

=
∑

|ν|, |µ|≤C1
h

αν,µ(ω)χ̂ek(µ)χ̂fj(ν),

where the last equality is an implicit definition of the Fourier coefficients
of χek and χfj with respect to the orthonormal family {eν}, where we can
assume that ej and fj are supported in ] − πL, πL[. We have seen that
χej, ..., χeN , χf1, ..., χfN is an orthonormal system up to O(h∞) and if C1 is

large enough, we get the same properties for χ̂ej, ..., χ̂eN and χ̂f1, ..., χ̂fN in

C1+2[C1/h]. Then χ̂ek ⊗ χ̂fj is an orthonormal family in CM up to O(h∞),
where M := (1 + 2[C1/h])2. Let E1, ..., EN2 be the Gram orthonormalization
of this family and complete it to an orthonormal basis E1, ..., EM in CM .
Write,

α =
N2∑
1

αjEj +
M∑

N2+1

αjEj, α
′ = (α1, ..., αN2), α′′ = (αN2+1, ..., αM).

By (
g1drp.7
5.5.7) and the following discussion, we have with Q = Q(α) in (

g1dr.7
5.2.7),

E−QE+ = α′ +O(h∞) in CN2

. (5.5.8) g1drp.8

Our change of coordinates depends on z, but the estimates are uniform.
For notational reasons, we change the sign of Q, so we get rid of the minus

sign in the last equation in (
g1drp.3
5.5.3), which we then write

Eδ
−+ = E−+ + δA,

A = E−QE+ +O
(

δ

h5/2

)
= α′ +O

(
h∞ +

δ

h5/2

)
,

(5.5.9) g1drp.9

for the new α-coordinates, obtained from the old ones by a z-dependent
unitary transform. Applying the Cauchy inequality to complex lines in CM ,
we get

dαA = dα′ +O
(
h∞ +

δ

h3/2

)
in L

(
CM ; CN2

)
. (5.5.10) g1drp.10
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From the implicit function theorem, we see that the map

BCM (0, C/h) 3 α 7→ (A,α′′) ∈ CM (5.5.11) g1drp.11

is a holomorphic diffeomorphism onto its image B̃ which is sandwiched be-
tween

BCM

(
0,
C

h
−O

(
h∞ +

δ

h
5
2

))
and BCM

(
0,
C

h
+O

(
h∞ +

δ

h
5
2

))
.

It also follows from (
g1drp.10
5.5.10) that

L(dα) = L(dα′)L(dα′′) =

(
1 +O

(
h∞ +

δ

h
3
2

))
L(dA)L(dα′′). (5.5.12) g1drp.12

By (
g1drp.9
5.5.9) we have

|α|2 = |A|2 + |α′′|2 +O
(
h∞ +

δ

h
7
2

)
. (5.5.13) g1drp.13

Now, strengthen the assumption (
g1drp.1
5.5.1) to

δ � h
7
2 . (5.5.14) g1drp.14

Then from (
g1drp.12
5.5.12), (

g1drp.13
5.5.13), we get

π−Me−|α|
2

L(dα) =

(
1 +O

(
h∞ +

δ

h
7
2

))
π−Me−|A|

2−|α′′|2L(dA)L(dα′′).

(5.5.15) g1drp.15

The probability distribution µ of A is the direct image of π−Me−|α|
2
L(dα)

under the map
BCM (0, C/h) 3 α 7→ A(α) ∈ CN2

.

Thus, if f(A) is a continuous function, we have∫
f(A)µ(dA) = π−M

∫
|α|≤C/h

f(A(α))e−|α|
2

L(dα)

= π−M
∫∫

(A,α′′)∈B̃
f(A)

(
1 +O

(
h∞ +

δ

h7/2

))
e−|A|

2−|α′′|2L(dA)L(dα′′)

≤ π−N
2

∫
πA(B̃)

f(A)e−|A|
2

(
1 +O

(
h∞ +

δ

h7/2

))
L(dA),

and we conclude that

µ ≤
(

1 +O
(
h∞ +

δ

h7/2

))
1πA(B̃)(A)π−N

2

e−|A|
2

L(dA). (5.5.16) g1drp.15.5
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Combining this with (
g1dgr.24
5.6.21) below, we see that

P (ln | det(D + A)|) ≤ a) ≤ O(1)ea/2 + e−1/(Ch2), for a ≤ 0, (5.5.17) g1drp.16

uniformly with respect to D ∈ CN2
. Equivalently,

ln | det(D + A)| ≥ a, with probability ≥ 1−O(1)ea/2 − e−1/(Ch2).

Applying this to Eδ
−+ = δ(A+ δ−1E−+), we see that for every z ∈ Ω,

ln | detEδ
−+(z)| −N ln δ ≥ a with probability ≥ 1−O(1)ea/2 − e−1/(Ch2),

i.e.

ln | detEδ
−+(z)| ≥ a−N ln

1

δ
with probability ≥ 1−O(1)ea/2 − e−1/(Ch2),

(5.5.18) g1drp.17

uniformly for z ∈ Ω, a ≤ 0.
On the other hand, by the last equation in (

g1drp.3
5.5.3), we know that with

probability ≥ 1− e−1/(Ch2), we have

ln | detEδ
−+(z)| ≤ 0, for all z ∈ Ω. (5.5.19) g1drp.18

Now, consider the holomorphic function

uδ(z;h) = eF
δ(z) detEδ

−+(z), (5.5.20) g1drp.19

and recall (
g1drp.6
5.5.6). Then with probability ≥ 1− e−1/(Ch2),

ln |uδ(z)| ≤ <F (z) +
O(δ)

h5/2
, z ∈ Ω. (5.5.21) g1drp.20

Moreover, for every z ∈ Ω, b ≥ 0 we have

ln |uδ| ≥ <F (z)−
(
b+N ln

1

δ
+
O(δ)

h5/2

)
, with probability ≥ 1−O(1)e−b/2−e−1/(Ch2).

By the assumption (
g1drp.14
5.5.14) we have N ln(1/δ)� δ/h5/2, and restricting b to

the interval 2N ln(1/δ) ≤ b ≤ 1/h, we get for every z ∈ Ω:

ln |uδ| ≥ <F (z)−2b, with probability ≥ 1−O(1)e−b/2−e−1/(Ch2). (5.5.22) g1drp.21

Let Γ b Ω be independent of h and have smooth boundary. In view of
(
g1drp.20
5.5.21), (

g1drp.21
5.5.22), we can apply Proposition

1dm9
3.4.6 to u = uδ, with φ(z)/h =

<F (z) + b, ε = hb and with � ε−1/2 boundary points, where the lower bound
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(
g1drp.21
5.5.22) is required. We conclude that with probability≥ 1−O(1/

√
hb)e−b/2−

e−1/(Ch2) we have∣∣∣∣# ((uδ)−1(0) ∩ Γ
)
− 1

2π

∫
Γ

∆<F (z)L(dz)

∣∣∣∣ ≤ O(1)

√
b√
h
. (5.5.23) g1drp.22

By (
g1dr.5
5.2.5) and (

g1db.8
5.4.8) we have

∆<F (z)L(dz) =
1

h
p∗(|σ|) +O(1),

so (
g1drp.22
5.5.23) gives,∣∣∣∣# ((uδ)−1(0) ∩ Γ

)
− 1

2πh
volT ∗Rp

−1(Γ)

∣∣∣∣ ≤ O(1)

√
b√
h
, (5.5.24) g1drp.23

where we also used that
√
b/
√
h � 1, since 2N ln(1/δ) ≤ b ≤ 1/h. Now,

(uδ)−1(0) ∩ Γ = σ(Pδ) ∩ Γ and we get Theorem
g1d5
5.2.2 with ε = bh. 2

5.6 Appendix: Estimates on determinants of

Gaussian random matrices
g1dgr

In this appendix, we follow Section 7 in
HaSj08
[55]. Consider first a random vector

u(ω)t = (α1(ω), ..., αN(ω)) ∈ CN , (5.6.1) g1dgr.1

where α1, ..., αN are independent complex Gaussian random variables with a
NC(0, 1) law:

(αj)∗(P ) =
1

π
e−|z|

2

L(dz) =: f(z)L(dz). (5.6.2) g1dgr.2

The distribution of u is

u∗(P ) =
1

πN
e−|u|

2

LCN (du). (5.6.3) g1dgr.4

If U : CN → CN is unitary, then Uu has the same distribution as u.
We next compute the distribution of |u(ω)|2. The distribution of |αj(ω)|2

is µ(r)dr, where

µ(r) = −H(r)
d

dr
e−r = e−rH(r),

where H(r) = 1[0,∞[(r). The Fourier transform of µ is given by µ̂(ρ) = 1
1+iρ

.
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We have |u(ω)|2 =
∑N

1 |αj(ω)|2 and since |αj(ω)|2 are independent and
identically distributed, the distribution of |u(ω)|2 is µ ∗ ... ∗ µ dr = µ∗Ndr,
where ∗ indicates convolution. For r > 0, we get

µ∗N(r) =
1

2π

∫
eirρ

1

(1 + iρ)N
dρ

=
1

(N − 1)!2π

∫
γ

eirρ(−1

i

d

dρ
)N−1(

1

1 + iρ
)dρ

=
1

(N − 1)!2π

∫
γ

(
1

i

d

dρ
)N−1(eirρ)(

1

1 + iρ
)dρ

=
rN−1

(N − 1)!2π

∫
γ

eirρ
1

1 + iρ
dρ

=
rN−1e−r

(N − 1)!
,

where γ is a small simple positively oriented loop around the pole ρ = i.
Hence

µ∗Ndr =
rN−1e−r

(N − 1)!
H(r)dr. (5.6.4) g1dgr.4.5

Recall here that ∫ ∞
0

rN−1e−rdr = Γ(N) = (N − 1)!,

so µ∗N is indeed normalized.
The expectation value of each |αj(ω)|2 is one so:

〈|u(ω)|2〉 = N. (5.6.5) g1dgr.5

We next estimate the probability that |u(ω)|2 is very large. It will be
convenient to pass to the variable ln(|u(ω)|2) which has the distribution ob-
tained from (

g1dgr.4.5
5.6.4) by replacing r by t = ln r, so that r = et, dr/r = dt.

Thus ln(|u(ω)|2) has the distribution

rNe−r

(N − 1)!
H(r)

dr

r
=

eNt−e
t

(N − 1)!
dt =: νN(t)dt. (5.6.6) g1dgr.6

Now consider a random matrix

(u1...uN) (5.6.7) g1dgr.8

where uk(ω) are random vectors in CN (here viewed as column vectors) of
the form

uk(ω)t = (α1,k(ω), ..., αN,k(ω)),
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and all the αj,k are independent with the same law (
g1dgr.2
5.6.2).

Then
det(u1 u2...uN) = det(u1 ũ2...ũN), (5.6.8) g1dgr.10

where ũj are obtained in the following way (assuming the uj to be linearly
independent, as they are almost surely): ũ2 is the orthogonal projection of
u2 in the orthogonal complement (u1)⊥, ũ3 is the orthogonal projection of u3

in (u1, u2)⊥ = (u1, ũ2)⊥, etc.
If u1 is fixed, then ũ2 can be viewed as a random vector in CN−1 of the

type (
g1dgr.1
5.6.1), (

g1dgr.2
5.6.2), and with u1, u2 fixed, we can view ũ3 as a random vector

of the same type in CN−2 etc. On the other hand

| det(u1 u2...uN)|2 = |u1|2|ũ2|2 · .. · |ũN |2. (5.6.9) g1dgr.9’

The squared lengths |u1|2, |ũ2|2, ..., |ũN |2 are independent random variables
with distributions µ∗Ndr, µ∗(N−1)dr, ..., µdr. This reduction plays an impor-
tant role in

Gi90
[48].

Taking the logarithm of (
g1dgr.9’
5.6.9), we get a sum of independent random

variables to the right with distributions νNdt, ..., ν1dt, so the distribution of
the random variable ln | det(u1 u2...uN)|2 is equal to

(ν1 ∗ ν2 ∗ ... ∗ νN)dt, (5.6.10) g1dgr.12

with νj defined in (
g1dgr.6
5.6.6).

We have

νN(t) ≤ ν̃N(t) :=
1

(N − 1)!
eNt.

Choose x(N) ∈ R such that ∫ x(N)

−∞
ν̃N(t)dt = 1. (5.6.11) g1dgr.13

More explicitly, we have x(N) ≥ 0 and

1

N !
eNx(N) = 1, x(N) =

1

N
ln(N !) =

1

N
ln Γ(N + 1). (5.6.12) g1dgr.14

In
HaSj08
[55] we used Stirling’s formula, to get

x(N) = lnN +
1

2N
lnN − 1 +

C0

N
+O(

1

N2
))), (5.6.13) g1dgr.15

where C0 = (ln 2π)/2 > 0. Here we shall not need the large N limit.
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With this choice of x(N), we put

ρN(t) = 1]−∞,x(N)](t)ν̃N(t),

so that ρN(t)dt is a probability measure ”obtained from νN(t)dt, by trans-
fering mass to the left” in the sense that∫

fνNdt ≤
∫
fρNdt, (5.6.14) g1dgr.16

whenever f is a bounded decreasing function. Equivalently,

g ∗ νN ≤ g ∗ ρN ,

when g is a bounded increasing function. Now, for such a g, both g ∗ νN and
g ∗ ρN are bounded increasing functions, so by iteration,

g ∗ ν1 ∗ ... ∗ νN ≤ g ∗ ρ1 ∗ ... ∗ ρN .

In particular, by taking g = H, we get∫ t

−∞
ν1 ∗ ... ∗ νN(s)ds ≤

∫ t

−∞
ρ1 ∗ ... ∗ ρN(s)ds, t ∈ R. (5.6.15) g1dgr.17

We have by (
g1dgr.14
5.6.12)

ρ̂N(τ) =

∫ x(N)

−∞

1

(N − 1)!
et(N−iτ)dt =

1

(N − 1)!(N − iτ)
eNx(N)−ix(N)τ

=
e−ix(N)τ

1− i τ
N

.

(5.6.16) g1dgr.18

This function has a pole at τ = −iN .
Similarly,

1̂]−∞,a](τ) =
i

τ + i0
e−iaτ . (5.6.17) g1dgr.19

By Parseval’s formula, we get∫ a

−∞
ρ1 ∗ .. ∗ ρNdt =

1

2π

∫ ∞
−∞
F(ρ1 ∗ .. ∗ ρN)(τ)F1]−∞,a](τ)dt

=
1

2π

∫ +∞

−∞
e−iτ(

∑N
1 x(j)−a) −i

τ − i0

N∏
1

1

(1− iτ
j

)
dτ.
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We deform the contour to =τ = −1/2 (half-way between R and the first pole
in the lower half-plane). It follows that for a ≤

∑N
1 x(j) :∫ a

−∞
ρ1 ∗ .. ∗ ρNdt ≤ C(N)ea/2. (5.6.18) g1dgr.20

In view of (
g1dgr.17
5.6.15),the right hand side is an upper bound for the probability

that ln | det(u1...uN)|2 ≤ a. Hence, for a ≤ 0,

P(ln | det(u1...uN)|2 ≤ a) ≤ C(N)ea/2. (5.6.19) g1dgr.22

We shall next extend our probabilistic bounds to determinants of the form

det(D +Q)

where Q = (u1...uN) is as before, and D = (d1...dN) is a fixed complex N×N
matrix. As before, we can write

| det((d1 + u1)...(dN + uN))|2 = |d1 + u1|2|d̃2 + ũ2|2 · .. · |d̃N + ũN |2,

where d̃2 = d̃2(u1), ũ2 = ũ2(u1, u2) are the orthogonal projections of d2, u2 on

(d1 +u1)⊥, d̃3 = d̃3(u1, u2), ũ3 = ũ3(u1, u2, u3) are the orthogonal projections
of d3, u3 on (d1 + u1, d2 + u2)⊥ and so on.

Let ν
(N)
d (t)dt be the probability distribution of ln |d + u|2, when d ∈ CN

is fixed and u ∈ CN is random as in (
g1dgr.1
5.6.1), (

g1dgr.2
5.6.2). Notice that ν

(N)
0 (t) =

ν(N)(t) is the density we have already studied.

g1dgr3 Lemma 5.6.1 For every a ∈ R, we have∫ a

−∞
ν

(N)
d (t)dt ≤

∫ a

−∞
ν(N)(t)dt.

Proof. Equivalently, we have to show that P(|d + u|2 ≤ ã) ≤ P(|u|2 ≤ ã)
for every ã > 0. For this, we may assume that d = (c, 0, ..., 0), c > 0. We
then only have to prove that

P(|c+ <u1|2 ≤ b2) ≤ P(|<u1|2 ≤ b2), b > 0,

and here we may replace P by the corresponding probability density

µ(t)dt =
1√
π
e−t

2

dt

for <µ1. Thus, we have to show that

1√
π

∫
|c+t|≤b

e−t
2

dt ≤ 1√
π

∫
|t|≤b

e−t
2

dt. (5.6.20) g1dgr.23
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Fix b and rewrite the left hand side as

I(c) =
1√
π

∫ b−c

−b−c
e−t

2

dt.

The derivative satisfies

I ′(c) =
1√
π

(e−(b+c)2 − e−(b−c)2

) ≤ 0.

hence c 7→ I(c) is decreasing and (
g1dgr.23
5.6.20) follows, since it is trivially fulfilled

when c = 0. 2

Now consider the probability that ln | det(D + Q)|2 ≤ a. If χa(t) =
H(a− t), this probability becomes∫

..

∫
P(du1)...P(duN)×

χa(ln |d1 + u1|2 + ln |d̃2(u1) + ũ2(u1, u2)|2 + ...+ ln |d̃N(u1, .., uN−1) + ũN(u1, .., uN)|2).

Here we first carry out the integration with respect to uN , noticing that with
the other u1, .., uN−1 fixed, we may consider d̃N(u1, .., uN−1) as a fixed vector
in C ' (d1 + u1, ..., dN−1 + uN−1)⊥ and ũN as a random vector in C. Using
also the lemma, we get

P(ln | det(D +Q)|2 ≤ a)

=

∫
..

∫
ν

(1)

d̃N
(tN)dtNP(duN−1)..P(du1)×

χa(ln |d1 + u1|2 + ..+ ln |d̃N−1(u1, .., uN−2) + ũN−1(u1, .., uN−1)|2 + tN)

≤
∫
..

∫
ν(1)(tN)dtNP(duN−1)..P(du1)×

χa(ln |d1 + u1|2 + ..+ ln |d̃N−1(u1, .., uN−2) + ũN−1(u1, .., uN−1)|2 + tN).

We next estimate the uN−1- integral in the same way and so on. Eventually,
we get

g1dgr4 Proposition 5.6.2 Under the assumptions above,

P(ln | det(D +Q)|2 ≤ a) ≤
∫
..

∫
χa(t1 + ...+ tN)ν(1)(tN)ν(2)(tN−1)..ν(N)(t1)

= P(ln | detQ|2 ≤ a).

In particular the estimate (
g1dgr.22
5.6.19) extends to random perturbations of con-

stant matrices:

P(ln | det(D +Q)|2 ≤ a) ≤ C(N)ea/2, for a ≤ 0. (5.6.21) g1dgr.24
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Chapter 6

Resolvent estimates near the
boundary of the range of the
symbol

rest1d

6.1 Introduction and statement of the main

result
int

The purpose of this chapter is to give quite explicit bounds on the resolvent
near the boundary of Σ(p) (or more generally, near certain “generic boundary
like” points.) The result is due (up to a small generalization) to W. Bordeaux
Montrieux

Bo13
[17] and improves earlier results by J. Martinet

Mart09
[95] about upper

and lower bounds for the norm of the resolvent of the complex Airy operator.
There are more results about upper bounds and some of them will be recalled
in Chapter

resestgd
10 when dealing with such bounds in arbitrary dimension. To

fix the ideas, we will consider operators on R and indicate later the minor
modifications needed for operators on S1.

Let P ∈ S(m) be as in Chapter
g1d
5 and assume (

g1d.1
5.1.1), (

g1d.2
5.1.2), (

g1d.4
5.1.4)–

(
g1d.6
5.1.7). Define Σ = Σ(p), Σ∞ = Σ∞(p) as in (

g1d.7
5.1.8), (

g1d.8
5.1.9) and recall

(
g1d.9
5.1.10). Let z0 ∈ Σ(p) \ Σ∞(p) and assume that

For every ρ ∈ p−1(z0), we have
1

2i
{p, p}(ρ) = 0, {p, {p, p}}(ρ) 6= 0. (6.1.1) int.2

This is in some sense the generic situation for z0 ∈ ∂Σ(p) \ Σ∞(p).

rest1d0 Example 6.1.1 a) Let P = hD+ g(x) be Hager’s operator, g ∈ C∞(S1)
and assume that =g has a unique minimum xmin ∈ S1 and that this
minimum is nondegenerate. Notice that the extension of the defi-

84



nition of Σ and Σ∞ to the case of semi-classical differential opera-
tors on compact manifolds is straight forward. In our case p(x, ξ) =
ξ + g(x), either as a symbol on T ∗R or on T ∗S1. In both cases,
Σ = R + i[min=g,max=g], Σ∞ = ∅ and we can take m = 〈ξ〉. In
the S1-case, if z0 ∈ ∂Σ belongs to the lower part R + imin=g of ∂Σ,
then p−1(z0) = {ρ0}, where ρ0 = (xmin, ξ0) and ξ0 = <z0 − <g(xmin).
In the R-case, xmin is unique up to a multiple of 2π. We have

1

2i
{p, p}(ρ0) = −=g′(xmin) = 0, {p, {p, p}}(ρ0) = −2i=g′′(xmin) 6= 0.

b) The non-self-adjoint Airy operator, P = (hD)2 + ix with symbol p =
ξ2 + ix. We have Σ = [0,+∞[+iR, Σ∞ = ∅ and we can take m =
ξ2 + 〈x〉. Let z0 = iy0 ∈ ∂Σ, so that p−1(z0) = {ρ0}, where ρ0 =
(y0, 0). We have (2i)−1{p, p}(x, ξ) = −2ξ which vanishes at ρ0. Further,
{p; (2i)−1{p, p}} = 2i 6= 0.

c) The non-self-adjoint harmonic oscillator P = 1
2
((hD)2 + ix2). We have

Σ = [0,+∞[+i[0,+∞[, Σ∞ = ∅ and we can take m = 1 + x2 + ξ2.
The boundary of Σ is the union of [0,+∞[ and i[0,+∞[ and by Fourier
transform, the study near one of these half-rays is equivament to that
near the other. Let 0 6= z0 ∈ ∂Σ and take z0 > 0 to fix the ideas.
Then p−1(z0) = {ρ+, ρ−}, where ρ± = (0,±ξ0) and ξ0 > 0 is given by
ξ2

0/2 = z0. We have (2i)−1{p, p}(x, ξ) = −xξ which vanishes at ρ±.
Further, {p, {p, p}} = −2i(ξ2 − ix2) is 6= 0 at ρ±.

As we we shall see below, the assumptions imply that p−1(z0) is a finite set.
Let ρ0 ∈ p−1(z0). Then

γ := {ρ ∈ neigh (ρ0);
1

2i
{p, p}(ρ) = 0} (6.1.2) int.1

is a smooth curve, since 1
2i
{p, p} is real-valued with a non-vanishing differen-

tial near ρ0. Along γ the vectors H<p are H=p are collinear and never both
equal to zero. Hence there is a smooth function γ 3 ρ 7→ θ(ρ) ∈ R such that
e−iθ(ρ)Hp is real and non-zero. θ(ρ) is unique up to multiple of π.

We can parametrize γ by

γ(t) = exp
(
−tH 1

2i
{p,p}

)
(ρ0). (6.1.3) intny.1

Then,

d

dt
p(γ(t)) = −H 1

2i
{p,p}(p)(γ(t)) = {p, 1

2i
{p, p}}(γ(t)) 6= 0,
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so
δ := p ◦ γ (6.1.4) intny.2

is a smooth curve in neigh (z0,C) and

e−iθ(γ(t))δ̇(t) = e−iθ(γ(t))Hp

(
1

2i
{p, p}

)
∈ R \ {0}. (6.1.5) intny.3

In order to simplify the local geometric discussion it will be helpful to
replace p by f ◦ p, where

f : neigh (z0,C)→ neigh (0,C) (6.1.6) intny.4

is almost holomorphic along the curve δ:

∂zf = O(dist (z, δ)∞). (6.1.7) intny.5

When p is real-analytic, δ is a real-analytic curve and we will be able to
choose f holomorphic. Notice that

Hf◦p = (∂zf)Hp +O(dist (ρ, γ)∞), ∂zf = (∂zf) ◦ p (6.1.8) intny.6

1

2i
{f ◦ p, f ◦ p} = |∂zf |2

1

2i
{p, p}+O(dist (ρ, γ)∞), (6.1.9) intny.7

so 1
2i
{f ◦ p, f ◦ p} vanishes on γ and

{f ◦ p, 1

2i
{f ◦ p, f ◦ p}} = ∂zf |∂zf |2{p,

1

2i
{p, p}} 6= 0 on γ. (6.1.10) intny.8

Thus, p̃ = f ◦ p satisfies the same general assumptions as p, with z0 replaced
by 0 = f(z0).

Now, choose f mapping (the image of) δ to a real interval. Then p̃ is
real-valued on γ, and since dp̃ is a complex multiple of a real differential
when ρ ∈ γ, we conclude that dp̃ is real and hence that Hp̃ is real on γ. By
the choice of f , we know that =p̃ = 0 on γ and it follows that

=p̃ = O(dist (ρ, γ)2). (6.1.11) intny.9

The natural parametrization in (
intny.1
6.1.3) induces an orientation of γ such

that the region where (2i)−1{p, p} > 0 is to the right when walking along γ
in the positive direction. Replacing p by p̃ will change the parametrization
in (

intny.1
6.1.3) but not the orientation of γ.
We now choose smooth local symplectic coordinates (x, ξ) centered at ρ0

such that γ becomes the ξ-axis {(0, ξ)} with it natural orientation, namely
that of increasing values of ξ. Then, since =p̃ = O(x2), we can write

p̃(x, ξ) = d(x, ξ) + ir(x, ξ) (6.1.12) intny.10
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where d, r are smooth real-valued functions such that

∂ξd(0, ξ) 6= 0, =r = O(x2).

We have
1

2i
{p̃, p̃} = −d′ξr′x + d′xr

′
ξ = −d′ξr′x +O(x2),

and at x = 0:

0 6= {p̃, 1

2i
{p̃, p̃}} = −(d′ξ)

2r′′xx. (6.1.13) intny.11

Having chosen the symplectic coordintes so that the orientation of the ξ-
axis is the same as the one of γ (when identifying the two sets), we know
that (2i)−1{p̃, p} has the same sign as x. In order to fix the ideas we can
impose an additional condition on the map f , namely that the orientation
of f ◦ δ = f ◦ p ◦ γ on R is the one of increasing real values. This simply
means that p̃(0, ξ) should be an increasing function of ξ, or in other terms,
that 0 < −{(2i)−1{p̃, p̃}, p̃}, i.e. that the quantity in (

intny.11
6.1.13) is > 0. Hence

∂ξd(0, ξ) > 0, r′′xx(0, ξ) < 0. (6.1.14) intny.12

We can refine the choice of symplectic coordinates above so that d(x, ξ) =
ξ. Then with a new r as in (

intny.12
6.1.14), we get

p̃(x, ξ) = ξ + ir(x, ξ), 0 ≤ r(x, ξ) � x2 (6.1.15) intny.13

and
1

2i
{p̃, p̃} = −∂xr, (6.1.16) intny.14

which is positive for x < 0 (i.e. to the left of γ) and negative to the right. The
map p̃ is orientation preserving to the left and orientation reversing to the
right, when we adopt the standard orientations on R2

x,ξ and on Cw ≡ R2
<w,=w.

We can say that p̃ has a simple fold along γ: The equation p̃(ρ) = w, for
ρ ∈ neigh ((0, 0),R2), w ∈ neigh (0,C)

• has two simple solutions when =w > 0,

• has one degenerate solution when =w = 0,

• has no solution when =w < 0.

The equation p(ρ) = z, z ∈ neigh (z0,C) is equivalent to p̃(ρ) = w when
w = f(z) and locally, the inverse image under f of the upper half-plane is
the region situated to the left of the oriented curve δ. p has a simple fold
along γ and is orientation preserving to the left and orientation reversing to
the right of γ as 1

2i
{p, p} is positive to the left and negative to the right. The

range of p is the region situated to the left of δ. Thus the equation p(ρ) = z
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• has two simple solutions when z 6∈ δ is to the left of δ,

• has one degenerate solution when z ∈ δ,

• has no solution when z 6∈ δ is to the right.

For both equations we denote the solutions (when they exist) by ρ+, ρ− with
ρ+ and ρ− to the left and to the right of δ respectively.

Let ρ̃± be the corresponding solutions of π̃(ρ) = w, so that ρ̃±(f(z)) =
ρ±(z). We get ρ̃±(w) = (x±, ξ±), where

ξ± = <w (6.1.17) intny.15

and x± are given by

r(x,<w) = =w, ∓x± ≤ 0. (6.1.18) intny.16

We have
x± = ∓k(±

√
=w,<w), (6.1.19) intny.17

where k(s, t) is the smooth function given by

√
r(k(s, t), t) = s

and
√
r(x, ξ) is the smooth branch of the square root of r which has the

same sign as x. To leading order,

k(s, t) =
s

(r′′xx(0, t)/2)1/2
+O(s2),

so
x± = ∓(r′′xx(0,<w))−1/2

√
2=w +O(=w). (6.1.20) intny.18

Naturally, (
intny.15
6.1.17), (

intny.17
6.1.19), (

intny.18
6.1.20) also describe ρ±. All we have to do,

is to work in the same symplectic coordinates and represent z by the local
coordinates (s, t) = (=f,<f) = (=w,<w).

Combining (
intny.8
6.1.10), where p̃ = f ◦ p, with (

intny.11
6.1.13), where now d′ξ = 1, we

get

0 < r′′xx(0, ξ) = −|∂zf |2∂zf{p,
1

2i
{p, p}}(ρ), ∂zf = ∂zf(ρ), (6.1.21) intny.19

where ρ ∈ γ is determined by f(p(ρ)) = ξ. We may choose f so that |f ′| = 1
on δ. Then (

intny.19
6.1.21) simplifies to

r′′xx(0, ξ) = ε(ξ), ε(ξ) :=

∣∣∣∣{p, 1

2i
{p, p}}(ρ)

∣∣∣∣ . (6.1.22) intny.20
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Combining (
intny.18
6.1.20), (

intny.20
6.1.22) with (

intny.13
6.1.15), we get for =w ≥ 0,

1

2i
{p̃, p̃}(ρ±) = ±(2ε(<w))1/2(=w)1/2 +O(=w).

As in (
intny.19
6.1.21), we have

1

2i
{p̃, p̃}(ρ) = |∂zf(p(ρ))|2 1

2i
{p, p}(ρ) +O(dist (ρ, γ)∞),

1

2i
{p, p}(ρ±) = ±(2ε(<w))1/2(=w)1/2 +O(=w), =w ≥ 0. (6.1.23) int.18

Assume for a while that p is analytic near ρ0, so that f , p̃ are analytic
also. If =w > 0, then {ρ ∈ neigh (ρ0,C

2); p(ρ) = z} is a complex curve Γ(z)
which intersects the real phase space at the two points ρ±(z) and we can
therefore define the action

J(z) =

∫
Γ(z,ρ+,ρ)

ξdx, (6.1.24) int.19

where Γ(z, ρ+, ρ−) is a real curve in Γ(z) which starts at ρ+(z) and ends at
ρ−(z) and which stays in a small neighborhood of ρ0, so that all such curves
are homotopic to each other. All curves in R2 are Lagrangian manifolds and
this remains true when we pass to the complex-holomorphic category. Hence
ξdx|Γ(z)

is closed (and even exact since we work locally) and the value of

J(z) does not depend on the choice of Γ(z, ρ+, ρ−). If (y, η) are some other
real and analytic symplectic coordinates, then ξdx− ηdy is closed and hence
exact, so ξdx− ηdy = dG, where G is real and analytic. Consequently,∫

Γ(z,ρ+,ρ−)

ξdx−
∫

Γ(z,ρ+,ρ−)

ηdy = G(ρ−)−G(ρ+)

is real and we conclude that

I(z) := =J(z) is invariant under changes of real

and analytic symplectic coordinates.
(6.1.25) int.20

This means that we can work with p̃ in the form (
intny.13
6.1.15) and write

I(z) = Ĩ(w), w = f(z),

with the analogous definition of Ĩ(w). Parametrize z by

w = f(z) = is+ t, (s, t) ∈ neigh ((0, 0),R2), (6.1.26) int.17
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and write I(z) = I(s, t).
It is clear that with z represented as in (

int.17
6.1.26), we have

I(z) = I(s, t) = ι(
√
s, t), (6.1.27) int.21

where ι(σ, t) is smooth and, as we shall see, = O(σ3). Working in the coor-
dinates of (

intny.13
6.1.15), Γ(z) is given by p̃(x, ξ) = w, i.e. ξ + ig(x, ξ) = w and

I(z) = =
∫ x−

x+

λ(x,w)dx, (6.1.28) int.23

where λ is the solution of

p̃(x, λ(x,w)) = w. (6.1.29) int.24

By successive differentiations of this equation, we get

λ′x = − p̃
′
x(x, λ)

p̃′ξ(x, λ)
, λ′z =

1

p̃′ξ(x, λ)
,

λ′′xx = − p̃
′′
xx(x, λ)

p̃′ξ(x, λ)
+

2p̃′′xξ(x, λ)p̃′x(x, λ)

p̃′ξ(x, λ)2
−
p̃′x(x, λ)2p̃′′ξξ(x, λ)

p̃′ξ(x, λ)3
.

In particular, λ(0, w) = w, λ′x(0, w) = 0,

λ′′xx(0, w) = −p̃′′xx(0, w) = −ir′′xx(0, w). (6.1.30) int.25

We get the leading Taylor expansion in x,

λ(x,w) = w − i

2
r′′xx(0, w)x2 +O(x3), (6.1.31) int.27

where we recall that r′′xx(0, w) = ε(w) for real w and we can extend this
relation and (

int.27
6.1.31) holomorphically in w. Thus, with w = t + is as in

(
int.17
6.1.26),

=λ(x,w) = s− ε(t)

2
x2 +O(s)x2 +O(x3). (6.1.32) int.29

By (
intny.18
6.1.20)

x± = ∓

√
2s

ε(t)
+O(s) (6.1.33) int.31

are smooth functions of ∓
√
s, for s ≥ 0 and we notice that (

int.31
6.1.33) also

follows from (
int.29
6.1.32) and =λ(x±, w) = 0. I(z) is a smooth function of

√
s

and

I(z) = O(s2) +

∫ √2s/ε(t)

−
√

2s/ε(t)

(
s− ε(t)

2
x2

)
dx =

2

3

(2s)
3
2

ε(t)
1
2

+O(s2). (6.1.34) int.32
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We shall now drop the analyticity assumption and we pause for a general
discussion: Let p be a smooth function defined in a neighborhood of 0 ∈ Rn

(and soon this will be applied to the original p above with n replaced by
2n). We assume p depends smoothly on a finite number of real parameters
w ∈ neigh (0,Rk) that we do not write out. Assume that dp 6= 0 and that
(for w in a closed subset of the paremeter space, containing 0), there are two
real points x± ∈ Rn where p vanishes and that x± as Hölder continuous as
functions of the parameter with x+ = x− = 0 for w = 0.

Let p also denote an almost holomorphic extension of p to a complex
neighborhood of 0 ∈ Cn. This means that ∂p(x) = O((=w)∞) and we know
that such an extension is unique up to a term which is O((=x)∞). After a
permutation of the variables we may assume that ∂xnp 6= 0. Then by the real
implicit function theorem we have in a neighborhood of x = 0 in Cn,

p(x) = 0⇐⇒ xn = λ(x′),

where λ : λ(x′) is a smooth function of x′. Here, we write x = (x′, xn).
Differentiating the equation p(x′, λ(x′)) = 0 we see that

∂x′λ = O((=x′,=λ(x′))∞).

Let ω(x) · dx be a smooth 1-form and denote by the same symbol an
almost holomorphic extension. Consider

Jγ =

∫
γ

ω(x) · dx (6.1.35) intny.21

where γ is a curve from x+ to x− inside the complex set p−1(0) with the
property that

length (γ) = O(|x+ − x−|).
We have sup |=γ| = O(|x+−x−|), we can write γ : [0, 1] 3 t 7→ (γ′(t), λ(γ′(t)))
where γ′ is a curve from x′+ to x′− with length (γ′) = O(|x′+ − x′−|). In the
given coordinates, the simplest choice of γ would be to take γ = γ0(t) =
(γ′0(t), λ(γ0(t)), where γ′0(t) = (1− t)x′+ + tx′−.

Using Stokes’ formula we get

rest1d0.5 Proposition 6.1.2 In the general situation described above, and up to a
term O(|x+ − x−|∞) J = Jγ does not depend on the choice of γ, nor on
the choices of almost holomorphic extensions of p and ω. We have the same
invariance under smooth changes of local coordinates in Rn.

Now return to p in (
int.2
6.1.1) and p̃ = f ◦ p in (

intny.13
6.1.15). By taking almost

holomorphic extensions we can still defined the almost complex curve Γ(z)
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by p(ρ) = z as prior to (
int.19
6.1.24) and when =w ≥ 0, we define the action J(z)

as in (
int.19
6.1.24), choosing the curve from ρ+ to ρ− of length O(|ρ+−ρ−|). Then

J(z) is well defined up to O(|ρ+ − ρ−|∞) or equivalently up to O(|=w|∞).
The imaginary part I(z) is invariant under real canonical transformations
up to O(|=w|∞) and we have (

int.23
6.1.28), where λ solves (

int.24
6.1.29), where p̃ also

denotes an almost holomorphic extension.

rest1d1 Proposition 6.1.3 Under the assumptions above, let w = f(z) be defined
in (

intny.4
6.1.6) and after, so that |f ′| = 1 on the curve δ = p ◦ γ. Recall the

definition of ε(t) ' ε(f ◦p◦(t)) in (
intny.20
6.1.22). Then I(z) = J(w) is well defined

(cf. (
int.19
6.1.24), (

int.23
6.1.28)) up to O(|=w|∞) in the region =w ≥ 0. Writing

w = t + is, we have (
int.21
6.1.27): I(s, t) = ι(

√
s, t) where ι(σ, t) is a smooth

function, welldefined mod (σ∞) such that

ι(σ, t) =
4
√

2

3

σ3

ε(t)
1
2

+O(σ4) (6.1.36) int.39

We now start to formulate the main result of this chapter. Recall that
z0 ∈ Σ(p) \ Σ∞(p) and that we work under the assumptions (

g1d.1
5.1.1), (

g1d.2
5.1.2),

(
g1d.4
5.1.4)–(

g1d.6
5.1.7), (

int.2
6.1.1). It follows from the discussion above that the points

of p−1(z0) are isolated and hence that this set is finite,

p−1(z0) = {ρ1
0, ..., ρ

N
0 }. (6.1.37) int.40

The discussion above then applies with ρ0 equal to ρj0, 1 ≤ j ≤ N . Through
ρj0 we have a curve γj, defined as in (

int.1
6.1.2), (

int.2
6.1.1) with ρ0 replaced by ρj0.

Let δj = p ◦ γj be the image curves, all passing through z0. We have smooth
functions fj : neigh (z0,C) → neigh (0,C), almost holomorphic at δj, such
that |f ′j| = 1 on δj and p̃j = fj ◦ p is real-valued on γj. Put

fj(z) = wj = tj + isj. (6.1.38) int.41

When sj ≥ 0 we have two real points ρ±j ∈ neigh (ρj0, T
∗R) determined by

p(ρ±j ) = z, ±(2i)−1{p, p}(ρ±j ) ≥ 0 with strict inequality (and ρ+
j 6= ρ−j ) when

sj > 0.
As in (

int.18
6.1.23),

1

2i
{p, p}(ρj±) = ±(2εj(tj))

1
2
√
sj +O(sj), sj ≥ 0, (6.1.39) int.42

where εj(t) = εj(γj(t)) is defined as in (
intny.20
6.1.22),

εj(t) =

∣∣∣∣{p, 1

2i
{p, p}}(γj(t))

∣∣∣∣ . (6.1.40) int.43
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As in Proposition
rest1d1
6.1.3, we can define for sj ≥ 0,

Ij(z) = ιj(
√
sj, tj), ιj(σ, t) =

4
√

2

3

σ3

εj(t)1/2
+O(σ4), (6.1.41) int.44

where ιj(σ, t) is smooth and real-valued.

rest1d2 Theorem 6.1.4 We make the assumptions (
g1d.1
5.1.1), (

g1d.2
5.1.2), (

g1d.4
5.1.4)–(

g1d.6
5.1.7),

(
int.2
6.1.1), and define the quantities ρj, ρ

j
±, Ij, ιj as above. Let z ∈ neigh (z0,C),

so that we have the representation (
int.41
6.1.38) for each j = 1, ..., N . For C0 > 0

large enough, put

Mj(z;h) =


(h2/3 + |sj|)−1, when sj ≤ C0h

2/3,(
π
h

)1/2
exp(Ij(z)/h)(

1
2i
{p, p}(ρj+)

)1/4 ( 1
2i
{p, p}(ρj−)

)1/4
, when sj ≥ C0h

2/3.

(6.1.42) int.45

Assume that for some arbitrarily small and fixed δ0 > 0,

− hδ0 ≤ sj ≤ O(1)

(
h ln

1

h

) 2
3

, j = 1, ..., N. (6.1.43) int.46

Put
N = {j ∈ {1, 2, ..., N}; sj ≥ C0h

2
3}.

Then for h > 0 small enough, we have uniformly with respect to z that
P − z : H(m)→ H(1) is bijective and

‖(P − z)−1‖H(1)→H(1)

{
= maxj∈N (1 +O(h/s

3/2
j ))Mj(z;h), when N 6= ∅,

≤ O(1) maxjMj, in general.

(6.1.44) int.47

The lower bound in (
int.46
6.1.43) has been introduced for convenience only and

could undoubtedly be removed without any substantial extra work.

6.2 Preparations and reductions
geopr

In this section, we discuss the situation locally. Let ρ0 ∈ T ∗R = R2, p ∈
C∞(neigh (ρ0,R

2)) satisfy (
int.2
6.1.1):

1

2i
{p, p}(ρ0) = 0, (6.2.1) geopr.1
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{p, 1

2i
{p, p}}(ρ0) 6= 0. (6.2.2) geopr.2

Let z0 = p(ρ0). We are interested in p − z (and in a corresponding
pseudodifferential operator P (x, hD;h) − z) when z − z0 is small. Let f :
neigh (z0,C)→ neigh (0,C) be the map for which p̃ = f ◦ p where p̃ is as in
(
intny.13
6.1.15). One could probably develop a functional calculus, allowing to work

with “f(P )”, but we opt for a more direct approach, where we linearize f at
z0: f(z) = e−iθ(ρ0)(z − z0) +O((z − z0)2) and redefine p̃ by

p− z = eiθ(ρ0)(p̃(ρ)− ω),

where
p̃(ρ) = e−iθ(ρ0)(p(ρ)− z0), ω = e−iθ(ρ0)(z − z0).

We are then interested in p̃(ρ) − ω when ω is small. p̃ satisfies the same
assumptions, now with z0 replaced by 0.

geopr1 Remark 6.2.1 z0 = p(z0), corresponds to w = w0 = 0 and hence to ω = 0.
By Taylor expansion we get ω = w + O(w2) for z ∈ neigh (z0). In the
application later on, we will choose the point ρ0 ∈ γ and the corresponding
point z0 ∈ δ as functions of the spectral parameter z. Thus, for a given z,
we can choose the new base point ρ0 = ρ(z) ∈ γ and the new z0 = p(ρ(z)),
so that w = w(z) has a vanishing real part. Then

ω = i=w +O((=w)2).

The image curve p̃ ◦ γ is tangent to R at 0 and oriented in the positive
real direction at that point. It is of the form

δ̃ : =ω = k(<ω), <ω ∈ neigh (0), k′(0) = 0.

• The range under p̃ of neigh (ρ0,R
2) is equal to {ω ∈ neigh (0,C); =ω ≥

k(<ω)}. (It is situated to the left of p̃ ◦ γ.)

• The map p̃ : neigh (ρ0,R
2)→ neigh (0,C) has a simple fold along γ. It

is a local diffeomorphism on each side of γ, orientation preserving to
the left and orientation reversing to the right.

Until further notice, we discuss p̃, but drop the tilde and simply write p.
After composing p with an affine canonical transformation, we may assume
that

ρ0 = 0, dp(0) = dξ(0), (6.2.3) geopr.6
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in addition to the fact that p(0) = 0. Then,

p(x, ξ) = ξ + ir(x, ξ), r(x, ξ) = O(x2 + ξ2). (6.2.4) geopr.7

Moreover,
1

2i
{p, p} = −{<p,=p} = −∂x<r +O(x2 + ξ2),

and (cf. (
intny.20
6.1.22))

∂2
x<r(0, 0) = ε(0) > 0. (6.2.5) geopr.8

Using Malgrange’s preparation theorem (see
Ha06b
[54] for the use in the present

context and for further references), we know that

p(x, ξ)− ω = a(x, ξ, ω)(ξ + g(x, ω)), (x, ξ, ω) ∈ neigh ((0, 0, 0),R2 ×C),
(6.2.6) geopr.9

where a, g are smooth functions (and g is basically equal to −λ, discussed
prior to (

intny.21
6.1.35) with n = 2, (x1, x2) = (x, ξ)). Actually, for our purposes

it suffices to have (
geopr.9
6.2.6) at the level of formal Taylor series at (x, ξ, ω) =

(0, 0, 0) and hence to settle for the more elementary fact that

p(x, ξ)− ω = a(x, ξ, ω)(ξ + g(x, ω)) +O ((x, ξ, ω)∞) . (6.2.7) geopr.10

Looking at the Taylor expansions for r, a, g up to second order, we first
write

r(x, ξ) = r2,0x
2 + r1,1xξ + r0,2ξ

2 +O((x, ξ)3), (6.2.8) geopr.11

and get after some calculations,

a(x, ξ, ω) = 1 + ir1,1x+ ir0,2(ξ + ω) +O((x, ξ, ω)2), (6.2.9) geopr.12

g(x, ω) = −ω + ir2,0x
2 + ir1,1xω + ir0,2ω

2 +O((x, ω)3). (6.2.10) geopr.13

Here we know that <r2,0 = ε(0)/2
Let

P (x, hDx;h) = hDx + ir(x, hDx) + hQ(x, hDx;h)

be a classical h-pseudodifferential operator with symbol defined in a neigh-
borhood of (0, 0). Using Malgrange’s preparation theorem repeatedly, we
find classical symbols

A(x, ξ, ω;h) ∼ a(x, ξ, ω) + ha1(x, ξ, ω) + ...,

G(x, ω;h) ∼ g(x, ω) + hg1(x, ω) + ...,
(6.2.11) geopr.14

defined in a neighborhood of (x, ξ, ω) = (0, 0, 0), such that in the sense of
formal composition of h-pseudodifferential operators,

P (x, hDx;h)− ω = A(x, hDx, ω;h)(hDx +G(x, ω;h)). (6.2.12) geopr.15

95



When using the softer version of Taylor series division, we have to add an
error term to the right hand side of the form S(x, hDx, ω;h), where

S(x, ξ, ω;h) ∼ s0(x, ξ, ω) + hs1(x, ξ, ω) + ..., sj(x, ξ, ω) = O((x, ξ, ω)∞),

and this will still suffice for our purposes.
We now concentrate on the region,

|<ω| ≤ =ω � h
2
3 (6.2.13) geopr.16

and study the factor,

B(x, hDx, ω;h) = hDx +G(x, ω;h). (6.2.14) geopr.17

We introduce the scaling

ω = αω̃, x =
√
αx̃, (6.2.15) geopr.18

where we let
α � =ω, so that =ω̃ � 1, |<ω̃| ≤ =ω̃. (6.2.16) geopr.19

Then, with h̃ = h/α3/2 � 1, we get

B = αB̃, B̃ = h̃Dx̃ +
1

α
G(
√
αx̃, αω̃;h) =: h̃Dx̃ + G̃(x̃, ω̃, α; h̃). (6.2.17) geopr.20

From (
geopr.14
6.2.11) we get

G̃(x̃, ω̃, α; h̃) = g(x̃, αω̃, α) +
∞∑
k=1

α
3k
2
−1h̃kgk(

√
αx̃, αω̃), (6.2.18) geopr.24

where

g̃(x̃, ω̃, α) :=
1

α
g(
√
αx̃, αω̃) = −ω̃ +

∑
j+k≥2

gj,kα
j
2

+k−1x̃jω̃k,

and we write the Taylor expansion

g(x, ω) = −ω +
∑
j+k≥2

gj,kx
jωk.

Recall here that by (
geopr.13
6.2.10) gj,k = irj,k for j + k = 2.

Hence,

g̃(x̃, ω̃, α) ∼
∞∑
0

α
`
2 g̃`(x̃, ω̃), (6.2.19) geopr.21
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where

g̃0(x̃, ω̃) = −ω̃ + ir2,0x̃
2, g̃1(x̃, ω̃) = g3,0x̃

3 + ir1,1x̃ω̃, (6.2.20) geopr.22

and in general, for ` ≥ 1:

g̃`(x̃, ω̃) =
∑

j
2

+k=1+ `
2

gj,kx̃
jω̃k. (6.2.21) geopr.23

Recall that <r2,0 = ε(0)/2.

6.3 The factor hDx + G(x, ω;h)
fact

In this section we study hDx+G(x, ω;h) and its inverse. We mainly concen-
trate on the region (

geopr.16
6.2.13), where we add the restriction that =ω � hδ, for

δ > 0 arbitrarily small and fixed, and this assumption will be strengthened
later. From (

geopr.13
6.2.10), (

geopr.14
6.2.11) we see that

=G′′xx � 1, (6.3.1) fact.1

=G′x = 2<r2,0x+ (<r1,1)ω +O(|(x, ω)|2 + h), (6.3.2) fact.2

for x in a small fixed neighborhood of 0. Hence =G(·, ω) has a nondegenerate
minimum at

x = xmin(ω) = O(|ω|+ h), (6.3.3) fact.3

with
=G(xmin, ω;h) = −=ω +O(|ω|2 + h). (6.3.4) fact.4

We can extend the definition of G to x ∈ R in such a way that (
geopr.13
6.2.10),

(
geopr.14
6.2.11), (

fact.1
6.3.1), (

fact.2
6.3.2) become valid for x ∈ R and so that G = −ω+ ir2,0x

2

outside a small neighborhood of x = 0. We have

=G(x, ω)−=G(xmin(ω), ω) � (x− xmin(ω))2, (6.3.5) fact.5

=∂xG(x, ω) � x− xmin(ω), (6.3.6) fact.6

and we see that the equation

=G(x, ω) = 0 (6.3.7) fact.7

has exactly two solutions, x = x±(ω), with

∓ (x±(ω)− xmin(ω)) � (=ω)
1
2 . (6.3.8) fact.8
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Let ξ = ξ±(ω) = O(=ω) be the solutions of ξ + <G(x±(ω), ω) = 0, so that

ξ± +G(x±(ω), ω) = 0. (6.3.9) fact.9

Apart from the fact that =ω � 1, we are very much in the situation of
Chapter

1dm
3. To remedy for the smallness of ω, we make the scalings (

geopr.18
6.2.15)–

(
geopr.21
6.2.19) and work with

B̃ = hDx̃ + G̃(x̃, ω̃, α;h),

where we recall that,

G̃(x̃, ω̃, α; h̃) =
1

α
G(
√
αx̃, αω̃;h) = g̃(x̃, ω̃) + α

1
2 h̃O(1).

Here O(1) stands for a function which is bounded with all its x-derivatives.
(The asymptotic expansion (

geopr.24
6.2.18) will be used in a region x̃ = O(1).) Then

=∂2
x̃G̃ � 1, =∂x̃G̃ � x̃− x̃min(ω̃),

and =G̃(·, ω̃) has a nondegenerate minimum at x̃min(ω̃) = xmin(ω)/
√
α.

Further, the equation
=G̃(x̃, ω̃) = 0, (6.3.10) fact.10

has exactly two solutions x̃ = x̃±(ω̃) = x±(ω)/
√
α, with

∓(x̃±(ω̃)− x̃min(ω̃)) � (=ω̃)
1
2 � 1.

Let ξ̃ = ξ̃±(ω̃, α) be the solution of ξ̃ + <G̃(x̃±, ω̃, α) = 0, so that

ξ̃± + G̃(x̃±, ω̃) = 0. (6.3.11) fact.11

Notice that ξ̃± = ξ±/α = O(1).
Under the assumption,

h̃� 1, i.e. α� h
2
3 , (6.3.12) fact.11.5

we can now study B̃ = h̃Dx̃ + G̃ as in the sections
prepup
3.1 and

1dmgr
3.2. Since we will

work in the rescaled variables for a while, we will drop the tildes until further
notice and simply recall their existence by adding ˜ after each formula. As
in Section

prepup
3.1, we have a function

ewkb(x) = h−
1
4a(h)χ(x− x+(ω, α))e

i
h
φ+(x), ˜ (6.3.13) fact.12

98



such that

χ ∈ C∞0 (]− C, x−(ω, α)− 1

C
[, χ = 1 on ]− C

2
, x−(ω, α)− 2

C
[, ˜ (6.3.14) fact.13

where C � 1 ,̃

a ∼ a0(ω, α) + ha1(ω, α) + ..., a0(ω, α) =

(
=∂2

xφ+(x+)

π

) 1
4

, ˜ (6.3.15) fact.14

‖ewkb‖L2 = 1, ˜ (6.3.16) fact.15

φ+(x) = φ+(x, ω, α) = −
∫ x

x+(ω,α)

G(y, ω, α)dy, ˜ (6.3.17) fact.16

=φ+(x) � (x− x+)2, ˜ (6.3.18) fact.17

uniformly on any fixed compact subset of ]−∞, x−[ .̃ By construction,

(hDx +G)ewkb(x) =
h

i
χ′(x− x+(ω, α))h−

1
4a(h)e

i
h
φ+(x), ˜ (6.3.19) fact.18

which decays exponentially in L2.
Define the (ω, α) -̃dependent self-adjoint operators

2 = (hD +G)∗(hD +G), 2̃ = (hD +G)(hD +G)∗ : L2(R)→ L2(R) ˜
with domain

D(2) = D(2̃) = {u ∈ L2(R); x2j(hD)k ∈ L2(R), for j + k ≤ 2}. ˜
These operators can be viewed as h -̃pseudodifferential operators with sym-
bol in S(m), m(x, ξ) = (〈ξ〉+ 〈x〉2)

2
.

Again,
σ(2) = σ(2̃) = {t20, t21, ...}, 0 ≤ tj ↗ +∞ ˜

and Proposition
1dm3
3.1.1 applies so that t20 ˜ is a simple eigenvalue which is

exponentially small and t21 − t20 ≥ h/C .̃ The second fact can be proved
by modifying slightly the proof of lemma

1dm3.2
3.1.2, or else we can apply more

general microlocal analysis as indicated after Proposition
g1d6
5.3.1.

Let Π0 ˜ be the spectral projection corresponding to (2, t20) ˜ and let
e0 = ‖Π0ewkb‖−1Π0ewkb ˜ be the normalized eigenstate with (2− t20)e0 = 0 ˜
(unique up to a factor eiθ, for some θ ∈ R). By (

fact.18
6.3.19),

2ewkb = r, r = (hD +G)∗
h

i
χ′(x− x+)h−

1
4a(h)e

i
h
φ+ , ˜ (6.3.20) fact.19
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and we see that for any given ε > 0, we can arrange so that

r = O
(
e−

1
h

(S0−ε)
)

in L2, ˜ (6.3.21) fact.20

by choosing the cutoff “wide enough”, i.e. with C ˜ in (
fact.13
6.3.14) large enough.

Here S0 > 0 ˜ is the tunneling action between (x+, ξ+) ˜ and (x−, ξ−) ,̃
given by

S0 = −=
∫ x−

x+

G(x, ω, α)dx ˜ (6.3.22) fact.21

or equivalently by

S0 = =
∫
γ

ξdx, ˜ (6.3.23) fact.22

where γ = {(x, ξ); x+ ≤ x ≤ x−, ξ + G(x, ω, α) = 0} ˜ is oriented from
(x+, ξ+) ˜ to (x−, ξ−) .̃

For |z| = hδ ,̃ 0 < δ � 1 ,̃ we write

(z −2)ewkb = zewkb − r, ˜
leading to

(z −2)−1ewkb = z−1ewkb + z−1(z −2)−1r. ˜
Using that

Π0 =
1

2πi

∫
|z|=δh

(z −2)−1dz, ˜
we get

Π0ewkb = ewkb+
1

2πi

∫
|z|=δh

z−1(z−2)−1rdz = ewkb+O
(

1

h
e−

1
h

(S0−ε)
)

in L2. ˜
Here we use (

fact.20
6.3.21) in the last step. It follows that

‖Π0ewkb‖ = 1 +O(h−1e−
1
h

(S0−ε)), ˜
so

e0 = ewkb +O(h−1e−
1
h

(S0−ε)) in L2. ˜ (6.3.24) fact.23

Similarly, we have a WKB state for (hD +G)∗ = hD +G ˜ given by

fwkb(x) = h−
1
4 b(h)χ̂(x− x−(ω, α))e

i
h
φ−(x), ˜ (6.3.25) fact.24

φ−(x) = φ−(x, ω, α) = −
∫ x

x−(ω,α)

G(y, ω, α)dy, ˜ (6.3.26) fact.25
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=φ−(x) � (x− x−)2, ˜ (6.3.27) fact.26

uniformly on any fixed compact subset of ]x+,∞[,

b ∼ b0(ω, α) + hb1(ω, α) + ..., b0(ω, α) =

(
=∂2

xφ−(x−)

π

) 1
4

, ˜ (6.3.28) fact.27

‖fwkb‖L2 = 1, ˜ (6.3.29) fact.28

(hDx +G)fwkb(x) =
h

i
χ̂′(x− x−(ω, α))h−

1
4 b(h)e

i
h
φ−(x), ˜ (6.3.30) fact.29

which is exponentially decaying in L2. The properties of χ̂(x − x−) ˜ are
analogous to those of χ(x− x+) .̃

As above, we get a corresponding normalized eigenstate f0 ˜ of 2̃ :̃

(2̃− t20)f0 = 0, ˜ (6.3.31) fact.30

with
f0 = fwkb +O(h−1e−

1
h

(S0−ε)) in L2. ˜ (6.3.32) fact.31

After multiplying f0 (or e0) by a factor of modulus 1 (which will play no role
in the following), we may arrange so that

(hD +G)e0 = t0f0, (hD +G)f0 = t0e0. ˜ (6.3.33) fact.32

We now go beyond Chapter
1dm
3 and study the precise asymptotics of t0.

Use (
fact.32
6.3.33) to write

t0 = ((hD +G)e0|f0) = (χ+(hD +G)e0|f0) + (χ−(hD +G)e0|f0), ˜
where χ± ∈ C∞(R) ,̃ suppχ+ ⊂] − ∞, x−[ ,̃ suppχ− ⊂]x+,+∞[ ,̃
1 = χ+ + χ− .̃ We get

t0 = (χ+(hD +G)e0|f0) + (χ−e0|(hD +G)∗f0) + ([χ−, hD]e0|f0) ˜
= t0 ((χ+f0|f0) + (χ−e0|e0)) + ih(χ′−e0|f0). ˜

Here we use (
fact.23
6.3.24), (

fact.31
6.3.32) and the exponential decay of fwkb ˜ and ewkb ˜

away from x− ˜ and x+ ˜ respectively, to see that

(χ+f0|f0), (χ−e0|e0) = O
(
e−

1
Ch

)
. ˜

Hence, (
1 +O

(
e−

1
Ch

))
t0 = ih(χ′−e0|f0). ˜ (6.3.34) fact.33
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Using again (
fact.23
6.3.24), (

fact.31
6.3.32) and the fact that suppχ′− ˜ is contained in

a compact subset of ]x+, x−[ ˜ where ewkb ˜ and fwkb ˜ are exponentially
decaying, we get

(χ′−e0|f0) = (χ′−ewkb|fwkb) +O(1)e−
1
h

(S0+ 1
C

). ˜
Then (

fact.33
6.3.34) shows that

t0 = ih(χ′−ewkb|fwkb) +O(1)e−
1
h

(S0+ 1
C

). ˜ (6.3.35) fact.34

Recall that t0 ≥ 0 ˜ by construction and that we have inserted an x -̃
independent factor of modulus one in front of f0 ˜ and fwkb .̃

Combining (
fact.34
6.3.35), (

fact.24
6.3.25), (

fact.27
6.3.28), (

fact.12
6.3.13), (

fact.14
6.3.15), we get

t0 = (1 +O(h))h
1
2

(
=∂2

xφ+(x+)

π

) 1
4
(
=∂2

xφ−(x−)

π

) 1
4

e−
S0
h . ˜ (6.3.36) fact.35

Here we also used that

e
i
h

(φ+(x)−φ−(x)) = e
i
h

∫ x−
x+

(−G(y))dy
= eiθ̃−

1
h
S0 , ˜

where θ̃ ∈ R ˜ is independent of x ˜ and the fact that
∫ +∞
−∞ χ′−(y)dy = 1 .̃

From (
fact.16
6.3.17), (

fact.25
6.3.26), we get

=∂2
xφ+(x+) = −=∂xG(x+), ˜

=∂2
xφ−(x−) = −=∂xG(x−). ˜

Introducing q = ξ + g(x, ω, α) ,̃ we get

=∂2
xφ+(x+) =

1

2i
{q, q}(ρ+) +O(h) � 1, ˜

=∂2
xφ−(x−) =

1

2i
{q, q}(ρ−) +O(h) � 1, ˜ (6.3.37) fact.35.5

where ρ± = (x±, ξ±) .̃ Then (
fact.35
6.3.36) becomes

t0 = (1 +O(h))

(
h

π

) 1
2
(

1

2i
{q, q}(ρ+)

) 1
4
(

1

2i
{q, q}(ρ−)

) 1
4

e−
1
h
S0 . ˜ (6.3.38) fact.36

Proposition
1dm3.5
3.2.1 carries over to the present situation, where we write out

explicitly the various tildes that were hidden up to now.
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fact1 Proposition 6.3.1 Let m = 〈ξ〉+ 〈x〉2 and define the semi-classical Sobolev

space Hh̃(m) as in Section
prelunpert
5.1, with h̃ as the semi-classical parameter. Define

R̃+ : H1
h̃
(R)→ C, R̃− : C→ L2(R) by

R̃+u = (u|ẽ0), R̃−u− = u−f̃0.

Then

P̃(z) :=

(
h̃D + G̃ R̃−
R̃+ 0

)
: Hh̃(m)×C→ L2 ×C

is bijective with the bounded inverse

Ẽ(z) =

(
Ẽ Ẽ+

Ẽ− Ẽ−+

)
=

(
O(h̃−

1
2 ) O(1)

O(1) O(e−1/Ch̃)

)
: L2 ×C→ Hh̃(m)×C.

Here,
Ẽ+v+ = v+ẽ0, Ẽ−v = (v|f̃0), Ẽ−+ = −t̃0.

We turn to the corresponding result for the unscaled operator hD+G in
(
geopr.15
6.2.12). Recall that

hDx +G = α(h̃Dx̃ + G̃), h̃ = h/α3/2, x =
√
αx̃. (6.3.39) fact.38

Thus the common lowest eigenvalue of 2 = (hD + G)∗(hD + G) and 2̃ =
(hD + G)(hD + G)∗ is of the form t20 = α2t̃20, where t0 = αt̃0, and the
corresponding normalized eigenfunctions are

e0(x) = α−
1
4 ẽ0(x̃), f0(x) = α−

1
4 f̃0(x̃). (6.3.40) fact.39

They are approximated by

ewkb(x) = α−
1
4 ẽwkb(x̃), fwkb(x) = α−

1
4 f̃wkb(x̃). (6.3.41) fact.40

The common gap t21− t20 between the first two eigenvalues of 2, 2̃ is � α2h̃ =√
αh. Recalling the proof of Proposition

1dm3.5
3.2.1 by spectral decomposition, we

get,

fact2 Proposition 6.3.2 With m as in the preceding proposition, we define the
semi-classical Sobolev space H(m) as there with h as the semi-classical pa-
rameter. Define R+ : H1(R)→ C, R− : C→ L2(R) by

R+u = (u|e0), R−u− = u−f0.
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Then

P(z) :=

(
hD +G R−
R+ 0

)
: Hh(m)×C→ L2 ×C

is bijective with the bounded inverse

E(z) =

(
E E+

E− E−+

)
=

(
O(α−

1
4h−

1
2 ) O(1)

O(1) O(α
1
4h

1
2 )e−

α3/2

Ch

)
: L2×C→ Hh(m)×C.

Here,
E+v+ = v+e0, E−v = (v|f0), E−+ = −t0.

Let us finally derive an asymptotic formula for t0 with the help of (
fact.36
6.3.38)

where all the quantities carry invisible tildes. Now with the tildes written
out, we recall that x̃± are given by

=G̃(x̃±) = 0, x̃+ < x̃−.

This corresponds to x± =
√
αx̃± satisfying =G(x±) = 0. We get,

S̃0

h̃
= −α

3
2

h

∫ x̃−

x̃+

=G̃(ỹ)dỹ = −α
3
2

h

∫ x−

x+

=G(y)

α

dy

α
1
2

=
S0

h
,

where,

S0 = −=
∫ x−

x+

G(y)dy. (6.3.42) fact.41

Recalling that φ̃+(x̃) = −
∫ x̃
x̃+
G̃(ỹ)dỹ, we put φ+(x) = −

∫ x
x+
G(y)dy.

Then by the change of variables above, we get φ̃+ = α−3/2φ+(x), or equiva-
lently,

φ̃+

h̃
=
φ+

h
.

Similarly,

φ̃−

h̃
=
φ−
h
,

where (cf. (
fact.25
6.3.26)), φ−(x) = −

∫ x
x−
G(y)dy. Clearly,

∂2
x̃φ̃± = α∂2

xφ̃± = α−
1
2∂2

xφ±.

Let q = ξ + g, q̃ = ξ̃ + g̃, so

{q̃, q̃}(ρ̃+) = α−
1
2{q, q}(ρ±).
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We use this in (
fact.36
6.3.38) and get

t0 = αt̃0 =

α

(
1 +O

(
h

α
3
2

))(
h

πα
3
2

) 1
2
(
α−

1
2

1

2i
{q, q}(ρ+)

) 1
4
(
α−

1
2

1

2i
{q, q}(ρ−)

) 1
4

e−
1
h
S0 .

We already know that the precise choice of α � =ω should not appear in the
final result, and indeed the powers of α cancel and we end up with

t0 =
(

1 +O
(
h/(=ω)

3
2

))(h
π

) 1
2
(

1

2i
{q, q}(ρ+)

) 1
4
(

1

2i
{q, q}(ρ−)

) 1
4

e−
1
h
S0 .

Here ρ± and S0 are determined from the full symbol Q = ξ+G(x, ω;h) =
q + O(h). There are unique (real) points ρ0

± = ρ± + O(h/
√
α) such that

q(ρ0
±) = 0 and moreover,

{q, q}(ρ±) = {q, q}(ρ0
±) +O(h/

√
α) = (1 +O(h/α)){q, q}(ρ0

±). (6.3.43) fact.41.1

Similarly, we can compare S0 with

I = −
∫ x0

−

x0
+

=g(x, ω)dx, ρ0
± = (x0

±, ξ
0
±). (6.3.44) fact.41.2

Since
x0
± − x± = O(h/

√
α), |x0

±| �
√
α, G− g = O(h),

we get

I − S0 = O(1)

(
hα√
α

+ h
√
α

)
= O(h

√
α).

Here we also used that G = O(α) when x = O(
√
α). Hence,

e−S0/h = (1 +O(
√
α))e−I/h (6.3.45) fact.41.3

and here
√
α ≤ h/α3/2 if we work with α in the range

C0h
2/3 ≤ α ≤ h1/2, (6.3.46) fact.41.5

which will be the case when in addition to (
geopr.16
6.2.13), we have =w ' α ≤

O(1)(h ln(1/h))2/3. Using (
fact.41.1
6.3.43), (

fact.41.3
6.3.45) in the formula for t0 above, we

get

t0 =
(

1 +O
(
h/(=ω)

3
2

))(h
π

) 1
2
(

1

2i
{q, q}(ρ+)

) 1
4
(

1

2i
{q, q}(ρ−)

) 1
4

e−
1
h
I ,

(6.3.47) fact.42
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where from now on ρ± denote the real zeros of q = ξ + g(x, ω).
As we have already seen,

t0 � h
1
2α

1
4 e−I/h � h

1
2 , (6.3.48) fact.43

I � α
3
2 . (6.3.49) fact.44

So far in this section, we have worked under the assumption (
geopr.16
6.2.13) in

conjunction with =w ≤ O(1)(h ln(1/h))2/3. Let us consider two more regions:

1) When
|ω| ≤ O(h2/3). (6.3.50) fact.45

We check that hDx +G : Hh(m)→ L2 has the two-sided inverse,

Ev(x) =
i

h

∫ x

+∞
e
i
h

(φ(x)−φ(y))v(y)dy, (6.3.51) fact.46

where φ is determined up to a constant by the eikonal equation

φ′x +G(x, ω;h) = 0. (6.3.52) fact.47

We have

−=φ′x

{
= O(h2/3), |x| ≤ O(h1/3),

� h2/3 + x2, |x| � h1/3.

It follows that for y ≥ x,

1

h
(=φ(x)−=φ(y)) ≥ −O(1) +

1

Ch

∫ y

x

(h
2
3 + t2)dt

= −O(1) +
1

Ch

(
h

2
3 (y − x) +

y3

3
− x3

3

)
≥ −O(1) +

1

C̃h
(y − x)

(
h

2
3 + x2 + y2

)
,

for some C, C̃ > 0. Thus in (
fact.46
6.3.51),∣∣∣e ih (φ(x)−φ(y))
∣∣∣ ≤ O(1)e−

1

C̃h
(h

2
3 +|x|2+|y|2)(y−x), (6.3.53) fact.47

and by applying Shur’s lemma to E, we can conclude that

(h2/3 + x2)E = O(1) : L2 → L2. (6.3.54) fact.48
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Proof of (
fact.48
6.3.54). The distribution kernel of (h2/3 + x2)E is bounded in

modulus by a constant times

K(x, y;h) =
h2/3 + x2

h
e−

1
Ch

(h2/3+x2+y2)(y−x)1y≥x

and if K(h) denotes the corresponding integral operator, it suffices to show
that the L(L2, L2)-norm ‖K(h)‖ is O(1), uniformly in h. We observe that

K(h1/3x̃, h1/3ỹ;h)h1/3dỹ = K(x̃, ỹ; 1)dỹ,

so ‖K(h)‖ = ‖K(1)‖. It the suffices to consider the case when h = 1. By

Shur’s lemma, ‖K(1)‖ ≤ m
1/2
x m

1/2
y , where

mx = sup
x

∫
K(x, y; 1)dy, my = sup

y

∫
K(x, y; 1)dx,

and it suffices to show that these quantities are bounded.
Here

mx ≤ sup
x

∫ +∞

x

(1 + x2)e−
1
C

(1+x2)(y−x)dy ≤ O(1).

The estimate of my is slightly more difficult. Write,

my = sup
y

∫ y

−∞
(1 + x2)e−

1
C

(1+x2+y2)(y−x)dx ≤ I + II,

where

I = sup
y

∫ y

−∞
(1 + y2)e−

1
C

(1+x2+y2)(y−x)dx ≤ O(1),

as for mx, and

II = sup
y

∫ x

−∞
|x2 − y2|e−

1
C

(1+x2+y2)(y−x)dx

= sup
y

∫ x

−∞
|x+ y|(x− y)e−

1
C

(1+x2+y2)(y−x)dx.

Since |x+ y| ≤ O(1)(1 + x2 + y2), the integrand in II is

≤ |x+ y|(x− y)e−
1

2C
(1+x2+y2)(y−x)e−

1
2C

(y−x) ≤ O(1)e−
1

2C
(y−x),

and it follows that II = O(1). Hence my = O(1). 2

From (hD + G)E = 1, we see that hDE = O(1) : L2 → L2. It follows
that

E = O(h−2/3) : L2 → Hh(m). (6.3.55) fact.49
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2) When =ω � −h2/3, |<ω| ≤ O(1)|=ω|, we do essentially the same scaling
as above, x = α1/2x̃, α � −<ω, to see that

hD +G = α(h̃Dx̃ + G̃(x̃, ω;h)), G̃(x̃, ω;h) =
1

α
G(
√
αx, ω;h),

which is an elliptic h̃-pseudodifferential operator. We conclude by elliptic
theory that h̃Dx̃+ G̃ : Hh̃(m)→ L2 has a bounded inverse and, after return-
ing to the x-coordinates, that

hD +G : Hh(m)→ L2

is bijective with inverse E satisfying,

E = O(α−1) : L2 → Hh(m). (6.3.56) fact.50

6.4 Global Grushin problem, end of the proof
glgr

As a preparation for the cutting and pasting in the global situation, we
establish some microlocal properties for E, E± in Proposition

fact2
6.3.2. This

will mainly concern the eigenfunctions e0, f0. Assume (cf. (
fact.41.5
6.3.46) that

|<ω| ≤ =ω, h
2
3 � =ω ≤ h

1
2 .

The symbol ξ + G(x, ω;h) belongs S(m), m = 〈ξ〉 + 〈x〉2. For 0 < δ � 1,
|x| � hδ/2, we have =G � hδ and hence |ξ + G| ≥ hδm(x, ξ) for all ξ. The
same conclusion is valid when |ξ| � hδ. Thus,

|ξ +G| ≥ hδm(x, ξ), when |ξ|+ |x|2 � hδ. (6.4.1) glgr.1

Hence ξ + G(x) is a slightly degenerate elliptic symbol in the region |ξ| +
|x|2 � hδ and following the standard construction of parametrices for elliptic
operators (cf.

DiSj99
[40], Ch. 8) we get a symbol J(x, ξ;h) (depending also on ω)

such that
∂αx,ξJ = Oα(1)h−δ(1+|α|)m(x, ξ)−1, (x, ξ) ∈ R2, (6.4.2) glgr.2

(ξ +G)]J, J](ξ +G) ∼ 1 in S(1), when |ξ|+ |x|2 � hδ. (6.4.3) glgr.3

Here ] denotes the composition of symbols in the Weyl calculus, correspond-
ing to composition of h-pseudodifferential operators.

Letting J also denote the corresponding h-pseudodifferential operators,
this means that

(hD +G) ◦ J = 1 +K, J ◦ (hD +G) = 1 + L, (6.4.4) glgr.4
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whereK, L are h-pseudodifferential operators with symbolsK(x, ξ;h), L(x, ξ;h)
that satisfy,

∂α(x,ξ)K, ∂
α
(x,ξ)L =

{
O(h−δ|α|), on R2,

O(h∞), for |ξ|+ |x|2 � hδ.
(6.4.5) glgr.5

Recall that 2 = (hD + G)∗(hD + G), 2̃ = (hD + G)(hD + G)∗ and
use the same letters for the symbols of these operators. Both symbols are
≡ |ξ +G|2 modS(hm2). By (

fact.43
6.3.48), we have t20 � h. We conclude that

|2(x, ξ, ω;h)− t20|, |2̃(x, ξ, ω;h)− t20| ≥ h2δm(x, ξ)2, when |ξ|+ |x|2 � hδ,
(6.4.6) glgr.6

provided that δ > 0 is small enough (< 1/2 suffices here). If δ < 1/4 we can

construct symbols R, R̃ such that

∂α(x,ξ)R, ∂
α
(x,ξ)R̃ = Oα(h−2δ(1+|α|)), (x, ξ) ∈ R2, (6.4.7) glgr.7

(2− t20)]R, R](2− t20), (2̃− t20)]R̃, R̃](2̃− t20) ∼ 1

in S(1), in the region |ξ|+ |x|2 � hδ.
(6.4.8) glgr.8

Passing to the corresponding h-pseudodifferential operators, this means that

(2−t20)◦R = 1+K, R◦(2−t20) = 1+L, (2̃−t20)◦R̃ = 1+K̃, R̃◦(2̃−t20) = 1+L̃,
(6.4.9) glgr.9

where K, L, K̃, L̃ are h-pseudodifferential operators with symbols satisfying

∂α(x,ξ)K, ∂
α
(x,ξ)K̃, ∂

α
(x,ξ)L, ∂

α
(x,ξ)L̃ =

{
O(h−2δ|α|) on R2,

O(h∞), for |ξ|+ |x|2 � hδ.
(6.4.10) glgr.10

Applying the 2nd and the 4th equations in (
glgr.9
6.4.9) to e0 and f0 respec-

tively, we get
e0 = −Le0, f0 = −L̃f0, (6.4.11) glgr.11

showing that e0, f0 are microlocally concentrated to a region |ξ| + |x|2 ≤
O(hδ). This gives a corresponding localization for R± = E∓ in Proposition
fact2
6.3.2:

E+ = −LE+, E− = −E−L̃∗. (6.4.12) glgr.12

Let χ ∈ C∞0 (R) be a standard cutoff function, = 1 on [−1/2, 1/2] and
with support in ]− 1, 1[. We claim that

E = χ2Eχ1 + J ((1− χ2χ1)− [hD +G,χ2]Eχ1) +O(h∞) in L(L2, Hh(m)),
(6.4.13) glgr.13
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where J is the h-pseudodifferential operator in (
glgr.4
6.4.4) and

χj(x, ξ) = χ
(
(ξ2 + x4)/(Cjh

2δ)
)
, C1, C2 � 1.

(In (
glgr.13
6.4.13), χj denote the corresponding h-pseudodifferential operators.) In

fact, let
F = χ2Eχ1 + J((1− χ2χ1)− [hD +G,χ2]Eχ1).

Then, since (hD + G)E + R−E− = 1 and K(1 − χ2χ1), K[hD + G,χ2],
R−E− − χ2R−E−χ1 are = O(h∞),

(hD +G)F = 1−R−E− +O(h∞) in L(L2, L2),

so
(hD +G)F +R−E− = 1 +O(h∞) in L(L2, L2). (6.4.14) glgr.14

Moreover,
R+F = O(h∞) in L(L2,C). (6.4.15) glgr.15

Apply E to the left in (
glgr.14
6.4.14) and use that E(hD + G) = 1 − E+R+,

ER− = 0. Then

E = (1− E+R+)F +O(h∞) in L(L2, Hh(m)).

From (
glgr.15
6.4.15) we then infer that E = F +O(h∞) and (

glgr.13
6.4.13) follows.

Let χ̃j be narrower cutoffs with the same properties as χj so that χ̃j]χj ≡
χj]χ̃j ≡ χ̃j modulo O(h∞) in S(1) and so that (

glgr.13
6.4.13) remains valid with

χj replaced by χ̃j:

E = χ̃2Eχ̃1 + J ((1− χ̃2χ̃1)− [hD +G, χ̃2]Eχ̃1) +O(h∞) in L(L2, Hh(m)).

Then modulo O(h∞) in L(L2, Hh(m)),

[hD +G,χ2]Eχ1

≡ [hD +G,χ2]J(1− χ̃2χ̃1)χ1 − [hD +G,χ2]J [hD +G, χ̃2]Eχ̃1χ1

≡ [hD +G,χ2]J(1− χ̃2χ̃1)χ1

≡ [hD +G,χ2]Jχ1,

and (
glgr.13
6.4.13) simplifies to

E = χ2Eχ1 + J ((1− χ2χ1)− ([hD +G,χ2]Jχ1) +O(h∞) in L(L2, Hh(m)).
(6.4.16) glgr.16

We can now set up the global Grushin problem for P − z in Theorem
rest1d2
6.1.4. Recall that p−1(z0) consists of N points ρ1

0, ..., ρ
N
0 by (

int.40
6.1.37). For
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z ∈ neigh (z0,C), we introduce the new base points ρj(z) as in Remark
geopr1
6.2.1, so that (

int.41
6.1.38) reduces to wj = isj. Let κj (depending on z) be an

affine canonical transformation, mapping (0, 0) to ρj(z), such that as in the
discussion around Remark

geopr1
6.2.1,

p ◦ κj − p(ρj(z)) = eiθj(ρj(z))(ξ + irj(x, ξ)),

or equivalently,

p ◦ κj − z = eiθj(ρj(z))(ξ + irj(x, ξ)− ωj),

where rj(x, ξ) = O(x2 + ξ2), ωj = isj +O(s2
j)

On the operator level, this means that

U−1
j (P − z)Uj =eiθj(ρj(z))(Pj − ωj)

= Ãj(hDx +Gj(x, ωj;h)) + Sj,

Ãj = eiθj(ρj(z))Aj,

(6.4.17) glgr.17

as in (
geopr.15
6.2.12). Here Uj is a unitary metaplectic Fourier integral operator

associated to κj.

Most of the work in this section concerns the case when j ∈ N , where we
recall that

N = {j ∈ {1, ..., N}; C0h
2/3 ≤ sj ≤ O(1) (h ln(1/h))2/3}.

For each j, we consider the Grushin problem in Proposition
fact2
6.3.2:

Pj =

(
hD +Gj Rj

−
Rj

+ 0

)
with inverse

Ej =

(
Ej Ej

+

Ej
− Ej

−+

)
,

where Rj
+u = (u|ej0), Rj

−u− = u−f
j
0 . Recall that Ej

± = (Rj
±)∗ and that

Ej
−+ = −tj, where tj fulfills the j-dependent version of (

fact.42
6.3.47).

Let ψ ∈ C∞0 (R2) be a standard cut-off function, equal to 1 near (0, 0).
For 0 < δ0 � 1 fixed, we put ψj(x, ξ;h) = ψ(h−δ0((x, ξ)− ρj)) and also write
ψj for the corresponding h-pseudodifferential operator. Our global Grushin
problem is then

P(z) =

(
P − z R−
R+ 0

)
: Hh(m)×CN → L2 ×CN , (6.4.18) glgr.18
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where m now denotes the original order function, associated to P and

(R+u)(j) = Rj
+U
−1
j u, j ∈ N , (6.4.19) glgr.19

R−u− =
∑
j∈N

UjÃjR
j
−u−(j). (6.4.20) glgr.20

The localization properties of ej0, f j0 imply that R− is well defined modO(h∞)

despite the presence of Ãj which is only defined microlocally near (0, 0). It
is independent of the choice of ψj up to operators that are O(h∞).

Let J(x, ξ;h) be a parametrix of P − z in the region,

dist ((x, ξ), {γ1, ..., γN}) ≥ hδ̃, γj = γj(τj(z)), (6.4.21) glgr.21

where δ0 < δ̃ � 1, such that

∂α(x,ξ)J = O(h−δ̃(1+|α|)m(x, ξ)−1), (6.4.22) glgr.22

(P − z)]J, J](P − z) ∼ 1 in the region (
glgr.21
6.4.21). (6.4.23) glgr.23

As usual, J will also denote the corresponding h-pseudodifferential operator.
To construct a right inverse of P(z) amounts to find a solution (u, u−) ∈

H(m)×CN of the system{
(P − z)u+R−u− = v

R+u = v+

(6.4.24) glgr.23.5

for any given (v, v+) ∈ L1 ×CN . Take first u0 = J(1−
∑N

1 ψj)v, so that{
(P − z)u0 = (1−

∑N
1 ψj)v +O(h∞‖v‖) in L2,

R+u0 = O(h∞‖v‖) in CN .

When j ∈ N , we look for a solution uj microlocally concentrated to a small
neighborhood of ρj, and u−(j) ∈ C, so that{

(P − z)uj +Rj
−u−(j) = ψjv,

(R+uj) = v+(j)δj,

up to small errors, where we let δj denote the j:th canonical basis vector
in CN , so that δj(k) = δj,k, the latter being the Kronecker delta. The
concentration of uj to a small neighborhood of ρj will then imply that
(R+uj)(k) = O(h∞) for k 6= j and we try to solve{

UjÃj(hD +Gj)U
−1
j uj + UjÃjR

j
−u−(j) = ψjv,

Rj
+U
−1
j uj = v+(j),
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which formally would follow from{
(hD +Gj)U

−1
j uj +Rj

−u−(j) = Ã−1
j U−1

j ψjv,

Rj
+U
−1
j uj = v+(j),

so we are led to the choice{
uj = UjE

jÃ−1
j U−1

j ψjv + UjE
j
+v+(j),

u−(j) = Ej
−Ã
−1
j U−1

j ψjv + Ej
−+v+(j).

Notice here that Ãj is well-defined and elliptic only in a fixed neighborhood

of (0, 0), but the operator Ã−1
j U−1

j ψj is well-defined modulo O(h∞), thanks
to the cutoff ψj.

When
j ∈ {1, 2, ..., N} \ N =: N c,

we know from the discussion at the end of Section
fact
6.3, that hDx + Gj :

Hh(m)→ L2(R) is bijective with inverse Ej : L2 → Hh(m) of normO((h2/3+
|sj|)−1). The obvious j-dependent version of (

glgr.16
6.4.16) also holds.

As an approximate right inverse of P(z), we try

Ẽ =

(
Ẽ Ẽ+

Ẽ− Ẽ−+

)
, (6.4.25) glgr.24

where 
Ẽv = J(1−

∑N
1 ψj)v +

∑N
1 UjE

jÃ−1
j U−1

j ψjv,

Ẽ+v+ =
∑

j∈N UjE
j
+v+(j),

(Ẽ−v)(j) = Ej
−Ã
−1
j U−1

j ψjv, j ∈ N ,
Ẽ−+ = diag (Ej

−+).

(6.4.26) glgr.25

Recall that we work under the assumptions of Theorem
rest1d2
6.1.4, so

hδ0 ≤ sj ≤ O(1)(h ln(1/h))2/3, ∀j,

where δ0 > 0 is arbitrarily small and fixed.

glgr1 Proposition 6.4.1 We have,
Ẽ = O(1) max

(
maxj∈N h

− 1
2 s
− 1

4
j ,maxj∈N c(h

2/3 + |sj|)−1
)
,

Ẽ+ = O(1) : CN → Hh(m),

Ẽ− = O(1) : L2 → CN ,

Ẽ−+ = O(1) maxj∈N s
1
4
j h

1
2 e−s

3/2
j /O(h) : CN → CN .

(6.4.27) glgr.26
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Moreover,
(P − z)Ẽ +R−Ẽ− = 1 +O(h∞) : L2 → L2,

(P − z)Ẽ+ +R−Ẽ−+ = O(h∞) : CN → L2,

R+Ẽ = O(h∞) : L2 → CN ,

R+Ẽ+ = 1 +O(h∞) : CN → CN .

(6.4.28) glgr.27

Proof. (
glgr.26
6.4.27) follows from Proposition

fact2
6.3.2, (

fact.48
6.3.54), (

fact.50
6.3.56) (where

we recall that α � sj when |σj| � h2/3) and the bounds J = O(h−δ̃),

Uj, Ã
−1
j = O(1).

The proof of (
glgr.27
6.4.28) is just a long calculation with some attention to

terms that dissappear because of the localization properties. Using (
glgr.25
6.4.26)

we get modulo O(h∞) : L2 → L2,

(P − z)Ẽ ≡ 1−
N∑
1

ψj +
N∑
1

(P − z)UjE
jÃ−1

j U−1
j ψj. (6.4.29) glgr.28

By (
glgr.17
6.4.17),

(P − z)UjE
jÃ−1

j U−1
j ψj ≡ UjÃj(hD +Gj)E

jÃ−1
j U−1

j ψj + UjSjE
jÃ−1

j U−1
j ψj.

(6.4.30) glgr.29

By Egorov’s theorem, Ã−1
j U−1

h ψj ≡ ψ̃jÃ
−1
j U−1

j , where ψ̃j is a pseudodiffer-
ential operator of the same class as ψj and whose symbol is supported in an

O(hδ̃)-neighborhood of (0, 0). Now by the localization properties of Ej, we

see that Ejψ̃j ≡ ψ̂jE
jψ̃j, where ψ̂j has the same properties as ψ̃j. Recalling

that every term in the h-asymptotic expansion of Sj vanishes to infinite order

at (0, 0), we conclude that SjE
jψ̃j ≡ 0 and hence the last term in (

glgr.29
6.4.30) is

≡ 0. Using also that{
(hD +Gj)E

j +Rj
−E

j
− = 1, j ∈ N ,

(hD +Gj)E
j = 1, j ∈ N c

we get

(P − z)UjE
jÃ−1

j U−1
j ψj ≡

{
ψj − UjÃjRj

−E
j
−Ã
−1
j U−1

j ψj, j ∈ N ,
ψj, j ∈ N c.

(6.4.31) glgr.30

On the other hand, using (
glgr.25
6.4.26), (

glgr.20
6.4.20),

R−Ẽ− =
∑
N

UjÃjR
j
−E

j
−Ã
−1
j U−1

j ψj. (6.4.32) glgr.31

114



Summing (
glgr.30
6.4.31) over j and adding (

glgr.31
6.4.32), we get

∑
(P − z)UjE

jÃ−1
j U−1

j ψj +R−Ẽ− ≡
N∑
1

ψj,

which together with (
glgr.28
6.4.29) gives the first equation in (

glgr.27
6.4.28).

Next look at

(P − z)Ẽ+v+ =
∑
N

(P − z)UjE
j
+v+(j).

Modulo O(h∞‖v+‖) in L2, we get

(P − z)Ẽ+v+ ≡
∑
N

UjÃj(hD +Gj)E
j
+v+(j) ≡ −

∑
N

UjÃjR
j
−E

j
−+v+(j).

On the other hand,

R−Ẽ−+v+ =
∑
N

UjÃjR
j
−E

j
−+v+(j).

Adding the two equations then gives the second equation in (
glgr.27
6.4.28).

Next, look at

R+Ẽv(j) ≡ Rj
+U
−1
j UjE

jÃ−1
j U−1

j ψjv,

which simplifies to

R+Ẽv(j) ≡ Rj
+E

j︸ ︷︷ ︸
=0

Ã−1
j U−1

j ψjv = 0.

This gives the 3d equation in (
glgr.27
6.4.28).

Finally, we turn to

(R+Ẽ+v+)(j) = Rj
+U
−1
j

∑
k∈N

UkE
k
+v+(k).

Because of the localization in Ek
+, we get modulo O(h∞‖v+‖):

(R+Ẽ+v+)(j) ≡ Rj
+U
−1
j UjE

j
+v+(j) = Rj

+E
j
+v+(j) = v+(j)

and the 4th equation in (
glgr.27
6.4.28) follows. 2

A similar discussion of the uniqueness of the solutions of (
glgr.23.5
6.4.24) leads to

the approximate left inverse of P(z):

Ê =

(
Ê Ê+

Ê− Ê−+

)
, (6.4.33) glgr.31.5
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where 
Êv = (1−

∑N
1 ψj)Jv +

∑N
1 ψjUjEjÃ

−1
j U−1

j v,

Ê+ =
∑
N UjE

j
+v+(j),

(Ê−v)(j) = Ej
−Ã
−1
j U−1

j v, j ∈ N ,
Ê−+ = diag (Ej

−+).

(6.4.34) glgr.32

Using the localization properties of Ej, Ej
−+, we can check directly that

Ê = Ẽ +O(h∞). This fact also follows from,

glgr2 Proposition 6.4.2 Ê satisfies (
glgr.26
6.4.27) with the obvious modifications. More-

over, 
Ê(P − z) + Ê+R+ = 1 +O(h∞) : Hh(m)→ Hh(m),

Ê−(P − z) + Ê−+R+ = O(h∞) : Hh(m)→ CN ,

ÊR− = O(h∞) : CN → Hh(m),

Ê−R− = 1 : CN → CN .

(6.4.35) glgr.33

We omit the proof which is merely a variation of the proof of Proposition
glgr1
6.4.1. An immediate consequence of the two results is

glgr3 Proposition 6.4.3 For h > 0 small enough, P(z) : Hh(m)×CN → L2×CN

is bijective with a bounded inverse E(z) = P(z)−1 which satisfies,

E(z) = Ẽ(z) +O(h∞) = Ê(z) +O(h∞) : L2×CN → Hh(m)×CN . (6.4.36) glgr.34

We can finally look at the norm of the resolvent,

(P − z)−1 = E(z)− E+(z)E−+(z)−1E−(z). (6.4.37) glgr.35

Here ‖E(z)‖ can be estimated as in (
glgr.26
6.4.27), in view of (

glgr.34
6.4.36) and we

concentrate on the second term whose norm is much larger, as we shall see.
This term is of rank #N and we pause to consider in general, the norm of a
finite rank operator A : L2 → L2, given by

Au =
n∑

j,k=1

aj,k(u|fk)ej,

where f1, ..., fn and e1, ..., en are two linearly independent families in L2. We
orthonormalize the two families,(

f̃1 ... f̃n

)
=
(
f1 ... fn

)
G
− 1

2
f ,(

ẽ1 ... ẽn
)

=
(
e1 ... en

)
G
− 1

2
e ,
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where
Ge = ((ej|ek)) , Gf = ((fj|fk)

are the Gramians and we get after a straight forward calculation,

Au =
n∑

j̃,k̃=1

bj̃,k̃(u|f̃k̃)ẽj̃, (6.4.38) glgr.36

where (
bj̃,k̃

)
= G

1
2
e ◦ (aj,k) ◦

(
G

1
2
f

)∗
= G

1
2
e ◦ (aj,k) ◦G

1
2
f . (6.4.39) glgr.37

Since the families ẽ1, ..., ẽn and f̃1, ..., f̃n are orthonormal, it is clear from
(
glgr.36
6.4.38) that

‖A‖L2→L2 = ‖(bj̃,k̃)‖Cn→Cn ,

and (
glgr.37
6.4.39) gives

‖A‖L2→L2 = ‖G
1
2
e ◦ (aj,k) ◦G

1
2
f ‖Cn→Cn . (6.4.40) glgr.38

We apply this to E+E
−1
−+E−. From (

glgr.25
6.4.26) and Proposition

glgr3
6.4.3 we have

in L2,

E+E
−1
−+E−u =

∑
N

UjE
j
+(Ej

−+)−1Ej
−Ã
−1
j U−1

j u︸ ︷︷ ︸
=:Au

+O(h∞‖u‖L2), (6.4.41) glgr.39

From the discussion after (
glgr.17
6.4.17), we recall that

Ej
+v+(j) = v+(j)ej0, (Ej

−v)(j) = (v|f j0 ),

so
Au =

∑
N

(Ej
−+)−1(u|Uj(Ã∗j)−1f j0 )Uje

j
0. (6.4.42) glgr.40

In order to apply (
glgr.38
6.4.40), we observe that the GramianGUe0 of U1e

1
0, ..., UNe

N
0

is equal to 1+O(h∞) and that the GramianGUÃ−1f0
of U1Ã

−1
1 f 1

0 , ..., UN Ã
−1
N fN0

is of the form D +O(h∞), where D = diag (dj) with

dj = (Uj(Ã
∗
j)
−1f j0 |Uj(Ã∗j)−1f j0 ) = ((Ã∗j)

−1f j0 |(Ã∗j)−1f j0 ). (6.4.43) glgr.41

By complex stationary phase in the rescaled variables,

((Ã∗j)
−1f j0 |(Ã∗j)−1f j0 ) = (1 +O(h/s

3/2
j ))|aj(ρ−j (z))|−2,
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and since ρ−j = ρj(z) + O(s
1/2
j ) and s

1/2
j ≤ O(h/s

3/2
j ) by the upper bound

(
int.46
6.1.43), we can replace ρ−j (z) by ρj(z) in the above formula. Here aj denotes

the leading symbol in Aj, given in (
glgr.17
6.4.17),

p ◦ κj − z = eiθj(γj(z))aj(ξ + gj) + ŝj, (6.4.44) glgr.41.5

where ŝj = O((ρ− ρj(z)∞) and ρj(z) ∈ γj still denotes the z-dependent base
point, introduced in Remark

geopr1
6.2.1.

Combining (
glgr.38
6.4.40)–(

glgr.41
6.4.43), we get when N 6= ∅,

‖E+E
−1
−+E−‖ = O(h∞) + ‖D1/2 ◦ diag ((Ej

−+)−1)‖

= O(h∞) + max
j

(
1 +O(h/s

3/2
j )
)

|aj(ρj(z))Ej
−+(z)|

.
(6.4.45) glgr.42

Here we recall that tj := |Ej
−+(z)| satisfies the j-dependent version of (

fact.42
6.3.47),

tj =

(
1 +O

(
h

s
3/2
j

))(
h

π

) 1
2
(

1

2i
{qj, qj}(ρ

j
+)

1

2i
{qj, qj}(ρ

j
−)

) 1
4

e−
Ij
h .

(6.4.46) glgr.43

From (
glgr.41.5
6.4.44) we see that

{qj, qj}(ρ
j
±) =

1

|aj(ρj±)|2
{p, p}(ρj±) +O(s∞j ),

and again aj(ρ
j
±) = (1 +O(h/s

3/2
j )aj(ρj(z)). Then (

glgr.43
6.4.46) gives

|aj(ρj(z))|tj =

(
1 +O

(
h

s
3/2
j

))(
h

π

) 1
2
(

1

2i
{p, p}(ρj+)

1

2i
{p, p}(ρj−)

) 1
4

e−
Ij
h .

(6.4.47) glgr.44

Using this in (
glgr.42
6.4.45), gives when N 6= ∅,

‖E+E
−1
−+E−‖

= max
j∈N

(
1 +O

(
h

s
3/2
j

))(π
h

) 1
2

(
1

2i
{p, p}(ρj+)

1

2i
{p, p}(ρj−)

)− 1
4

e
Ij
h .

(6.4.48) glgr.45

From (
glgr.26
6.4.27) and the fact that Ẽ = E +O(h∞) in (

glgr.25
6.4.26), we have

‖E‖ = O(1) max

(
max
j∈N

s
− 1

4
j h−

1
2 ,max
j∈N c

(h
2
3 + |sj|)−1)

)
. (6.4.49) glgr.46

Combining (
glgr.35
6.4.37), (

glgr.45
6.4.48), (

glgr.46
6.4.49), we get the conclusion in Theorem

rest1d2
6.1.4.
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Chapter 7

The complex WKB method

cwkb
In this chapter we shall study the exponential growth and asymptotic ex-
pansions of exact solutions of second order differential equations in the semi-
classical limit. As an application we establish a Bohr-Sommerfeld quantiza-
tion condition for Schrödinger operators with real-analytic complex valued
potentials.

7.1 Estimates on an interval
esti

In this section we derive some basic estimates for differential equations on
an interval. Let I = [a, b] be a bounded interval and consider the problem

(h∂x − A(x))u(x) = 0, x ∈ I, (7.1.1) esti.1

where A ∈ C∞(I; Mat (n, n)) and we let Mat (n, n) denote the space of com-
plex n×n-matrices. Using the basic result in the theory of linear ODEs about
the well-posedness of the Cauchy problem, we can introduce the fundamental
matrix E(x, y) ∈ C∞(I × I; Mat (n, n)), determined by

(h∂x − A(x))E(x, y) = 0, E(y, y) = 1. (7.1.2) esti.2

Let W (A(x)) denote the numerical range of A(x) as in Definition
sp.c1
2.3.1.

esti1 Proposition 7.1.1 Let µ+(A(x)) = supλ∈W (A(x))<λ, µ−(A(x)) = infλ∈W (A(x))<λ.
Then

‖E(x, y)‖ ≤

{
exp(

∫ x
y

(µ+(A(t))dt/h), x ≥ y,

exp(
∫ x
y

(µ−(A(t))dt/h), x ≤ y.
(7.1.3) esti.3

Proof. If u = u(x) is a solution of (h∂x − A(x))u = 0, we have u(x) =
E(x, y)u(y). Moreover,

h∂x(u(x)|u(x)) = (A(x)u(x)|u(x)) + (u(x)|A(x)u(x)) = 2<(A(x)u(x)|u(x)),
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so

h∂x‖u(x)‖2

{
≤ 2µ+(A(x))‖u(x)‖2

≥ 2µ−(A(x))‖u(x)‖2.

integrating these differential inequalities, we get

‖u(x)‖2 ≤

{
exp(2

∫ x
y
µ+(A(t))dt/h)‖u(y)‖2, x ≥ y,

exp(2
∫ x
y
µ−(A(t))dt/h)‖u(y)‖2, x ≤ y,

and (
esti.3
7.1.3) follows, since u(y) can be chosen arbitrarily in Cn. 2

esti2 Remark 7.1.2 For x = y we have h∂yE = −h∂xE and hence h∂yE(x, y) +
E(x, y)A(y) = 0 when x = y. On the other hand,

(h∂x + A(x))(h∂yE(x, y)) = 0,

(h∂x + A(x))(E(x, y)A(y)) = 0,

so
(h∂x + A(x))(h∂yE(x, y) + E(x, y)A(y)) = 0 on I × I.

From the uniqueness in the Cauchy problem, we deduce the second differen-
tial equation for the fundamental matrix,

h∂yE(x, y) + E(x, y)A(y) = 0, x, y ∈ I. (7.1.4) esti.3.5

Differentiating (
esti.2
7.1.2), (

esti.3.5
7.1.4) several times, we see that (h∂x)

j(h∂y)
kE(x, y)

is a linear combination of terms

(h∂x)
j1A(x) ◦ ... ◦ (h∂x)

jνA(x) ◦ E(x, y) ◦ (h∂y)
k1A(y) ◦ ... ◦ (h∂y)

kµA(y),

where
j`, km ≥ 0, ν + j1 + ...+ jν , µ+ k1 + ...+ kµ = k.

It follows that

‖(h∂x)j(h∂y)kE(x, y)‖ ≤ Cj,k × the RHS of (
esti.3
7.1.3).

We now assume, in order to fix the ideas, that n = 2. Assume that

σ(A(x)) = {λ1(x), λ2(x)}, λ1(x) 6= λ2(x), x ∈ I. (7.1.5) esti.4

We then know that A(x) is diagonizable and more precisely that there exists

U0(x) ∈ C∞(I; Gl (n)), (7.1.6) esti.5
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where Gl (n) ⊂ Mat (n, n) is the group of invertible complex n× n matrices,
such that

U−1
0 (x)A(x)U0(x) =

(
λ1(x) 0

0 λ2(x)

)
=: Λ0(x). (7.1.7) esti.6

Then

U0(x)−1(h∂x − A(x))U0(x) = h∂x − Λ0(x) + hU0(x)−1∂x(U0(x))︸ ︷︷ ︸
=:−B1(x)

= h∂x −
(
λ1(x) + hb11(x) hb12(x)

hb21(x) λ2(x) + hb22(x)

)
.

(7.1.8) esti.6.5

Naturally, we have the equivalence

(h∂x − A(x))(U0(x)u) = 0⇔ (h∂x − (Λ0(x) + hB1(x)))u = 0.

If F (x, y;h) is the fundamental matrix for h∂x − (Λ0(x) + hB1(x)), then we
have the (equivalent) relations,

E(x, y;h) = U0(x)F (x, y;h)U0(y)−1,

F (x, y;h) = U0(x)−1E(x, y;h)U0(y).
(7.1.9) esti.10.5

In addition to (
esti.4
7.1.5) we now assume:

<λ1(x) ≥ <λ2(x), x ∈ I. (7.1.10) esti.11

Then,

µ+(Λ0(x) + hB1(x)) = <λ1(x) +O(h),

µ−(Λ0(x) + hB1(x)) = <λ2(x) +O(h),

and Proposition
esti1
7.1.1 gives

‖F (x, y;h)‖ ≤

{
exp( 1

h

∫ x
y
<λ1(t)dt+O(|x− y|)), x ≥ y

exp( 1
h

∫ x
y
<λ2(t)dt+O(|x− y|)), x ≤ y

(7.1.11) esti.12

As before, we get

‖(h∂x)j(h∂y)kF (x, y)‖ ≤ Cj,k × the right hand side of (
esti.12
7.1.11). (7.1.12) esti.13

Back to h∂x − A(x), we get

esti6 Theorem 7.1.3 Under the assumptions (
esti.4
7.1.5), (

esti.11
7.1.18), we have

‖(h∂x)j(h∂y)kE(x, y;h)‖ ≤ Cj,k

{
exph−1

∫ x
y
<λ1(t)dt, x ≥ y,

exph−1
∫ x
y
<λ2(t)dt, x ≤ y.

(7.1.13) esti.16
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This follows from (
esti.10.5
7.1.9), (

esti.12
7.1.11), (

esti.13
7.1.12).

We can eliminate the off-diagonal elements in (
esti.6.5
7.1.8) to any order in h by

means of additional conjugations. Let C =

(
c11 c12

c21 c22

)
∈ C∞(I; Mat(n, n))

and consider 1+hC(x) which is invertible for h small enough with the inverse

(1 + hC(x))−1 = 1− hC(x) + h2C(x)2 − ...

where the series is convergent but will be viewed as an asymptotic one. Then,

(1 + hC(x))−1(h∂x − (Λ0(x) + hB1(x)))(1 + hC(x))

= h∂x − (Λ0(x) + h(−C(x)Λ0(x) + Λ0(x)C(x) +B1(x))) +O(h2)

= h∂x − (Λ0(x) + h[Λ0(x), C(x)] +B1(x)) +O(h2),

and we see that

[Λ0, C] =

(
0 (λ1 − λ2)c12

(λ2 − λ1)c21 0

)
.

Choose c11 = c22 = 0, cj,k = −bj,k/(λj − λk), k 6= j. Then with Ũ1(x) =
U0(x)(1 + hC(x)), we find

Ũ1(x;h)−1(h∂x − A(x))Ũ1(x;h)

= h∂x −
(
λ1(x) + hb11(x) 0

0 λ2(x) + hb22(x)

)
+O(h2),

(7.1.14) esti.7

where the last term has an asymptotic expansion in powers of h. Again we
can kill the leading off diagomal entries (of the form h2b

(2)
jk (x)) by conjugating

with a matrix 1 + h2D(x) and so on. We get

esti3 Proposition 7.1.4 Under the assumption (
esti.4
7.1.5), we can find

U(x;h) ∼ U0(x) + hU1(x) + h2U2(x) + ... ∈ C∞(I; Mat (n, n)) (7.1.15) esti.8

with U0(x)−1 ∈ C∞(I; Mat (n, n)), such that

U(x;h)−1(h∂x − A(x))U(x;h) = h∂x − Λ(x;h), (7.1.16) esti.9

where

Λ(x;h) ∼ Λ0(x) + hΛ1(x) + h2Λ2(x) + ... in C∞(I; Mat (n, n)),

and each matrix Λj is diagonal, so

Λ(x;h) =

(
λ̃1(x;h) r1,2(x;h)

r2,1(x;h) λ̃2(x;h)

)
, rj,k(x;h) ∼ 0

λ̃j(x;h) ∼ λj(x) + hλj,1(x) + h2λj,2(x) + ....

(7.1.17) esti.10
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Using this result it is easy to find formal asymptotic solutions.
The discussion in this section can be applied to the scalar Schrödinger

equation
(−(h∂x)

2 + V (x))v = 0 (7.1.18) esti.11

if the potential V is smooth on I. Indeed, introducing

u =

(
u0(x)
u1(x)

)
=

(
v(x)

h∂xv(x)

)
,

we see that (
esti.11
7.1.18) is equivalent to

(h∂x − A(x))u = 0, where A(x) =

(
0 1
V 0

)
(7.1.19) esti.17

The eigenvalues of A are ±V (x)1/2 and the condition (
esti.4
7.1.5) is equivalent

to the fact that V (x) 6= 0 for all x ∈ I, or in other words that there is no
turning point in I.

7.2 The Schrödinger equation in the complex

domain
sc

Let Ω b C be open and simply connected. Let A(z) ∈ Hol (Ω; Mat (2, 2)). As
in the case of an interval the very basic result is that the Cauchy problem is
well-posed: Let w ∈ O and let u0 ∈ C2. Then there is a unique holomorphic
solution, u = u(z) ∈ Hol (Ω; C2) of the problem

(h∂z − A(z))u(z) = 0 in Ω, u(w) = u0, (7.2.1) sc.1

which can be written
u(z) = E(z, w)u0, (7.2.2) sc.2

where E(z, w) is the fundamental matrix.
As in (

esti.4
7.1.5) we now assume that A(z) has distinct eigenvalues:

σ(A(z)) = {λ1(z), λ2(z)} where λ1(z) 6= λ2(z), ∀z ∈ Ω. (7.2.3) sc.3

Let E1(z), E2(z) ∈ C2 be the corresponding 1 dimensional eigenspaces that
depend holomorphically on z. Locally, we can find non-vanishing holomor-
phic sections ej(z) ∈ Ej(z). The choice can be made global if we impose that
∂ze1(z) ∈ E2(z), ∂ze2(z) ∈ E1(z) everywhere. In fact, this leads to simple
differential equations that have global holomorphic solutions: Choose local
holomorphic sections e0

j(z) ∈ Ej(z). Then ∂ze
0
1(z) = a1(z)e0

1(z) + a2(z)e0
2(z)
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for some holomorphic coefficients. If we put e1(z) = u1(z)e0
1(z), then the

condition that ∂ze1(z) ∈ E2(z) is equivalent to the differential equation
∂zu1 + a1(z)u1 = 0 which locally has a unique non-vanishing solution, if
we prescribe u1(z0) in C\{0} at some point z0. Since Ω is simply connected,
this leads to a unique non-vanishing holomorphic section e1 in E1 over Ω.
The same works for e2 of course.

With such a global choice, we let U0(z) be the invertible matrix with e1(z)
and e2(z) as the two columns. Then as in (

esti.6
7.1.7) we have

U−1
0 (z)A(z)U0(z) =

(
λ1(z) 0

0 λ2(z)

)
=: Λ0(z), z ∈ Ω. (7.2.4) sc.4

From this we obtain the following analogue of Proposition
esti3
7.1.4

sc1 Proposition 7.2.1 Under the assumption (
sc.3
7.2.3), we can find

U(x;h) ∼ U0(x) + hU1(x) + h2U2(x) + ... ∈ Hol (Ω; Mat (n, n)) (7.2.5) sc.5

with U0(x)−1 ∈ Hol (Ω; Mat (n, n)), such that

U(z;h)−1(h∂z − A(z))U(z;h) = h∂z − Λ(z;h), (7.2.6) sc.6

where

Λ(z;h) ∼ Λ0(z) + hΛ1(z) + h2Λ2(z) + ... in C∞(I; Mat (n, n)),

and each matrix Λj is diagonal, so

Λ(z;h) =

(
λ̃1(z;h) r1,2(z;h)

r2,1(z;h) λ̃2(z;h)

)
, rj,k(z;h) ∼ 0

λ̃j(z;h) ∼ λj(z) + hλj,1(z) + h2λj,2(z) + ....

(7.2.7) sc.7

Strictly speaking, for every K b Ω, the inverse of U(x;h) exists for x ∈ K,
0 < h ≤ h(K) for some h(K) > 0 small enough.

sc2 Corollary 7.2.2 Let φj(z) be holomorphic in Ω with φ′j(z) = λj(z). Then ∃
a(z;h) ∼ a0(z)+ha1(z)+... in Hol (Ω) such that 0 6= a0(z) ∈ N (A(z)−λj(z)),
∀z ∈ Ω and

(h∂z − A(z))(a(z;h)eφj(z)/h) = r(z;h)eφj(z)/h, r ∼ 0. (7.2.8) sc.8
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Proof. Let φ̃j(z;h) ∼ φj(z) + hφj,1(z) + ... be a holomorphic primitive of

λ̃j(z;h). Then eφ̃j(z;h)/h = ãj(z;h)eφj(z)/h, ãj(z;h) = 1 + hãj,1(z) + ... and if
ν1, ν2 is the canonical basis in C2, we have

(h∂z − Λ)(eφ̃j(z)/hνj) = O(h∞)eφj(z)/h.

It then suffices to define a (depending also on j) by

a(z;h)eφj(z)/h = U(z;h)(eφ̃j(z;h)/hνj).

2

By examining directly the equations for a0 and a1 that follow from (
sc.8
7.2.8),

we see that a0(z) = Const ej(z) respectively when j = 1, 2, where ej(z) are
the non-vanishing sections of N (A(z) − λj) that we constructed prior to
(
sc.4
7.2.4).

Let γ : [a, b] 3 t 7→ γ(t) ∈ Ω be a smooth curve with γ̇(t) 6= 0. If we
restrict the equation (h∂z − A(z))u = 0 to γ, we get

(h∂t − γ̇(t)A(γ(t)))u(γ(t)) = 0, (7.2.9) sc.9

from which we deduce the general estimate for the fundamental matrix:

‖E(γ(t), γ(s);h)‖ ≤ O(1)e
1
h

∫ t
s maxj=1,2(<(γ̇(τ)λj(γ(τ)))dτ , (7.2.10) sc.10

for a ≤ s ≤ t ≤ b.
Now assume that

<(γ̇(t)λ1(γ(t))) ≥ <(γ̇(t)λ2(γ(t))), a ≤ t ≤ b. (7.2.11) sc.11

Then the integral in the exponent in (
sc.10
7.2.10) simplifies to∫ t

s

(<γ̇(τ)λ1(γ(τ)))dτ = <
∫ t

s

d

dτ
(φ1(γ(τ)))dτ = <(φ1(γ(t))− φ1(γ(s))),

and (
sc.10
7.2.10) becomes,

‖E(γ(t), γ(s);h)‖ ≤ O(1) exp
1

h
(<φ1(γ(t))−<φ1(γ(s))). (7.2.12) sc.12

Similarly (still with s ≤ t)

‖E(γ(s), γ(t);h)‖ ≤ O(1) exp
1

h
(<φ2(γ(s))−<φ2(γ(t))). (7.2.13) sc.13
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sc3 Theorem 7.2.3 Under the assumption (
sc.11
7.2.11), let

uWKB(z;h) = aWKB(z;h)eφj(z)/h

be an asymptotic solution of (h∂z − A(z))uWKB(z;h) ≈ 0 as in Corollary
sc2
7.2.2. Let u(z;h) be the exact solution of (h∂z−A(z))u = 0 in neigh ([a, b],C)
such that u(γ(a)) = uWKB(γ(a)) when j = 1 and u(γ(b)) = uWKB(γ(b)) when
j = 2. Then u(z;h)− uWKB(z;h) = O(h∞)eφj(z)/h with all its derivatives on
γ([a, b]).

If we strengthen the assumption (
sc.11
7.2.11) to

<γ̇(t)λ1(γ(t)) > <γ̇(t)λ2(γ(t)), a ≤ t ≤ b, (7.2.14) sc.14

then
u(z;h)− uWKB(z;h) = O(h∞)eφj(z)/h

in neigh (γ(]a, b]),Ω) and neigh (γ([a, b[),Ω) for j equal to 1 and 2 respec-
tively.

Proof. The cases j = 1 and j = 2 are basically equivalent and we choose
j = 1 in order to fix the ideas. Let u(z;h) be the unique exact solution such
that u(γ(a)) = uWKB(γ(a)) and recall that

(h∂z − A)uWKB = r(z;h)eφ1(z)/h, r ∼ 0,

so that

u(z)− uWKB(z) = −
∫ z

γ(a)

E(z, w;h)r(w;h)eφ1(w)/hdw

(line integral). If z = γ(t) and we integrate along γ and use (
sc.12
7.2.12), we get

the desired conclusion under the assumption (
sc.11
7.2.11).

Under the stronger assumption (
sc.14
7.2.14), it suffices to take a smooth family

of curves γs : [a, b+ ε]→ Ω, s ∈ neigh (0,R) starting at γ(a), with γ0|[a,b] = γ

so that the images of the γs fill up a neighborhood of γ([a, b]). 2

sc3.5 Remark 7.2.4 Assume (
sc.14
7.2.14) and normalize the choice of φ1, φ2 so that

φ1(γ(a)) = φ2(γ(a)). Let

uWKB(z;h) = aWKB(z;h)eφ1(z)/h + bWKB(z;h)eφ2(z)/h

be the sum of two asymptotic null solutions as in Corollary
sc2
7.2.2. Then we

have the same conclusion as in Theorem
sc3
7.2.3, namely that the exact solution

u, with the “initial condition” u(γ(a)) = u(γWKB(a)) satisfies

u(z;h)− uWKB(z;h) = O(h∞)eφ1(z)/h in neigh (γ(]a, b]),Ω).

Further, notice that

uWKB(z;h) = aWKB(z;h)eφ1(z)/h +O(h∞)eφ1(z)/h in neigh (γ(]a, b]),Ω).
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Now consider the scalar Schrödinger equation

(−(h∂)2 + V (z))u = 0, (7.2.15) sc.15

where V is holomorphic in the open simply connected domain Ω. Writing

ũ =

(
u
h∂u

)
we get the equivalent 1st order system

(h∂ − A)ũ = 0, (7.2.16) sc.16

where

A(z) =

(
0 1
V 0

)
. (7.2.17) sc.17

The eigenvalues of A(z) are ±V (z)1/2, so (
sc.11
7.2.11) is equivalent to the assump-

tion that V (z) 6= 0 everywhere in Ω, i.e. that there are no turning points in
Ω. The earlier discussion can be applied with φ′1 = V (z)1/2, φ′2 = −V (z)1/2

after fixing a holomorphic branch of the square root of V (z). Notice that this
gives an alternative approach to the construction of asymptotic solutions to
(
sc.15
7.2.15).

sc4 Definition 7.2.5 A Stokes line is a curve along which <φ is constant. An
anti-Stokes line is a curve along which =φ is constant. Here φ = φ1 or φ2.

Study near a simple turning point. Let z0 ∈ Ω be a simple turning
point;

V (z0) = 0, V ′(z0) 6= 0. (7.2.18) sc.18

In order to simplify the notation, assume that z0 = 0. Consider the eikonal
equation

φ′(z) = V (z)
1
2 (7.2.19) ec.19

in a neighborhood of 0. Clearly, φ(z) will have to be multivalued and in
order to understand this better, we pass to the double covering of a pointed
neighborhood of 0, by putting z = w2. Then

∂

∂z
=

1

2w

∂

∂w
,

and if we put Ṽ (w) = V (z) = F (z)z = F (w2)w2, φ(z) = φ̃(w), where
F (0) 6= 0, the eikonal equation becomes

∂wφ̃ = F (w2)
1
2 2w2,
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and the right hand side is an even holomorphic function of w. If we also
require that φ(0) = φ̃(0) = 0, we see that φ̃(w) is an odd holomorphic
function of the form

φ̃(w) =
2

3
F̃ (w2)w3, where F̃ (0) = F (0)

1
2 = V ′(0)

1
2 .

In the original coordinates, we get the double-valued solution

φ(z) =
2

3
F̃ (z)z

3
2 . (7.2.20) sc.20

Now look for Stokes and anti-Stokes lines that reach 0. On such curves,
we have <φ = 0 or =φ = 0, i.e. =φ2 = 0: =F̃ (z)2z3 = 0. In other words

F̃ (z)2z3 = t3 for some t ∈ neigh (0,R) and taking the cubic root, we get
three curves γk

F̃ (z)
2
3 z = e2πik/3t, k ∈ {0, 1, 2} ' Z/3Z.

We get the following picture, where we have taken V ′(0) > 0 for simplicity.

Each curve γk splits into a Stokes curve γ−k ending at the turning point
and including that point by convention, and anti-Stokes line γ+

k , which does
not include the turning point. Restricing the attention to a small suitably
shaped neighborhood W of 0, the three Stokes curves delimit three closed
Stokes “sectors” Σk in that neighborhood. On the picture we also draw some
Stokes curves inside each sector.

Let φk be the branch of φ in neigh (0) \ γ−k such that <φk < 0 in
◦
Σk (and

such that φk(0) = 0 since φk is odd). Notice that φk+1 and φk are both well
defined in Σk ∪ Σk+1 and satisfy φk+1 = −φk there.
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Let W be a sufficiently small open disc centered at 0. Then (as can be
seen by working in the coordinate z3/2) each level set {z ∈ W ; <φj(z) =

Const. 6= 0} is connected and hence equal to a Stokes line. Let Aj ∈
◦
Σj, and

notice that every point in

{z ∈ W \ γ−j ; <φj(z) > <φj(Aj)} (7.2.21) sc.20.01

can be reached by a curve in W \ γ−j , starting at Aj and ending at z, along
which <φj is strictly increasing. By Theorem

sc3
7.2.3 it is clear that we have a

holomorphic solution to (−(h∂)2 + V )uj = 0 in W , such that{
uj(z;h) = aj(z;h)eφj(z)/h

aj(z;h) ∼ aj,0(z) + haj,1(z) + ...
in the set (

sc.20.01
7.2.21).

Here, as in Example
wkb2
4.1.3 (which extends to the complex case) aj,0(z) is

unique up to a constant factor and we can choose

aj,0(z) = (φ′j(z))−
1
2 .

where we have not chosen any preferred sign. Further, by Remark
sc3.5
7.2.4, we

may arrange so that
uj(Aj;h) = 0.

In the following we replace the disc W by

W \
1⋃
−1

{z ∈ Σj; <φj(z) ≤ <φj(Aj)}

and decrease Σj accordingly.
Recall that if u, v are solutions to our homogeneous Schrödinger equation,

then the Wronskian
Wr (u, v) = (h∂u)v − uh∂v

is constant. Applying the asymptotics of u0 and u1 at some point in the
interior of Σ0 ∪ Σ1, we see that Wr (u0, u1) has an asymptotic expansion in
powers of h:

Wr (u0, u1) = 2a0,0a1,0∂φ0 +O(h)

= 2
φ′0√
φ′0φ

′
1

+O(h)

= 2

√
φ′0√
φ′1

+O(h).
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Similarly,

Wr (u1, u−1) = 2

√
φ′1√
φ′−1

+O(h)

Wr (u−1, u0) = 2

√
φ′−1√
φ′0

+O(h).

This can be further determined in the following way: Let us fix a branch of
(φ′j)

1/2 as above for j = 0, 1,−1 mod 4Z. Then for any two different Stokes
sectors, j 6= k we have in the interior of Σj ∪ Σk that

(φ′j)
1/2 = iνj,k(φ′k)

1/2, (7.2.22) sc.20.1

where νj,k ∈ Z/4Z is odd and νj,k = −νk,j.
Starting in Σ0 we make a tour around 0 in the positive direction and write

(φ′1)1/2 = iν1,0(φ′0)1/2

(φ′−1)1/2 = iν−1,1(φ′1)1/2

(φ′0)1/2 = iν0,−1(φ′−1)1/2.

This means that if we follow the continuous branch of (φ′0)1/2 around 0 in
the positive sense, then after one tour, we get the branch

iν0,−1+ν−1,1+ν1,0(φ′0)1/2.

But (φ′0)1/2 = V 1/4 for a suitable branch of the fourth root and following this
function around 0 once in the positive sense, we get iV 1/4. Hence we get the
cocycle condition

ν0,−1 + ν−1,1 + ν1,0 ≡ −1 mod 4Z. (7.2.23) sc.20.2

We can now specify the signs in the computations of the Wronskians above:

Wr (uj, uk) = 2

√
φ′j√
φ′k

+O(h) = 2iνj,k +O(h). (7.2.24) sc.20.4

The space of null solutions is of dimension 2 and any two of u−1, u0, u1

are linearly independent, so we have a relation

α−1u−1 + α0u0 + α1u1 = 0, (7.2.25) sc.21
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where the vector (α−1, α0, α1)t ∈ C3\{0} is well defined up to a scalar factor.
Applying Wr (uj, ·) to this relation, we get

(Wr (uj, uk))j,k

α−1

α0

α1

 = 0, (7.2.26) sc.22

or more explicitly,  0 a b
−a 0 c
−b −c 0

α−1

α0

α1

 = 0. (7.2.27) sc.23

We can take α−1

α0

α1

 =

 c
−b
a

 , (7.2.28) sc.24

Using (
sc.20.4
7.2.24) we can specify the values of a, b, c and of α−1, α0, α1:

a = Wr (u−1, u0) = 2iν−1,0 +O(h)

b = Wr (u−1, u1) = 2iν−1,1 +O(h)

c = Wr (u0, u1) = 2iν0,1 +O(h),

(7.2.29) sc.24.5

which gives a choiceα−1

α0

α1

 =

 iν0,1

−iν−1,1

iν−1,0

+O(h) =

 iν0,1

iν1,−1

iν−1,0

+O(h). (7.2.30) sc.25

Bohr-Sommerfeld quantization for a potential well. Let V0 be a real-
valued and analytic function on neigh ([A,B],R), where −∞ < A < B <
+∞. Let E0 ∈ R and assume that there exist A < α0 < β0 < B such that

V0 − E0

{
> 0 on [A,α0[∪]β0, B]

< 0 on ]α0, β0[.
(7.2.31) sc.26

Also assume that α0, β0 are simple turning points for V0(x)− E0:

V ′0(α0) < 0, V ′0(β0) > 0. (7.2.32) sc.27

Then the situation is stable under small perturbations of the real energy E:
For E ∈ neigh (E0,R) we have simple turning points α(E) < β(E) in ]A,B[
such that V0−E > 0 on [A,α(E)[∪]β(E), B] and V0−E < 0 on ]α(E), β(E)[.
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We can draw the Stokes lines of V0−E in a complex neighborhood of [A,B]
with α or β as an end point:

One of the Stokes lines from α reaches β.
Let Ω b C be a complex neighborhood of [A,B] to which V0 extends

holomorphically. Let V (x) = V0(x) + W (x), where W is holomorphic in Ω
and

|W (x)| < ε, x ∈ Ω. (7.2.33) sc.28

If ε > 0 is small enough and E belongs to a small complex neighborhood of
E0, we still have two simple (in general complex) turning points α = α(V,E),
β = β(V,E) close to α0 and β0 and in general α and β will not be connected
by a Stokes line.

The drawing indicates the three Stokes sectors Σk near α and the three Stokes
sectors Sk near β for k = −1, 0, 1. Note that A ∈ Σ0, B ∈ S0. For each Σk

we have an exact solution uj which is of the form

uj = aj(z;h)eφj(z)/h in
◦
Σj

with φj(α) = 0 and uj subdominant in the interior of Σj (as in the discussion
above of a simple turning point. Similarly, we have the exact solutions vj
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associated to the sectors Sj of the form

vj = bj(z;h)eψj(z)/h in
◦
Sj,

subdominant in the interior of Sj, ψj(β) = 0.
When dealing with vj we think of −z as the new independent variable,

rather than z (giving a new Schrödinger operator). Consequently, the leading
term in bj becomes bj,0 = (−ψ′j)−1/4. In analogy with (

sc.20.1
7.2.22), we have

(−ψ′j)1/2 = iνj,k(−ψ′k)1/2, (7.2.34) sc.28.5

where we choose the same νj,k.
uj satisfy (

sc.21
7.2.25) with αj as in (

sc.25
7.2.30). vj satisfy the analogous relations

with coefficients, that we denote by βj and we have βj = αj +O(h).
We may arrange so that u0(A) = 0, v0(B) = 0. Also we may arrange so

that uj, vj, aj, bj depend holomorphically on E.
Now consider the Dirichlet problem

(−(h∂)2 + V − E)u = 0, u(A) = u(B) = 0. (7.2.35) sc.29

In other words, we are looking for the spectrum in neigh (E0,C) of the un-
bounded operator

P = −(h∂x)
2 + V : L2(]A,B[)→ L2(]A,B[),

with domain

D(P ) = {u ∈ H2
h(]A,B[); u(A) = u(B) = 0}

We see that
E ∈ σ(P )⇔Wr (u0, v0) = 0. (7.2.36) sc.30

In the construction of the subdominant solutions, we may arrange so that

uj = fj(h)v−j for j = ±1. (7.2.37) sc.30a

In order to determine the asymptotics of fj, we compare the asymptotic
expansions for uj and v−j in Σj ∩ S−j.

We first look at the exponential factors. In Σ0, we have φ0(x) =
∫ x
α

(V (y)−
E)1/2dy with the continuous branch of the square root which is positive for
x < α when V , E are real. Thus,

φj(x) = −
∫ x

α

(V − E)1/2dy, j = ±1,
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where the branch of the square root is given by the continuous extension of
the one in Σ0 to the adjacent sectors (and with a cut along the curve that
separates Σ1 and Σ−1). When V,E are real, we get for j = ±1,

φj(x) = −ji
∫ x

α

(E − V )1/2dy, α < x < β, (7.2.38) sc.30b

where (E−V )1/2 denotes the natural branch of the square root (> 0 on ]α, β[
when V , E are real).

Similarly, φ0(x) = −
∫ x
β

(V (y)−E)1/2dy in S0 with the natural branch so

ψj(x) =

∫ x

β

(V − E)1/2dy in Sj, j = ±1,

with the continuous branch, having a cut along the curve separating S1 from
S−1. Hence with the same branch as in (

sc.30b
7.2.38),

ψj(x) = ji

∫ x

β

(E − V )1/2dy, (7.2.39) sc.30c

It follows that

φ1 = ψ−1 − i
∫ β

α

(E − V )1/2dy

φ−1 = ψ1 + i

∫ β

α

(E − V )1/2dy

(7.2.40) sc.30d

Next compare the leading amplitudes. From the eikonal equations, we
know that

φ′0 = (V − E)1/2, −ψ′0 = (V − E)1/2

in Σ0, S0 respectively, with the natural branches of the square root. Hence,

(φ′0)1/2 = (V − E)1/4, (−ψ′0)1/2 = (V − E)1/4

with the natural “positive” branches of the square and quartic roots.
It follows that

(φ′±1)1/2 = iν±1,0(V − E)1/4 = iν±1,0e±iπ/4(E − V )1/4 in Σ±1,

where (E − V )1/4 denotes the branch which is > 0 on ]α, β[ when V , E are
real. Thus for j = ±1,

a±1,0 = i−ν±1,0e∓iπ/4(E − V )−1/4 in Σ±1. (7.2.41) sc.30e
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Similarly,
b±1,0 = i−ν±1,0e∓iπ/4(E − V )−1/4 in S±1. (7.2.42) sc.30f

It follows that

f1(h) = g1 exp

(
− i
h

∫ β

α

(E − V )1/2dy

)
,

f−1(h) = g−1 exp

(
i

h

∫ β

α

(E − V )1/2dy

)
,

(7.2.43) sc.30g

where, g1 = a1/b−1, g−1 = a−1/b1 have complete asymptotic expansions in
powers of h, with leading terms

g1,0 =
a1,0

b−1,0

= i−ν1,0+ν−1,0e−iπ/4−iπ/4 = i−ν1,0+ν−1,0−1,

g−1,0 =
a−1,0

b1,0

= i−ν−1,0+ν1,0eiπ/4+iπ/4 = iν1,0−ν−1,0+1.
(7.2.44) sc.30h

From (
sc.21
7.2.25), (

sc.25
7.2.30) and the analogous relations for vj with coefficients

βj = αj +O(h), we get

u0 = α̃1u1 + α̃−1u−1, v0 = β̃1v1 + β̃−1v−1, (7.2.45) sc.31

α̃j = −αj/α0, β̃j = −βj/β0, α̃j = β̃j +O(h) = ±1 +O(h). (7.2.46) sc.32

From this and (
sc.30a
7.2.37), we get

Wr (u0, v0) = α̃1β̃1Wr (u1, v1) + α̃−1β̃−1Wr (u−1, v−1)

= α̃1β̃1f1Wr (v−1, v1) + α̃−1β̃−1f−1Wr (v1, v−1)

= (α̃1β̃1f1 − α̃−1β̃−1f−1)Wr (v−1, v1).

Here α̃jβ̃j = 1 + O(h) has a complete asymptotic expansion in powers of h
(as well as similar quantities below) and Wr (v−1, v1) = 2iν−1,1 +O(h) 6= 0 by
the analogue of (

sc.24.5
7.2.29). Using also (

sc.30g
7.2.43), (

sc.30h
7.2.44), we get

Wr (u0, v0) = 2iν−1,1
(
(1 +O(h))i−ν1,0+ν−1,0−1e−

i
h

∫ β
α (E−V )1/2dy

− (1 +O(h))iν1,0−ν−1,0+1e
i
h

∫ β
α (E−V )1/2dy

)
.

Here ν1,0 − ν−1,0 + 1 is odd,

Wr (u0, v0) = 2(1 +O(h))iν−1,1+ν1,0−ν−1,0+1e−
i
h

∫ β
α (E−V )1/2dy(

−e
2i
h

∫ β
α (E−V )1/2dy(1 +O(h))− 1

)
,
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and using (
sc.20.2
7.2.23), we get

Wr (u0, v0) = 2(1 +O(h))e−
i
h

∫ β
α (E−V )1/2dy

(
e
i
h

(I(E;h)−πh) − 1
)
, (7.2.47) sc.33

where

I(E;h) = I0(E) +O(h2), I0(E) := 2

∫ β(E)

α(E)

(E − V (y))1/2dy. (7.2.48) sc.34

We have

I0(E) =

∫
γ̃

ζdz,

where γ̃ ⊂ p−1(E) is the closed curve which is the concatenation of γ̃+ and
γ̃−, where{

γ̃+(t) = ((1− t)α + tβ, (E − V ((1− t)α + tβ))1/2),

γ̃−(t) = ((1− t)β + tα,−(E − V ((1− t)α + tβ)))1/2)
, t ∈ [0, 1[.

When V and E are real, γ̃ is the real energy curve p = E with the
orientation of the Hamilton field, and from Stokes’ formula, it follows that

I(E) = volR×R p
−1(]−∞, E]).

It is classical (and rather easy to show) that

∂EI(E) = T (E) > 0,

is the primitive period of the real energy curve p−1(E) as a closed Hp-
trajectory. In the non-real case, one can still give a sense to and establish
the same formula, where now <T (E) > 0 and |=T (E)| � 1.

From (
sc.33
7.2.47) we see that the eigenvalues of P near E0 are given by

e
1
ih

(I(E;h)−πh) = 1, (7.2.49) sc.37

or equivalently by the Bohr-Sommerfeld quantization condition,

I(E;h) = 2π(k +
1

2
)h, k ∈ Z. (7.2.50) sc.38

From the construction it follows that I(E;h) is a holomorphic function of E
in a fixed neighborhood of E0 in C and has a complete asymptotic expansion
in powers of h in the space of such functions with the two leading terms
given in (

sc.34
7.2.48). Moreover, ∂EI(E;h) = T (E) + O(h2) 6= 0, so I(·;h) is
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biholomorphic from neigh (E0,C) onto neigh (I(E0),C) and (
sc.38
7.2.50) gives a

sequence of eigenvalues

Ek = I−1

(
2π

(
k +

1

2

)
h;h

)
= I−1

0

(
2π

(
k +

1

2

)
h

)
+O(h2),

all situated on the curve given by the condition that I(E;h) ∈ R, which is
an O(h2) deformation of the curve I0(E) ∈ R. Notice that the reality of
I0(E) is equivalent to the condition that α(E) and β(E) are connected by a
Stokes line.

It is not hard to show that the eigenvalues Ek are simple, either by de-
formation of P to the harmonic oscillator or by appealing to general facts
about Grushin problems. The latter argument has been carried out in

MeBoRaSj15
[100]

(see also
BoMe15
[21]). Under suitable assumptions on the behaviour of V near ±∞,

the spectrum of −(h∂)2 + V as a closed operator in L2(R) is still given by
a Bohr-Sommerfeld quantization condition, (

BoMe15
[21]) and for the proof we just

need to complement the WKB-arguments above with a completely analogous
study near infinity. (See

MeBoRaSj15
[100] for details.)

There is a large literature on the complex WKB-method with lots of very
sophisticated and deep considerations, far beyond the scope of this book. Let
us nevertheless mention the lecture notes

Vo81
[151] by André Voros from whom

we have learnt the basic principle of complex WKB analysis, namely to follow
the solutions in the directions of growth.
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Chapter 8

Review of classical
non-selfadjoint spectral theory

nonsa
The first section of this Chapter deals with Fredholm theory in the spirit of
Appendix A in

HeSj86
[62], see also an appendix in

MeSj03
[104] and

SjZw07b
[144]. The remaining

sections give a brief account of the very beautiful classical theory of non-self-
adjoint operators, taken from a section in

Sj02
[130] which is a brief account of

parts of the classical book by I.C. Gohberg and M.G. Krein
GoKr69
[49].

8.1 Fredholm theory via Grushin problems
frgr

Most of this section follows Appendix A in
HeSj86
[62] quite closely. For simplicity

we only consider the case of (separable) Hilbert spaces. Let H1,H2 be two
such spaces. Recall that a bounded operator P : H1 → H2, (P ∈ L(H1,H2))
is a Fredholm operator if N (P ) is of finite dimension, R(P ) is closed of finite
codimension, where codimR(P ) := dimR(P )⊥. Equivalently, P is Fredholm
if there exists Q ∈ L(H2,H1), such that PQ = 1 + R, QP = 1 + L, where
L : H1 → H1, R : H2 → H2 are compact. If P is (a) Fredholm (operator),
we define its index by

indP = dimN (P )− codimR(P ). (8.1.1) frgr.1

Let Ω ⊂ C be an open connected set (or an open interval in R) and let

Ω 3 z 7→ Pz ∈ L(H1,H2) (8.1.2) frgr.2

be a continuous family (i.e. continous for the operator norm; uniformly con-
tinuous).
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grfr1 Proposition 8.1.1 If Pz0 is Fredholm for some z0, then there is a neighbor-
hood V ⊂ Ω of z0 such that

Pz is Fredholm, (8.1.3) frgr.3

indPz = indPz0 , (8.1.4) frgr.4

for every z ∈ V .

Proof. Let n0
+ = dimN (Pz0), n0

− = codimR(Pz0) and define

R0
+ : H1 → Cn0

+ , R0
− : Cn0

− → H2,

by

R0
+u(j) = (u|ej), j = 1, 2, .., n0

+, R−u− =

n0
−∑
1

u−(j)fj,

where e1, ..., en0
+

and f1, ..., fn0
−

are orthonormal bases forN (Pz0) andR(Pz0)⊥.
Put

Pz =

(
Pz R0

−
R0

+ 0

)
: H1 ×Cn0

− → H2 ×Cn0
+ . (8.1.5) frgr.5

Using the orthogonal decompositions

H1 = N (Pz0)⊥ ⊕N (P ), H2 = R(Pz0)⊕R(P )⊥,

we see that Pz0 is bijective with bounded inverse. By continuity, Pz has the
same property for all z in a neighborhood of z0 and the proposition follows
from Proposition

frgr2
8.1.2 below. 2

frgr2 Proposition 8.1.2 Let P ∈ L(H1,H2) and let R+ : H1 → Cn+, R− : Cn−

be bounded linear operators of maximal ranks n+, n− ∈ N. If

P =

(
P R−
R+ 0

)
: H1 ×Cn− → H2 ×Cn+

is bijective with a bounded inverse, then P is Fredholm of index n+ − n−.
(When n+ = 0, then R+, Cn+ are absent as well as the last line in the
matrix for P, and similarly when n− = 0.)

Proof. Let

E =

(
E E+

E− E−+

)
: H2 ×Cn+ → H1 ×Cn−
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be the inverse of P , so that the system{
Pu+R−u− = v,

R+u = v+,

has the unique solution{
u = Ev + E+v+ ∈ H1,

u− = E−v + E−+v+ ∈ Cn− ,

for any given v ∈ H2, v+ ∈ Cn+ .
The equation, Pu = v can be written Pu+R−0 = v and if we introduce

the unknown v+ = R+u, we get the equivalent system{
u = Ev + E+v+,

0 = E−v + E−+v+.

Thus,
R(P ) = {v ∈ H2; ∃v+ ∈ Cn+ , E−v = −E−+v+}, (8.1.6) frgr.6

N (P ) = {E+v+;E−+v+ = 0}. (8.1.7) frgr.7

The fact that E = P−1 is equivalent to the following two systems of
equations

PE +R−E− = 1, PE+ +R−E−+ = 0,
R+E = 0, R+E+ = 1,

(8.1.8) frgr.8

EP + E+R+ = 1, ER− = 0,
E−P + E−+R+ = 0, E−R− = 1.

(8.1.9) frgr.9

From the last equation, we see that E− is surjective and (
frgr.6
8.1.6) shows that

R(P ) is closed and that codimR(P ) = codimR(E−+). (
frgr.7
8.1.7) shows that

N (P ) is finite dimensional and

dimN (P ) = dimN (E−+).

Here we also used the injectivity of E+, provided by the last equation in
(
frgr.8
8.1.8).

Thus P is a Fredholm operator and

indP = dimN (E−+)− codimR(E−+) = n+ − n−,

where the last equality is a general fact for the index of any n−×n+-matrix.
2

The following result can be proved by straight forward computations (cf.
(
frgr.8
8.1.8), (

frgr.9
8.1.9)):
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frgr3 Proposition 8.1.3 Let P , R+, R−, P be as in Proposition
frgr2
8.1.2 and assume

that P is bijective with a bounded inverse E as in the beginning of the proof
of that result.

• If P is bijective, then E−+ is bijective (necessarily P is of index 0 so
n+ = n−) and

E−1
−+ = −R+P

−1R−. (8.1.10) frgr.10

• If E−+ is bijective, then P is bijective and

P−1 = E − E+E
−1
−+E−. (8.1.11) frgr.11

See also Proposition 4.1 in
Sj13
[138] for a characterization of the invertibility of

P .
We next review analytic Fredholm theory. Assume that the family Pz

in (
frgr.2
8.1.2) is not only continuous but holomorphic (for the operator norm

topology) and that Pz is Fredholm for every z ∈ Ω. Then we know that
indPz is constant and we assume that it is equal to 0.

frgr4 Proposition 8.1.4 Assume in addition that Pw is bijective for some w ∈ Ω.
Then

Σ := {z ∈ Ω; Pz is not bijective}
is discrete.

If z0 ∈ Σ, then z 7→ P−1
z has a pole of order N0 <∞ at z0:

P−1
z =

−1∑
−N0

(z − z0)jAj +Q(z), (8.1.12) frgr.12

where Q(z) ∈ L(H2,H1) is holomorphic in a neighborhood of z0 and A−N0 , ..., A−1 ∈
L(H2,H1) are of finite rank.

Proof. If z1 ∈ Ω, we can define

Pz1z =

(
Pz Rz1

−
Rz1

+ 0

)
: H1 ×Cn0(z1) 7→ H2 ×Cn0(z1)

with R± independent of z, such that Pz1z is bijective for z in a connected
neighborhood of z1 in Ω. Let

Ez1 =

(
Ez1(z) Ez1

+ (z)
Ez1
− (z) Ez1

−+(z)

)
be the inverse, so that Ez1

−+(z) is a holomorphic function of z ∈ V (z1) with
values in the n0(z1) × n0(z1) matrices. Now, Σ ∩ Vz1 coincides with the set
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of zeros of the holomorphic function Vz1 3 z 7→ detEz1
−+(z) which is either a

discrete set or equal to Vz1 . Covering Ω with such Vz1 , we conclude that Σ is
either discrete or equal to all of Ω. But the latter possibility is excluded by
the assumption that w 6∈ Σ for some w ∈ Ω.

Now, let z0 ∈ Σ and choose Pz, Ez as above with z1 = z0. Then

P−1
z = E(z)− E+(z)E−+(z)−1E−(z), z ∈ Vz0 .

Here E−+(z)−1 has a pole at z0:

E−+(z)−1 =
R−N0

(z − z0)N0
+ ...+

R−1

(z − z0)
+ hol (z),

1 ≤ N0 < ∞, rankR−j ≤ n0. Using that E(z), E±(z) are holomorphic we
get (

frgr.12
8.1.12), where A−N0 , ..., A−1 can be expressed in terms of RN0 , ..., R−1

and E
(j)
+ (z0), E

(j)
− (z0), for 0 ≤ j ≤ N0. 2

Let P : H → H be a closed densely defined operator with domain D =
D(P ). With Ω as above, we assume that

P − z : D → H is Fredholm of index 0 for z ∈ Ω

and bijective for some z0 ∈ Ω.
(8.1.13) frgr.12.5

If ρ(P ) denotes the resolvent set of P we then know from the above discussion,
that ρ(P ) ∩ Ω = Ω \ Σ, where Σ = σ(P ) ∩ Ω is discrete.

frgr5 Proposition 8.1.5 Write the Laurent series in (
frgr.12
8.1.12) as

(z−P )−1 = (z−z0)−N0A−N0 +...+(z−z0)−1A−1+Q(z) in L(H,D), (8.1.14) frgr.13

where Q is holomorphic near z = z0 and A−j are of finite rank.
π−1 := A−1 is a projection which commutes with P . This implies that the

finite dimensional space R(π−1) is contained in the domains of all powers
P k, k ∈ N and is invariant under P .

The restriction of z0 − P to R(π−1) is nilpotent. Indeed,

A−j = (P − z0)j−1π−1, 1 ≤ j ≤ N0, (8.1.15) frgr.14

(P − z0)N0π−1 = 0. (8.1.16) frgr.15

Let γ = γr = ∂D(z0, r) be the oriented boundary of the disc D(z0, r) for
0 < r � 1 small enough. Then

π−1 =
1

2πi

∫
γ

(z − P )−1dz, (8.1.17) frgr.16

A−j =
1

2πi

∫
γ

(z − z0)j−1(z − P )−1dz. (8.1.18) frgr.17
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Proof. (
frgr.16
8.1.17), (

frgr.17
8.1.18) are standard formulas for the Laurent coefficients,

obtained by multiplying (
frgr.13
8.1.14) by (z− z0)j−1 and then integrating along γ.

Knowing that π−1 : H → D, we apply P − z0 to the left in (
frgr.16
8.1.17) and

integrate:

(P − z0)π−1 =
1

2πi

∫
γ

(P − z0)(z − P )−1dz.

Here the first P in the integral can be replaced by z, since the corresponding
difference of integrals is

1

2πi

∫
γ

(P − z)(z − P )−1dz

which is zero, since the integrand is holomorphic near z0. Thus,

(P − z0)π−1 =
1

2πi

∫
γ

(z − z0)(z − P )−1dz = A−2.

By the same argument, we see that the range of π−1 is contained in the
domain of P k for all k ∈ N and we get (

frgr.15
8.1.16). Of course, if u ∈ D, then

π−1P = Pπ−1, so π1 and P commute.
Let us finally recall why π−1 is aprojection. Let 0 < r1 < r2 � 1 and use

the resolvent identity, to get with γj = γrj :

π2
−1 =

∫
γ2

∫
γ1

(w − P )−1(z − P )−1 dz

2πi

dw

2πi

=

∫
γ2

∫
γ1

1

w − z
(z − P )−1 dz

2πi

dw

2πi
−
∫
γ2

∫
γ1

1

w − z
(w − P )−1 dz

2πi

dw

2πi

=: I + II.

Here,

I =

∫
γ1

(∫
γ2

1

w − z
dw

2πi

)
(z − P )−1 dz

2πi
=

∫
γ1

(z − P )−1 dz

2πi
= π−1,

II = −
∫
γ2

(w − P )−1

(∫
γ1

1

w − z
dz

2πi

)
dw

2πi
= 0.

Hence π2
−1 = π−1. 2

One can also follow multiplicities through Grushin reductions, and we
refer to

MeSj03
[104],

SjZw07b
[144] and many other papers for such discussions. Under

the assumptions of the last proposition, the (algebraic) multiplicity of the
eigenvalue z0 of P is by definition,

m(P, z0) = dimR(π−1). (8.1.19) frgr.18
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Similarly, if

P(z) =

(
P − z R−
R+ 0

)
: D ×Cn0 → H×Cn0

is bijective for z ∈ neigh (z0) with inverse,

E(z) =

(
E(z) E+(z)
E−(z) E−+(z)

)
,

we let m(E−+, z0) be the multiplicity of z0 as a zero of z 7→ det(E−+(z)).

frgr6 Proposition 8.1.6 Under the above assumptions, m(P, z0) = m(E−+, z0).

Proof. Anticipating on the treatment of traces later in this chapter, we have

m(P, z0) = tr π−1 = tr

∫
γ

E+(z)E−+(z)−1E−(z)
dz

2πi

=

∫
γ

tr
(
E+(z)E−+(z)−1E−(z)

) dz
2πi

=

∫
γ

tr
(
E−+(z)−1E−(z)E+(z)

) dz
2πi

since E−+ is a finite rank.
From

∂zE(z) = −E(z)∂zP(z)E(z),

we get

∂zE(z) =

(
E E+

E− E−+

)(
1 0
0 0

)(
E E+

E− E−+

)
and hence,

∂zE−+(z) = E−(z)E+(z).

Thus,

m(P, z0) =

∫
γ

tr
(
E−+(z)−1∂zE−+(z)

) dz
2πi

=

∫
γ

∂z detE−+(z)

detE−+(z)

dz

2πi

= m(E−+, z0).

2
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8.2 Singular values
singv

From now on in this chapter we give a brief account of non-self-adjoint theory
and follow

GoKr69
[49] closely.

Let H be a separable complex Hilbert space. If A ∈ L(H,H) is compact,
we let s1(A) ≥ s2(A) ≥ ...↘ 0 be the eigenvalues of the compact self-adjoint
operator (A∗A)1/2. They are called the singular values of A. We notice that
sj(A

∗) = sj(A). In fact, this follows from the intertwining relations:

A(A∗A) = (AA∗)A, (A∗A)A∗ = A∗(AA∗).

The singular values appear naturally in the polar decomposition: If A ∈
L(H,H), then

‖Au‖2 = (Au|Au) = (A∗Au|u) = ((A∗A)1/2u|(A∗A)1/2u) = ‖(A∗A)1/2u‖2.

The operator

U : R((A∗A)1/2) 3 (A∗A)1/2u 7→ Au ∈ R(A)

is isometric and bijective. It extends to a unitary operator, that we also
denote by U , from R((A∗A)1/2) to R(A) and to a partial isometry if we put
U = 0 on the orthogonal space (R(A∗A)1/2)⊥ = N ((A∗A)1/2) = N (A). We
get the polar decomposition:

A = U(A∗A)1/2. (8.2.1) nonsa.1

This leads to the Schmidt decomposition of A: Let e1, e2, .. be an orthonormal
family of eigenvectors of (A∗A)1/2 associated to the eigenvalues s1(A), s2(A), ..
that are > 0. Then

Au =
∑

sj(A)(u|ej)fj, (8.2.2) nonsa.2

where fj = Uej is also an orthonormal family.
Recall the mini-max characterization of the the sj (

GoKr69
[49], p. 25):

sj(A) = inf
E⊂H;E is a closed

subspace ofH
of codimension≤j−1

sup
u∈E\0

((A∗A)1/2u|u)

‖u‖2
. (8.2.3) nonsa.3

From that we get the following characterization of the singular values which
is due to Allahverdiev (

GoKr69
[49], p. 28,29):

Th.nonsa.1 Theorem 8.2.1 Let A ∈ L(H,H) be compact. Then

sn+1(A) = min
K∈L(H,H)
K of rank≤n

‖A−K‖, n = 0, 1, .. .

The minimum is realized by an operator K for which s1(K) = s1(A),..,sn(K) =
sn(A), sn+1(K) = 0, s1(A−K) = sn+1(A), s2(A−K) = sn+2(A),.. .
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Proof. If K is of rank ≤ n, then N (K) is of codimension ≤ n and

sn+1(A) ≤ sup
0 6=u∈N (K)

‖Au‖
‖u‖

= sup
06=u∈K

‖(A−K)u‖
‖u‖

≤ ‖A−K‖.

To get the minimizing operator write the polar decompositionA = U(A∗A)1/2

and take K = U(A∗A)1/2Pn, where Pn is the orthogonal projection onto the
space spanned by e1, .., en. Then

A−K = U(A∗A)1/2(1− Pn),

(A−K)∗(A−K) = (1−Pn)(A∗A)1/2U∗U(A∗A)1/2(1−Pn) = (A∗A)(1−Pn),

and we get the statement about the singular values of A − K. Especially
sn+1(A) = ‖A −K‖. The statement about the singular values of K can be
obtained similarly. 2

The following corollary is due to Ky Fan:

nonsa2 Corollary 8.2.2 Let A,B ∈ L(H) be compact. Then for n,m ≥ 1:

sm+n−1(A+B) ≤ sm(A) + sn(B) (8.2.4) nonsa.4

sm+n−1(AB) ≤ sm(A)sn(B). (8.2.5) nonsa.5

Proof. Let KA, KB be operators of rank ≤ m− 1 and ≤ n− 1 respectively,
such that

sm(A) = ‖A−KA‖, sn(B) = ‖B −KB‖.

Then

sm+n−1(A+B) ≤ ‖A+B−(KA+KB)‖ ≤ ‖A−KA‖+‖B−KB‖ = sm(A)+sn(B).

The proof for AB is essentially the same. 2

nonsa3 Corollary 8.2.3 We have |sn(A)− sn(B)| ≤ ‖A−B‖.

Proof. Let K be an operator of rank n− 1. Then

sn(A) ≤ ‖A−K‖ = ‖B −K + A−B‖ ≤ ‖B −K‖+ ‖A−B‖.

Varying K, we get sn(A) ≤ sn(B)+‖A−B‖, and we have the same inequality
with A and B exchanged. 2

We now discuss Weyl inequalities, and start with the following result of
H. Weyl (see

GoKr69
[49], p. 35, 36):
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nonsa4 Theorem 8.2.4 Let A ∈ L(H,H) be compact and let λ1(A), λ2(A), .. be the
non-vanishing eigenvalues of A arranged in such a way that |λ1| ≥ |λ2| ≥ ...
and repeated according to their multiplicity (which by definition is the rank
of the spectral projection). Then for every n ≥ 1 for which λn(A) is defined,
we have

|λ1(A) · .. · λn(A)| ≤ s1(A) · .. · sn(A). (8.2.6) nonsa.7

Proof. For n = 1, (
nonsa.7
8.2.6) just says that |λ1(A)| ≤ ‖A‖. Approaching A by a

sequence of finite rank operators, we can assume that A is of finite rank and
replace H by the finite dimensional space R(A) + (N (A))⊥, that we denote
by H from now on. (Indeed, λj and sj depend continuously on A.) Introduce
the space ∧n

H = H ∧ ... ∧H (8.2.7) nonsa.8

generated by n-fold exterior products of vectors inH.
∧nH is a Hilbert space

with a scalar product that satisfies

(u1 ∧ .. ∧ un|v1 ∧ .. ∧ vn) = det((uj|vk)), uj, vj ∈ H. (8.2.8) nonsa.9

Further, there is a linear operator ∧nA :
∧nH →

∧nH which is uniquely
determined by the condition,

(∧nA)(u1 ∧ .. ∧ un) = Au1 ∧ .. ∧ Aun, uj ∈ H. (8.2.9) nonsa.10

Using a basis of generalized eigenvectors, we see that the eigenvalues of
∧nA are the values λj1 · .. · λjn , with jν 6= jµ, for ν 6= µ. The eigenvalue of
greatest modulus is then λ1 · .. · λn. On the other hand the adjoint of ∧nA is
∧nA∗. We also have (∧nA)(∧nB) = ∧n(AB). Then (∧nA)∗(∧nA) = ∧n(A∗A)
and this operator has the eigenvalues s2

j1
(A) · .. · sjn(A)2, out of which the

largest one is

(s1(A) · .. · sn(A))2 = ‖ ∧n A‖2 ≥ |λ1|2 · .. · |λn|2.

The proof is complete. 2

In the same spirit we have the inequality of A. Horn (see
GoKr69
[49], p. 48):

n∏
1

sj(AB) ≤
n∏
1

(sj(A)sj(B)) (8.2.10) nonsa.11

Proof. As before it suffices to treat the case when H is of finite dimension.
The largest eigenvalue of

(∧nAB)∗(∧nAB) = ∧n((AB)∗AB)
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is equal to (s1(AB) · .. · sn(AB))2. On the other hand,

((∧nAB)∗(∧nAB)u|u) = ‖(∧nAB)u‖2 = ‖(∧nA) ◦ (∧nB)u‖2

≤ ‖ ∧n A‖2‖ ∧n B‖2‖u‖2 ≤ (s1(A) · .. · sn(A))n(s1(B) · .. · sn(B))2‖u‖2,

and taking the supremum over all normalized u, we obtain the required
inequality. 2

We next need a convexity inequality, due to Weyl and Hardy, Littlewood,
Polya (

GoKr69
[49], p. 37).

nonsa5 Lemma 8.2.5 Let Φ(x) be a convex function on R, which tends to 0, when
x→ −∞. Let a1 ≥ .. ≥ aN , b1 ≥ .. ≥ bN be real numbers with

k∑
1

aj ≤
k∑
1

bj, 1 ≤ k ≤ N.

Then,
k∑
1

Φ(aj) ≤
k∑
1

Φ(bj), 1 ≤ k ≤ N.

Proof. Approaching Φ by a sequence of smooth functions, we can reduce
the proof to the case when Φ ∈ C∞. Then Φ′ ≥ 0,

Φ′(x)→ 0, x→ −∞. (8.2.11) nonsa.12

Letting y → −∞ in the identity

Φ(x) = Φ(y) +

∫ x

y

Φ′(t)dt, (8.2.12) nonsa.12.5

we get

Φ(x) =

∫ x

−∞
Φ′(t)dt.

From the convergence of the last integral, we conclude that
∫ 0

y
Φ′(t)dt ≤ C,

y ≤ 0, implying that |y|Φ′(y), is a bounded function for y ≤ 0, which tends
to 0 when y → −∞.

Integration by parts in (
nonsa.12.5
8.2.12) gives

Φ(x) = Φ(y) + [(t− x)Φ′(t)]xt=y −
∫ x

y

(t− x)Φ′′(t)dt

= Φ(y) + (x− y)Φ′(y) +

∫ x

y

(x− t)Φ′′(t)dt.
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Letting y tend to −∞, we get

Φ(x) =

∫ x

−∞
(x− t)Φ′′(t)dt =

∫
(x− t)+Φ′′(t)dt.

Hence
k∑
1

Φ(aj) =

∫
(

k∑
j =1

(aj − t)+)Φ′′(t)dt,

for every t. Let k(t) ≤ k be the largest k̃ ≤ k with ak̃ ≥ t. Then

k∑
j=1

(aj − t)+ =

k(t)∑
j =1

(aj − t) ≤
k(t)∑
j=1

(bj − t) ≤
k∑
j=1

(bj − t)+.

Hence
∑k

1 Φ(aj) ≤
∑k

1 Φ(bk). 2

As a consequence we get the following result of H. Weyl (
GoKr69
[49], p. 39, 40):

nonsa6 Theorem 8.2.6 Let A : H → H be a compact operator, and f(x) ≥ 0 a
function on [0,∞[ with f(0) = 0 such that f(et) is convex. Let λj and sj
be the eigenvalues and singular values of A, arranged with |λ1| ≥ |λ2| ≥ ...,
s1 ≥ s2 ≥ .... Then for every k ≥ 1 :

k∑
1

f(|λj|) ≤
k∑
1

f(sj). (8.2.13) nonsa.13

Proof. We know that

k∑
1

log |λj| ≤
k∑
1

log sj,

and it suffices to apply the preceding convexity lemma. 2

nonsa7 Corollary 8.2.7 For every p > 0, we have

n∑
1

|λj(A)|p ≤
n∑
1

sj(A)p.

For every r > 0, we have

n∏
1

(1 + r|λj(A)|) ≤
n∏
1

(1 + rsj(A)).
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Let A,B be compact operators. With Φ(t) = et, aj = log sj(AB), bj =
log(sj(A)sj(B)), we get from Horn’s inequality (

nonsa.11
8.2.10) and Lemma

nonsa5
8.2.5:

nonsa8 Corollary 8.2.8
∑n

1 sj(AB) ≤
∑n

1 sj(A)sj(B).

Let C∞ ⊂ L(H) be the subspace of compact operators. The following
Lemma is due to Ky Fan (

GoKr69
[49], p. 47).

nonsa9 Lemma 8.2.9 Let A ∈ C∞. Then for every 1 ≤ n ∈ N, we have

n∑
1

sj(A) = max
n∑
j=1

(UAφj|φj),

where the maximum is taken over the set of all unitary operators U and all
orthonormal systems φ1, .., φn.

For the next result, see
GoKr69
[49], p. 48:

nonsa10 Corollary 8.2.10 If A,B ∈ S∞, then

n∑
1

sj(A+B) ≤
n∑
1

sj(A) +
n∑
1

sj(B).

8.3 Schatten - von Neumann classes
cp

We are no ready to discuss the Schatten–von Neumann classes.

nonsa11 Definition 8.3.1

Definition. For 1 ≤ p ≤ ∞, we put

Cp = {A ∈ C∞;
∞∑
1

sj(A)p <∞}.

nonsa12 Theorem 8.3.2 Cp is a closed two-sided ideal in L(H,H) equipped with the
norm

‖A‖Cp = ‖(sj(A))∞1 ‖`p .

If p1 ≤ p2, then Cp1 ⊂ Cp2. The space of finite rank operators is dense in Cp
for every p.

150



We will only recall the proof of the fact that ‖ · ‖Cp satisfies the triangle
inequality. Let A,B ∈ Cp, and put ξj = sj(A + B), ηj = sj(A) + sj(B).
According to Corollary

nonsa10
8.2.10, we have

∑n
1 ξj ≤

∑n
1 ηj, ∀n and hence,

‖A+B‖C1 ≤ ‖A‖C1 + ‖B‖C1 ,

by letting n tend to ∞.
It remains to treat the case p > 1. ξj and ηj are both decreasing sequen-

cies. It suffices to show that

‖ξ‖`p ≤ ‖η‖`p . (8.3.1) nonsa.14

We have
‖ξ‖`p = sup

ζ∈`q,
‖ζ‖`q=1

〈ξ, ζ〉,

by Hölder’s inequality, where q ∈ [1,+∞[ is the conjugate index, given by
p−1 + q−1 = 1 and 〈·|·〉 denotes the real scalar product on `2({1, 2, ..}). We
also know that the supremum is attained by a ζ = ζ0 of the form ζ0

j =

(Const. > 0)ξ
p/q
j and in particular ζ0

j is a decreasing sequence. We use

partial summation with Ξj =
∑j

1 ξk, Ξ0 = 0:

〈ξ|ζ0〉(n) : =
n∑
1

ξjζ
0
j =

n∑
j=1

(Ξj − Ξj−1)ζ0
j

=
n∑
j=1

Ξjζ
0
j −

n−1∑
j=1

Ξjζ
0
j+1 = Ξnζ

0
n +

n−1∑
j=1

Ξj(ζ
0
j − ζ0

j+1)

= (
n∑
1

ξk)ζ
0
n +

n−1∑
j=1

j∑
k=1

ξk (ζ0
j − ζ0

j+1)︸ ︷︷ ︸
≥0

The last expression is≤ the same expression with ξ replaced by η and running
the same calculation backwards the latter expression is equal to 〈η|ζ0〉(n)

Hence 〈ξ|ζ0〉(n) ≤ 〈η|ζ0〉 ≤ ‖η‖`p . Letting n tend to infinity, we get (
nonsa.14
8.3.1),

and this completes the proof of the triangle-inequality for the Cp-norms. 2

We notice that ‖A‖ = s1(A) ≤ ‖A‖Cp . The space C1 is the space of
nuclear or trace-class operators, and C2 is the space of Hilbert-Schmidt op-
erators. We have the following Hölder type result:

nonsa13 Theorem 8.3.3 Let p, q ∈ [1,∞] be conjugate indices; p−1 + q−1 = 1. If
A ∈ Cp, B ∈ Cq, then AB ∈ C1 and ‖AB‖C1 ≤ ‖A‖Cp‖B‖Cq .
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Proof. We know that
n∑
1

sj(AB) ≤
n∑
1

sj(A)sj(B)

and letting n tend to ∞, we get from the usual Hölder inequuality:

∞∑
1

sj(AB) ≤
∞∑
1

sj(A)sj(B) ≤ ‖s·(A)‖`p‖s·(B)‖`q = ‖A‖Cq‖B‖Cq .

2

8.4 Traces and determinants
trdet

We next discuss the trace of a nuclear operator. If A ∈ L(H,H) is of
finite rank, we choose a finite dimensional subspace H′ ⊂ H such that
N (A)⊥, R(A) ⊂ H′. We then define the trace of A, trA as the trace trA|H′
of the restriction of A to H′. We check that this does not depend on the
choice of H′ and that trA is the sum of the finitely many non-vanishing
eigenvalues of A (each counted with its algebraic multiplicity). We see that

A 7→ trA (8.4.1) nonsa.15

is a linear functional on the space of finite rank operators. Moreover, by
Corollary

nonsa7
8.2.7,

|trA| ≤
∑
|λj(A)| ≤ ‖A‖C1 . (8.4.2) nonsa.16

We can then extend (
nonsa.15
8.4.1) to a continuous linear functional on C1 and we

still have
|trA| ≤ ‖A‖C1 . (8.4.3) nonsa.17

In the case of finite rank operators, we also have

trAB = trBA. (8.4.4) nonsa.18

Let now A ∈ Cp, B ∈ Cq, where p, q ∈ [1,∞] are conjugate indices and choose
Aν , Bν , ν = 1, 2, .. of finite rank, so that ‖A−Aν‖Cp → 0, ‖B −Bν‖Cq → 0.
Then

‖AB − AνBν‖C1 = ‖(A− Aν)B + Aν(B −Bν)‖C1

≤ ‖A− Aν‖Cp‖B‖Cq + ‖Aν‖Cp‖B −Bν‖Cq → 0, ν →∞.

Using this also for BA and the cyclicity of the trace (
nonsa.18
8.4.4) for finite rank

operators, we obtain (
nonsa.18
8.4.4) also in the case A ∈ Cp, B ∈ Cq, where p, q ∈

[1,∞] are conjugate indices.
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nonsa14 Remark 8.4.1 One simple way of extending most of the theory to the case
of operators A : H1 → H2, where H1,H2 are two different Hilbert spaces, is
the following. Consider the corresponding operator(

0 0
A 0

)
: H1 ⊕H2 → H1 ⊕H2, (8.4.5) nonsa.19

and say that A belongs to Cp if the operator in (
nonsa.19
8.4.5) does. The cyclicity of

the trace still holds in this setting, namely if A : H1 → H2, and B : H2 → H1

belong to Cp and Cq respectively, where p and q are conjugate indices.

We next discuss determinants of trace-class perturbations of the iden-
tity operator. Let first A ∈ L(H,H) be of finite rank and chose a finite
dimensional Hilbert space as above. Then we define

det(1− A) = det((1− A)|H′) =
∏
j

(1− λj(A)), (8.4.6) nonsa.20

where λj(A) denote the non-vanishing eigenvalues, repeated according to
their multiplicity. We remark that

| det(1− A)| ≤
∏
j

(1 + |λj(A)|) ≤
∏
j

(1 + sj(A)) ≤ e
∑
j sj(A),

where the the second inequlity follows from Corollary
nonsa7
8.2.7 . We want to

extend the definition to the case when A ∈ C1. Let first I be a compact
interval and let I 3 t 7→ At be a C1 family of finite rank rank operators,
with N (At)

⊥, R(At) ⊂ H′, for some finite dimensional subspace H′ which is
independent of t. We first assume that 1−At is invertible for all t ∈ I, or in
other words that 1 − λj(At) 6= 0 for all t and j. Then det(1 − At) 6= 0 and
by a classical formula,

∂

∂t
log det(1− At) = −tr ((1− At)−1 ∂

∂t
(At)) = −tr ((

∂

∂t
At)(1− At)−1).

Hence,∣∣∣ ∂∂t det(1− At)
det(1− At)

∣∣∣ =
∣∣∣ ∂
∂t

log det(1− At)
∣∣∣ ≤ ‖(1− At)−1‖‖ ∂

∂t
At‖C1 .

In particular, if I = [0, 1], At = tA1 + (1− t)A0, we get

| log det(1−A1)−log det(1−A0)| ≤ sup
0≤t≤1

‖(1−(tA1+(1−t)A0))−1‖‖A1−A0‖C1 .

(8.4.7) nonsa.20.5
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Now let A ∈ C1. If 1−A is not invertible, we put det(1−A) = 0. Assume
then that 1 − A is invertible. Let Aν be a sequence of finite rank operators
which converges to A in C1. For ν, µ large enough, we have ‖(1−Aν)−1‖ ≤ C0

for some fixed constant C0 and more generally ‖(1− (tAν + (1− t)A0))−1‖ ≤
C0. Then

| log det(1− Aν)− log det(1− Aµ)| ≤ C0‖Aν − Aµ‖C1

and consequently limν→∞ log det(1− Aν) exists. We then put

det(1− A) = exp lim
ν→∞

log det(1− Aν). (8.4.8) nonsa.21

Notice that

| det(1− A)| ≤
∏

(1 + sj(A)) ≤ e‖A‖C1 . (8.4.9) nonsa.22

Using approximation by finite rank operators, we also see that

det((1− A)(1−B)) = det(1− A) det(1−B). (8.4.10) nonsa.23

By the same argument, we can extend (
nonsa.20.5
8.4.7) to general trace class operators

for which 1− (tA1 + (1− t)A0) is invertible.
We now add a complex variable z ∈ C and consider the function det(1−

zA). If A is of finite rank, then this is an entire function of z. If A ∈ C1,
let Aν → A be a sequence of finite rank operators. Then | det(1 − zAν)| ≤
e|z|‖Aν‖C1 . If zλj(A) 6= 1, ∀j, then det(1 − zAν) → det(1 − zA) with locally
uniform convergence in C \ ∪j{1/λj}, and it follows that det(1 − zA) is a
holomorphic function on this set, which verifies

| det(1− zA)| ≤ e‖A‖C1
|z|. (8.4.11) nonsa.24

It follows that det(1 − zAν) converges to an entire function f(z) locally
uniformly on C. If z = 1/λj(A) where λj(A) is of multiplicity m, then exactly
m eigenvalues of Aν will converge to λj(A) while the others will stay away
from a neighborhood of this point (when ν is large enough). Considering the
argument variation (Rouché), we conclude that f(z) vanishes to the order m
at 1/λj(A) and in particular we have f(z) = det(1− zA) also at that point.
In conclusion, we have

nonsa15 Proposition 8.4.2 Let A ∈ C1. Then DA(z) := det(1 − zA) is an en-
tire function whose zeros counted with multiplicity coincide with the values
1/λ1(A), 1/λ2(A), .. counted with the multiplicities of λ1(1), λ2(A), ...
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Observe that
DA(0) = 1 (8.4.12) nonsa.25

Also observe that DA(z) is of subexponental growth in the sense that for
every ε > 0 there exists a constant Cε > 0 such that

|DA(z)| ≤ Cεe
ε|z|. (8.4.13) nonsa.26

In fact, by a limiting argument, we have

|DA(z)| ≤
∞∏
1

(1 + |z|sj(A)) ≤
N∏
1

(1 + |z|sj(A))e
∑∞
N+1 sj(A))|z|.

Here the prefactor is of polynomial growth for every fixed N and for a given
ε > 0, we can always choose N > 0 so large that the exponent is ≤ ε|z|.

The next observation is that W (z) :=
∏∞

1 (1 − zλj(A)) is also an entire
function of subexponential growth. This follows by the same argument, if we
recall that

∑∞
1 |λj(A)| is convergent. We now use a special case of a theorem

of Hadamard (see
Ah78
[4]): Since DA(z) and W (z) have the same zeros (counted

with multiplicity), we have

DA(z) = W (z)eg(z),

where g(z) is an entire function. It is also clear that we can choose g with
g(0) = 0. The function

Re g(z) := log |DA(z)| −
∞∑
1

log |1− λjz| (8.4.14) nonsa.27

is harmonic. Let R ≥ 2. For |z| ≤ R/2, we have

Re g(z) =

∫
|w|=R

PR(z, w)Re g(w)|dw|, (8.4.15) nonsa.28

where PR(z, w) = R−1P1(z/R,w/R) is the Poisson kernel for the disc of
radius R and |dw| denotes the length element on the boundary of this disc.
It is easy to see that

1

CR
≤ PR(z, w) ≤ C

R
, when |z| ≤ R

2
, |w| = R, (8.4.16) nonsa.29

where C > 0 is independent of R. Using the subexponential growth of DA(z),
we get ∫

|w|=R
PR(z, w) log |DA(w)||dw| ≤ C

R
εRR ≤ CεR, (8.4.17) nonsa.30
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for R ≥ Rε large enough. On the other hand,∣∣∣∣∣
∫
|w|=R

PR(z, w)
∞∑
1

log |1− λjw||dw|

∣∣∣∣∣ ≤
∞∑
1

1

R

∫
|w|=R

| log |1− λjw|||dw|

(8.4.18) nonsa.31

If |λj|R ≤ 1
2
, we write | log |1 − λjw|| ≤ C|λj|R and the sum over the

corresponding j in (
nonsa.31
8.4.18) can be bounded by∑

|λj |≤ 1
2R

C

R
2π|λj|RR = 2πCR

∑
|λj |≤ 1

2R

|λj| = o(R), R→∞. (8.4.19) nonsa.32

If 1
2
≤ |λj|R ≤ T , where T � 1 is independent of R, then by straight

forward estimates,

1

R

∫
|w|=R

| log |1− λjw|||dw| ≤ CT .

Let us estimate the number of λj in this case:∑
1
2
≤|λj |R≤T

1 ≤ 2R
∑

1
2R
≤|λj |≤TR

|λj| = oT (R).

Hence ∑
1
2
≤|λj |R≤T

1

R

∫
|w|=R

| log |1− λjw|||dw| = oT (R), R→∞. (8.4.20) nonsa.33

It remains to consider the case |λj|R ≥ T . Here log |1−λjR| ∼ log(|λj|R).
Hence, with constants C and Cδ that are independent of T :∑

|λj |R≥T

1

R

∫
|w|=R

| log |1− λjw|||dw| ≤ C
∑
|λj |R≥T

log(|λj|R)

≤ Cδ
∑
|λj |≥TR

|λj|δRδ = CδR
δ
∑
|λj |≥TR

|λj|δ.

Put δ = 1/p, 1 < p < ∞, and let q be the conjugate index. Then, if N
denotes the number of λj with |λj| ≥ T/R, we get from Hölder’s inequlity:∑

|λj |≥TR

|λj|
1
p ≤ N

1
q (
∑
|λj |≥TR

|λj|)
1
p . (8.4.21) nonsa.34
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Here NT/R ≤
∑
|λj| ≤ C, so N ≤ CR/T and the expression (

nonsa.34
8.4.21) is

bounded by CR1/q/T 1/q. Hence∑
|λj |R≥T

1

R

∫
|w|=R

| log |1− λjw|||dw| ≤ CR
1
p

+ 1
q /T

1
q =

CR

T
1
q

. (8.4.22) nonsa.35

Combining the three cases, we find

|
∫
|w|=R

PR(z, w)(
∞∑
1

log |1− λjw|)|dw|| ≤ oT (R) +
CR

T
1
q

= o(R), R→∞

(8.4.23) nonsa.36

Combining this with (
nonsa.27
8.4.14), (

nonsa.28
8.4.15) and (

nonsa.30
8.4.17), we get

Re g(z) ≤ o(R), on |z| ≤ R

2
.

Now we can apply Harnack’s inequality to the function Re g − o(R), which
is ≤ 0 on the disc |z| ≤ R/2 and ≥ −o(R) at 0 and conclude that

Re g ≥ −o(R) on the disc |z| ≤ R

4
.

Since g is harmonic, it follows from the last two estimates that Re g = 0.
Hence g is constant and since we have chosen g with g(0) = 0, we get g(z) = 0
∀z ∈ C. We have then showed

nonsa16 Theorem 8.4.3 Let A : H → H be a trace class operator with exactly N
non-vanishing eigenvalues λ1(A), λ2(A), .., 0 ≤ N ≤ ∞ repeated according to
multiplicity, 0 ≤ N ≤ +∞. Then DA(z) = det(1− zA) satisfies

DA(z) =
N∏
j=1

(1− λjz), z ∈ C, (8.4.24) nonsa.37

where the product is defined to be = 1 when N = 0.

From this we get the important Lidskii’s theorem as a corollary (see
GoKr69
[49], p.

101):

nonsa17 Corollary 8.4.4 If A ∈ C1 we have

trA =
N∑
1

λj(A), (8.4.25) nonsa.38

where λj(A) are the non-vanishing eigenvalues as in Theorem
nonsa16
8.4.3.
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Proof. We know the result when A is of finite rank. In this case, we also
know that

D′A
DA

=
∂

∂z
log det(1− zA) = −tr ((1− zA)−1A),

away from the zeros of z 7→ det(1− zA). In particular,

D′A(0)

DA(0)
= −trA, (8.4.26) nonsa.39

when A is of finite rank.
When A ∈ C1, let Aν be a sequence of finite rank operators converging

to A in the C1 norm. Then DAν (z) → DA(z), D′Aν (z) → D′A(z), when
ν → ∞, uniformly for z in a neighborhood of 0. Since DA(z) 6= 0 in such a
neighborhood, we have also

D′Aν (0)

DAν (0)
→ D′A(0)

DA(0)
.

By (
nonsa.39
8.4.26) we know that the right hand side of the last relation is equal to

−trAν and we also know that this quantity converges to−trA. Consequently
(
nonsa.39
8.4.26) remains valid for general trace class operators. In view of Theorem
nonsa16
8.4.3, we know on the other hand that

D′A(0)

DA(0)
= −

N∑
1

λj(A),

and the Corollary follows. 2

The last proof also shows that

D′A(z)

DA(z)
=

∂

∂z
logDA(z) = −tr (1− zA)−1A = −

N∑
1

λj(A)

1− zλj(A)
, (8.4.27) nonsa.40

for all z with 1− zλj(A) 6= 0, ∀j.
The blue part of this chapter has not been revised yet. Some

may be skipped.

Prop.nonsa.16 Proposition 8.4.5 Let H0,H1,H2 be complex separable Hilbert spaces. Let
Ω ⊂ Cn be an open set and let Ω 3 z 7→ K(z) ∈ C1(H1) be a holomorphic
function. Then det(1−K(z)) is a holomorphic function on Ω and if z0 ∈ Ω
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is a zero of order m ≥ 1 of this function, and A(z) ∈ L(H1,H2), B(z) ∈
L(H0,H1) depend holomorphically on z ∈ Ω, then

rank (

∫
γ

A(z)(1−K(z))−1B(z)dz) ≤ m, (8.4.28) nonsa.41

if γ is the positively oriented boundary of a sufficiently small circle centered
at z0.

Proof. We know that 1 is an eigenvalue of K(z0) of a certain multiplicity
N0, defined to be the rank of the spectral projection

Π(z0) =
1

2πi

∫
α

(λ−K(z0))−1dλ,

where α is the positively oriented boundary of a small disc centered at λ = 1.
For z close to z0, we put

Π(z) =
1

2πi

∫
α

(λ−K(z))−1dλ,

and we notice that this is the sum of the spectral projections corresponding
to the N0 eigenvalues λj0(z), λj0+1(z), .., λj0+N0−1(z) (repeated according to
multiplicity) that are close to λj0(z0). m is then also the order of vanishing
of (1−λj0(z)) · .. · (1−λj0+N0−1(z)) (if we note that det(1−K(z)) = det(1−
K(z)Π(z)) det(1 − K(z)(1 − Π(z))) ). The range of Π(z) is of constant
dimension N0 and we can find a basis e1(z), .., eN0(z) of this space which
depends holomorphically on z (possibly after restricting z to a new even
smaller neighborhood of z0.

DefineR+ : H1 → CN0 byR+(z)u(j) = aj(u, z), where Π(z)u =
∑N0

1 aj(u, z)ej.

Define R−(z) : CN0 → H1 by R−(z)u− =
∑N0

1 u−(j)ej(z). Then(
1−K(z) R−(z)
R+(z) 0

)
: H1 ×CN0 → H1 ×CN0

is bijective with inverse (
E(z) E+(z)
E−(z) E−+(z)

)
where E−+ is the matrix of the restriction of K(z)−1 toR(Π(z)) with respect
to the basis e1(z), .., eN0(z). Hence detE−+(z) =

∏N0−1
ν=0 (1 − λj0(z))...(1 −

λj0+N0−1(z)) has the same order of vanishing at z = z0 as det(1−K(z)). It
then suffices to apply Lemma [[... som skall ingaa i en foersta del av detta
kapitel daer vi behandlar Fredholm teori med hjaelp av Grushin problem]].
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We end this section by recalling Jensen’s formula and the standard appli-
cation to getting bounds on the number of zeros of holomorphic functions.
Let f(z) be a holomorphic function on the open disc D(0, R) with a contin-
uous extension to the corresponding closed disc. Assume that f(0) 6= 0 and
f(z) 6= 0 for |z| = R.

Assume first that f(z) has no zeros at all. Then log |f(z)| = Re log f(z) is
a harmonic function in the open disc which is continuous up to the boundary,
and the mean value property of harmonic functions tells us that

log |f(0)| = 1

2π

∫ 2π

0

log |f(Reiθ)|dθ.

We now allow f to vanish and let z1, .., zN be the zeros repeated according
to their multiplicity. Since f is not allowed to vanish at 0 or at the boundary
of the disc of radius R, we have 0 < |zj| < R. Then

F (z) := f(z)
N∏
j=1

R2 − zjz
R(z − zj)

is holomorphic in the open disc, continuous up to the boundary and has no
zeros in the closed disc of radius R. Moreover |F (z)| = |f(z)| when |z| = R,
so according to the preceding paragraph, we have

log |F (0)| = 1

2π

∫ 2π

0

log |f(Reiθ)|dθ.

Expanding the left hand side, we get Jensen’s formula :

log |f(0)|+
N∑
1

log
R

|zj|
=

1

2π

∫ 2π

0

log |f(Reiθ)|dθ. (8.4.29) nonsa.42

A standard application of this formula is to notice that if N(R/2) is the
number of zeros zj of f with |zj| ≤ R/2, then we get

N(
R

2
) log 2 ≤ 1

2π

∫ 2π

0

log |f(Reiθ)|dθ − log |f(0)|. (8.4.30) nonsa.43
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Part II

Some general results
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Chapter 9

Quasi-modes in higher
dimension

qmgd

The background is the same as in Section
qd
4.2: E.B. Davies

Da99
[31] showed that

for the one-dimensional Schrödinger operator we may construct quasimodes
for values of the spectral parameter that may be quite far from the spectrum
of the operator. M. Zworski

Zw01
[156] observed that this result can be viewed as

a special case of a more general result of L. Hörmander
Ho60a, Ho60b
[78, 79] in the context

of linear PDE.
Recall that if a(x, ξ) are two C1-functions on some domain in R2n

x,ξ, then
we can define the Poisson bracket to be the C0-function on the same domain,

{a, b} = a′ξ · b′x − a′x · b′ξ = Ha(b).

Here Ha = a′ξ · ∂x − a′x · ∂ξ denotes the Hamilton vector field of a. The
following result is due to Zworski

Zw01
[156] who obtained it via a semi-classical

reduction to the above mentioned result of Hörmander. A direct proof was
given in

DeSjZw04
[39] and we give a variant below.

ps1 Theorem 9.0.6 Let

P (x, hDx) =
∑
|α|≤m

aα(x)(hDx)
α, Dx =

1

i

∂

∂x
(9.0.1) ps.3

have smooth coefficients in the open set Ω ⊂ Rn. Put p(x, ξ) =
∑
|α|≤m aα(x)ξα.

Assume z = p(x0, ξ0) with 1
i
{p, p}(x0, ξ0) > 0. Then ∃ u = uh ∈ C∞0 (Ω), with

‖u‖ = 1, ‖(P − z)u‖ = O(h∞), when h → 0. Moreover, u is concentrated
to x0 in the sense that if W ⊂ Ω is any fixed neighborhood of x0, then
‖u‖L2(Ω\W ) = O(h∞).
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More generally, the result remains valid if aα depend on h in such a way
that

aα = aα(x;h) ∼
∞∑
0

aα,k(x)hk in C∞(Ω),

now with p(x, ξ) =
∑
|α|≤m aα,0(x)ξα.

In the case when the coefficients are all analytic near x0 we can replace
“h∞” by “e−1/Ch for some C > 0”. See for instance

Sj82
[126].

This implies that if P has an extension from C∞0 (Ω) to a closed densely

defined operator P̃ : L2(Ω̃) → L2(Ω̃), Ω̃ ⊃ Ω, and the resolvent (P̃ − z)−1

exists for the value z as above, then its norm is greater than any negative
power of h when h→ 0 (and even exponentially large in the analytic case).

In the case n ≥ 2, we noticed by A. Melin and the author
MeSj02
[103] that if

z = p(ρ) and <p, =p are independent at ρ, then 1
i
{p, p} times the natural

(non-vanishing) Liouville differental form (of maximal degree 2n − 2) on
p−1(z) is equal to a constant times the restriction to p−1(z) of σn−1 which is
a closed form. Here

σ =
n∑
1

dξj ∧ dxj

is the symplectic 2-form on T ∗Ω.
If Γ is a compact connected component of p−1(z) on which d<p and d=p

are pointwise independent, it follows that the average of 1
i
{p, p} over Γ with

respect to the Liouville form has to vanish. Hence if there is a point on Γ
where the Poisson bracket is 6= 0 then there is also point where it is positive.
In the case n = 1 we have a similar phenomenon, explained in the remarks
after Proposition

qd5
4.2.6.

ps2 Example 9.0.7 P = −h2∆ + V (x), p(x, ξ) = ξ2 + V (x), 1
i
{p, p} = −4ξ ·

=V ′(x).

K. Pravda-Starov
Pr06t
[108] has generalized the theorem above by adapting

a more refined quasi-mode construction of R. Moyer (in 2 dimensions) and
Hörmander

Ho8385
[83] for adjoints of operators that do not satisfy the Nirenberg-

Trèves condition (Ψ) for local solvability.
Proof of Theorem

ps1
9.0.6. We will first treat the case when p is analytic in

a neighborhood of (x0, ξ0) and use the same notation for analytic functions
defined in a real neighborhood of some point, and their holomorphic exten-
sions to a complex neighborhood of the same point. If φ is analytic near x0

such that φ′(x0) = ξ0 ∈ Rn, and

=φ′′(x0) > 0, (9.0.2) ps.4
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then we can define the complex Lagrangian manifold

Λφ := {(x, φ′(x)); x ∈ neigh (x0,C
n)}. (9.0.3) ps.5

As observed by Hörmander
Ho71b
[82], the positivity assumption (

ps.4
9.0.2) can be

formulated equivalently by saying that

1

i
σ(t,Γ(t)) > 0, 0 6= t ∈ T(x0,ξ0)(Λφ). (9.0.4) ps.6

Here:

• T(x0,ξ0)(Λφ) denotes the tangent space of Λφ as a smooth real submani-
fold of C2n. The corresponding tangent vectors t = tx · ∂x + tx · ∂x + tξ ·
∂ξ + tξ · ∂ξ split into a “holomorphic” component thol = tx · ∂x + tξ · ∂ξ
and an “anti-holomorphic” one, tahol = thol = tx · ∂x + tξ · ∂ξ.

• Γ : T(x0,ξ0)C
n → T(x0,ξ0)C

n is the unique antilinear map which is equal
to the identity on T(x0,ξ0)R

2n.

• σ denotes the symplectic 2-form
∑n

1 dξj∧dxj on C2n (now a differential
form of type (2, 0)), here viewed as a bilinear form on the complexified
tangentspace of the cotangent space at (x0, ξ0). In other terms we have
the identification and identity

σ(t, s) = 〈σ|t ∧ s〉 = 〈σ|thol ∧ shol〉

and more explicitly,

σ(t, s) = tξ · sx − tx · sξ,

when s is represented similarly to t above. In practice we identify
tangent vectors with their holomorphic parts, and define zt = zthol +
ztahol.

• Writing thol = tx · ∂x + tξ · ∂ξ as above, we have (Γt)hol = tx · ∂x +
tξ · ∂ξ. From now on we identify tangent vectors and vector fields in
the complex domain with their holomorphic parts, and by (very small)
abuse of notation we write t = Γt.

• More generally, let Λ ⊂ C2n be a complex Lagrangian manifold, i.e.
a complex manifold such that σ|Λ = 0 of maximal complex dimension
with this property; dim (Λ) = n. Assume that (x0, ξ0) ∈ Λ and that
(
ps.6
9.0.4) holds with Λφ replaced by Λ. Then T(x0,ξ0)Λ cannot contain any

non-zero tangent vector (with holomorphic part equal to) tξ · ∂ξ and it
follows that Λ = Λφ with φ as above.

164



Let z, p, (x0, ξ0) be as in the theorem. Then we observe that

1

i
σ(Hp, Hp)

(
=

1

i
σ(Hp,Γ(Hp))

)
=

1

i
{p, p} > 0.

Moreover, the real set Σ := p−1(z) is a smooth symplectic manifold near
(x0, ξ0) and using the Darboux theorem, we can identify it locally with
R2(n−1) and hence find a Lagrangian submanifold Λ′ in its compexifica-
tion, passing through (x0, ξ0), that satisfies the positivity condition (

ps.6
9.0.4).

Viewing the complexification of Σ as a submanifold of C2n, we can take
Λ = {exp sHp(ρ); s ∈ neigh (0,C), ρ ∈ neigh ((x0, ξ0),C2n)}. Using that Hp

is symplectically orthogonal to the tangent space of Σ, it is then quite easy
to verify that Λ is a complex Lagrangian manifold, contained in the complex
characteristic hypersurface {ρ ∈ neigh ((x0, ξ0),C2n); p(ρ) = 0} and satisfy-
ing the positivity condition (

ps.6
9.0.4). Hence, Λ is of the form Λφ for an analytic

function φ as in (
ps.4
9.0.2), (

ps.5
9.0.3), which also fulfills the eikonal equation

p(x, φ′(x)) = 0. (9.0.5) ps.7

We normalize φ by requiring that φ(x0) = 0. Then the function eiφ(x)/h is
rapidly decreasing with all its derivatives away from any neighborhood of x0.
By a complex version of the standard WKB-construction we can construct an
elliptic symbol a(x;h) � a0(x)+ha1(x)+..., by solving the suitable transport
equations to infinite order at x0, such that if χ ∈ C∞0 (neigh (x0,R

n)) is
equal to 1 near x0, then u(x;h) = χ(x)h−n/4a(x;h)eiφ(x)/h has the required
properties.

Now, we drop the analyticity assumption and assume merely that p is
smooth as in the statement of the theorem. Let p(1) be the 1st order Taylor
polynomial of p at (x0, ξ0), so that

p(x, ξ) = p(1)(x, ξ) +O((x− x0, ξ − ξ0)2), (x, ξ)→ (x0, ξ0).

Then the arguments above apply to p(1) and noticing that Σ(1) := (p(1))−1(z)
is affine linear, we can find Λ′ in the complexification of Σ(1) as above, also
affine. Then Λ(1), defined similarly to Λ above, is an affine linear Lagrangian
space of the form Λ(2) = Λφ(2) , where φ(2) is a 2nd order polynomial, with

φ(x0) = 0, ∂xφ
(2)(x0) = ξ0, =∂2

xφ
(2) > 0, p(1)(x, ∂xφ

(2)(x)) = 0,

so
p(x, ∂xφ

(2)(x)) = r, where r = O((x− x0)2).

Look for ψ = O((x− x0)3) such that

p(x, ∂x(φ
(2) + ψ)) = O((x− x0)3).
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This leads to a linear transport-type equation,

p′ξ(x, ∂xφ
(2)) · ∂xψ = −r +O((x− x0)3),

which is easy to solve, using that p′ξ(x0, ξ0) 6= 0. Write ψ(3) = ψ. Iterating

the construction, we can find ψ(j) = O((x − x0)j), j = 4, 5, ... such that if
φ = φ(2) + ψ(3) + ψ(4) + ... in the sense of formal Taylor series, then in the
same sense,

p(x, ∂xφ) = 0.

Again we can find a WKB solution u = uh with the required properties. 2

166



Chapter 10

Resolvent estimates near the
boundary of the range of the
symbol

resestgd

10.1 Introduction and outline
in

In this chapter, which closely follows
Sj09a
[134], we study bounds on the resolvent

of a non-self-adjoint h-pseudodifferential operator P with leading symbol p
when h→ 0, for when the spectral parameter is in a neighborhood of certain
points on the boundary of the range of p. In Chapter

rest1d
6 we have already

described a very precise result of W. Bordeaux Montrieux in dimension 1.
Here we consider a more general situation; the dimension can be arbitrary
and we allow for more degenerate behaviour. The results will not be quite
as precise as in the 1-dimensional case.

In
DeSjZw04
[39] we obtained resolvent estimates at certain boundary points in the

following two cases:

(1) under a non-trapping condition,

(2) under a stronger “subellipticity condition”.

The case (1) was studied in
DeSjZw04
[39] with general and simple arguments related

to the propagation of regularity and the treatment in case (2) was based on
Hörmander’s work on subellipticity for operators of principal type (

Ho8385
[83]). In

this case the resolvent extends and has temperate growth in 1/h in discs of
radius O(h ln 1/h), centered at the appropriate boundary points. In case (2)
we have an extension up to distance O(hk/(k+1)), where the integer k ≥ 2 is
determined by a condition of “subellipticity type”.
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In this chapter we concentrate on points of type (2) and obtain resolvent
estimates by studying an associated semi-group as a Fourier integral operator
with complex phase in the spirit of Maslov

Mas76
[96], Kucherenko

Ku74
[87], Melin-

Sjöstrand
MeSj76
[102]. (See also A. Menikoff-Sjöstrand

MenSj78
[105], O. Matte

Ma08
[97].) It

turned out to be more convenient to use Bargmann-FBI transforms in the
spirit of

Sj82
[126] and

HeSj86
[62]. The semigroup method leads to a stronger result:

The resolvent can be extended to a disc of radius O((h ln 1/h)k/(k+1)) around
the appropriate boundary points, as in dimension 1 when k = 2 in the result
of W. Bordeaux Montrieux

Bo08
[15], cf. Theorem

rest1d2
6.1.4. In that case Bordeaux

Montrieux also constructed quasi-modes for values of the spectral parameter
that are close to the boundary points.

We next state the results.
Let X denote either Rn or a compact smooth manifold of dimension n.
In the first case, let m ∈ C∞(R2n; [1,+∞[) be an order function (cf.

DiSj99
[40],

Section
prelunpert
5.1) so that for some C0, N0 > 0,

m(ρ) ≤ C0〈ρ− µ〉N0m(µ), ρ, µ ∈ R2n, (10.1.1) in.1

where 〈ρ− µ〉 = (1 + |ρ− µ|2)1/2. Let P = P (x, ξ;h) ∈ S(m), meaning that
P is smooth in x, ξ and satisfies

|∂αx,ξP (x, ξ;h)| ≤ Cαm(x, ξ), (x, ξ) ∈ R2n, α ∈ N2n, (10.1.2) in.2

where Cα is independent of h. We also assume that

P (x, ξ;h) ∼ p0(x, ξ) + hp1(x, ξ) + ..., in S(m), (10.1.3) in.3

and write p = p0 for the principal symbol. We adopt the ellipticity assump-
tion

∃w ∈ C, C > 0, such that |p(ρ)− w| ≥ m(ρ)/C, ∀ρ ∈ R2n. (10.1.4) in.4

As in (
g1d.3
5.1.3), let

P = Pw(x, hDx;h) = Op(P (x, hξ;h)) (10.1.5) in.5

be the Weyl quantization of the symbol P (x, hξ;h) that we can view as a
closed unbounded operator on L2(Rn).

In the second (compact manifold) case, we let P ∈ Sm1,0(T ∗X) (the classi-
cal Hörmander symbol space ) of order m > 0, meaning that

|∂αx∂
β
ξ P (x, ξ;h)| ≤ Cα,β〈ξ〉m−|β|, (x, ξ) ∈ T ∗X, (10.1.6) in.6
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where Cα,β are independent of h. Similarly to (
in.3
10.1.3), assume that there

exist pj ∈ Sm−j1,0 (T ∗X) such that

P (x, ξ;h)−
N−1∑

0

hjpj(x, ξ) ∈ hNSm−N1,0 (T ∗X), N = 1, 2, ... (10.1.7) in.7

and we quantize the symbol P (x, hξ;h) in the standard (non-unique) way,
by doing it for various local coordinates and paste the quantizations together
by means of a partition of unity. When m > 0 we make the ellipticity
assumption

∃C > 0, such that |p(x, ξ)| ≥ 〈ξ〉
m

C
, |ξ| ≥ C. (10.1.8) in.8

Let Σ(p) = p∗(T ∗X) and let Σ∞(p) be the set of accumulation points of
p(ρj) for all sequences ρj ∈ T ∗X, j = 1, 2, 3, .. that tend to infinity. The
main result of this chapter is taken from

Sj09a
[134]:

DeSjZw04
[39]:

in1 Theorem 10.1.1 We adopt the general assumptions above. Let z0 ∈ ∂Σ(p)\
Σ∞(p) and assume that dp 6= 0 at every point of p−1(z0). Then for every
such point ρ there exists θ ∈ R (unique up to a multiple of π) such that
d(e−iθ(p − z0)) is real at ρ. We write θ = θ(ρ). Consider the following two
cases:

(1) For every ρ ∈ p−1(z0), the maximal integral curve of H<(e−iθ(ρ)p) through
the point ρ is not contained in p−1(z0).

(2) There exists an integer k ≥ 1 such that for every ρ ∈ p−1(z0), there
exists j ∈ {1, 2, .., k} such that

Hj
p(p)(ρ)/(j!) 6= 0.

Here Hp = p′ξ · ∂x− p′x · ∂ξ is the Hamilton field, viewed as a differential
operator.

In case (1), there exists a constant C0 > 0 such that for every constant
C1 > 0 there is a constant C2 > 0 such that the resolvent (z − P )−1 is
well-defined for |z − z0| < C1h ln 1

h
, h < 1

C2
, and satisfies the estimate

‖(z − P )−1‖ ≤ C0

h
exp(

C0

h
|z − z0|). (10.1.9) in.9

In case (2), there exists a constant C0 > 0 such that for every constant
C1 > 0 there is a constant C2 > 0 such that the resolvent (z − P )−1 is
well-defined for |z− z0| < C1(h ln 1

h
)k/(k+1), h < 1

C2
and satisfies the estimate

‖(z − P )−1‖ ≤ C0

h
k
k+1

exp(
C0

h
|z − z0|

k+1
k ). (10.1.10) in.10
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In
DeSjZw04
[39] the boundO(1/h) in (

in.9
10.1.9) was obtained for |z−z0| ≤ h/O(1), as

a well as a less precise polynomial bound for |z−z0| < C1h ln 1
h
. The condition

in case (2) was formulated a little differently, but the two formulations lead
to the same microlocal models and are therefore equivalent.

Let us now consider a special situation of interest for evolution equations,
namely the case when

z0 ∈ iR, (10.1.11) in.11

<p(ρ) ≥ 0 in neigh (p−1(z0), T ∗X). (10.1.12) in.12

in2 Theorem 10.1.2 We adopt the general assumptions above. Let z0 ∈ ∂Σ(p)\
Σ∞(p) and assume (

in.11
10.1.11), (

in.12
10.1.12). Also assume that dp 6= 0 on p−1(z0),

so that d=p 6= 0, d<p = 0 on that set. Consider the two cases of Theorem
in1
10.1.1:

(1) For every ρ ∈ p−1(z0), the maximal integral curve of H=p through the
point ρ contains a point where <p > 0.

(2) There exists an integer k ≥ 1 such that for every ρ ∈ p−1(z0), we have
Hj
=p<p(ρ) 6= 0 for some j ∈ {1, 2, ..., k}.

Then, in case (1), there exists a constant C0 > 0 such that for every
constant C1 > 0 there is a constant C2 > 0 such that the resolvent (z−P )−1

is well-defined for

|=(z − z0)| < 1

C0

,
−1

C0

< <z < C1h ln
1

h
, h <

1

C2

,

and satisfies the estimate

‖(z − P )−1‖ ≤

{
C0

|<z| , <z ≤ −h,
C0

h
exp(C0

h
<z),<z ≥ −h.

(10.1.13) in.13

In case (B), there exists a constant C0 > 0 such that for every constant
C1 > 0 there is a constant C2 > 0 such that the resolvent (z − P )−1 is
well-defined for

|=(z − z0)| < 1

C0

,
−1

C0

< <z < C1(h ln
1

h
)

k
k+1 , h <

1

C2

, (10.1.14) in.13.5

and satisfies the estimate

‖(z − P )−1‖ ≤


C0

|<z| , <z ≤ −h
k
k+1 ,

C0

h
k
k+1

exp(C0

h
(<z)

k
k+1

+ ),<z ≥ −h
k
k+1 .

(10.1.15) in.14
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The proofs in the two cases are similar in spirit and the case (1) follows
from an inspection of the proof in

DeSjZw04
[39].

From now on we concentrate on the case (2). Away from the set p−1(z0)
we can use ellipticity, and we then need to obtain microlocal estimates near
a point ρ ∈ p−1(z0). After a factorization of P − z in such a region, we will
reduce the proof of the first theorem to that of the second one.

The main idea of the proof of Theorem
in2
10.1.2 is to study exp(−tP/h)

(microlocally) for 0 ≤ t� 1 and to show that in this case

‖ exp−tP
h
‖ ≤ C exp(−t

k+1

Ch
), (10.1.16) in.15

for some constant C > 0. Noting that that implies that ‖ exp− tP
h
‖ = O(h∞)

for t ≥ hδ when δ(k + 1) < 1, and using the formula

(z − P )−1 = −1

h

∫ ∞
0

exp(
t(z − P )

h
)dt, (10.1.17) in.16

leads to (
in.14
10.1.15).

The most direct way of studying exp(−tP/h), or rather a microlocal
version of that operator, is to view it as a Fourier integral operator with
complex phase (

Mas76, Ku74, MeSj76, Ma08
[96, 87, 102, 97]) of the form

U(t)u(x) =
1

(2πh)n

∫∫
e
i
h

(φ(t,x,η)−y·η)a(t, x, η;h)u(y)dydη, (10.1.18) in.17

where the phase φ should have a non-negative imaginary part and satisfy the
Hamilton-Jacobi equation:

i∂tφ+ p(x, ∂xφ) = O((=φ)∞), locally uniformly,1 (10.1.19) in.18

with the initial condition

φ(0, x, η) = x · η. (10.1.20) in.19

The amplitude a will be bounded with all its derivatives and has an asymp-
totic expansion where the terms are determined by transport equations. This
can indeed be carried out in a classical manner for instance by adapting the
method of

MeSj76
[102] to the case of non-homogeneous symbols following a reduc-

tion used in
MenSj78, Ma08
[105, 97]. It is based on making estimates on the fonction

Sγ(t) = =(

∫ t

0

ξ(s) · dx(s))−<ξ(t) · =x(t) + <ξ(0) · =x(0)

1Without assuming p to be analytic, we here need to take an almost holomorphic
extension of p.
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along the complex integral curves γ : [0, T ] 3 s 7→ (x(s), ξ(s)) of the Hamilton
field of p. As in (

in.18
10.1.19), we need an almost holomorphic extension of p.

Using the property (B) one can show that =φ(t, x, η) ≥ C−1tk+1 and from
that we can obtain (a microlocalized version of) (

in.15
10.1.16) quite easily.

The following variant seems more practical: Let

Tu(x) = Ch−
3n
4

∫
e
i
h
φ(x,y)u(y)dy,

be an FBI – or (generalized) Bargmann-Segal transform that we treat in the
spirit of Fourier integral operators with complex phase as in

Sj82
[126]. Here φ

is holomorphic in a neighborhood of (x0, y0) ∈ Cn ×Rn, and −φ′y(x0, y0) =
η0 ∈ Rn, =φ′′y,y(x0, y0) > 0, detφ′′x,y(x0, y0) 6= 0. Let κt be the associated
canonical transformation. Then, T is bounded L2 → HΦ0 := Hol (Ω) ∩
L2(Ω, e−2Φ0/hL(dx)) and has (microlocally) a bounded inverse, where Ω is
a small complex neighborhood of x0 in Cn. The weight Φ0 is smooth and
strictly pluri-subharmonic. If ΛΦ0 := {(x, 2

i
∂Φ0

∂x
); x ∈ neigh (x0)}, then (lo-

cally) ΛΦ0 = κT (T ∗X).

The operator P̃ = TPT−1 can be defined locally modulo O(h∞) (cf.
LaSj82
[88])

as a bounded operator from HΦ → HΦ when the weight Φ is smooth and
satisfies Φ′ − Φ′0 = O(hδ) for some δ > 0. (In the analytic frame work it
suffices that Φ′ −Φ′0 is small.) Egorov’s theorem applies in this situation, so

the leading symbol p̃ of P̃ is given by p̃◦κT = p. Thus (under the assumptions
of Theorem

in2
10.1.2) we have <p̃|ΛΦ0

≥ 0. This in turn can be used to see that

for 0 ≤ t ≤ hδ, we have e−tP̃ /h = O(1): HΦ0 → HΦt , where Φt ≤ Φ0 is
determined by the real Hamilton-Jacobi problem

∂Φt

∂t
+ <p̃(x, 2

i

∂Φt

∂x
) = 0, Φt=0 = Φ0. (10.1.21) in.20

Now the bound (
in.15
10.1.16) follows from the estimate

Φt ≤ Φ0 −
tk+1

C
(10.1.22) in.21

where C > 0. To get (
in.21
10.1.22) we represent the I-Lagrangian manifold ΛΦt

as the image under κT of the I-Lagrangian manifold ΛGt = {ρ+ iHGt(ρ); ρ ∈
neigh (ρ0, T

∗X)}, where HGt denotes the Hamilton field of Gt. It turns out
that the Gt are given by the real Hamilton-Jacobi problem

∂Gt

∂t
+ <(p(ρ+ iHGt(ρ))) = 0, G0 = 0, (10.1.23) in.22
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and there is a simple minimax type formula expressing Φt in terms of Gt, so
it suffices to show that

Gt ≤ −tk+1/C. (10.1.24) in.23

This estimate is quite simple to obtain: (
in.22
10.1.23) first implies that Gt ≤ 0,

so (∇Gt)
2 = O(Gt). Then if we Taylor expand (

in.22
10.1.23), we get

∂Gt

∂t
+H=p(Gt) +O(Gt) + <p(ρ) = 0

and we obtain (
in.23
10.1.24) from a simple differential inequality and an estimate

for certain integrals of <p.
The use of the representation with Gt is here very much taken from the

joint work
HeSj86
[62] with B. Helffer.

In Section
ex
10.5 we discuss some examples.

10.2 IR-manifolds close to R2n and their FBI-

representations
ge

This is an adaptation of the discussion in
HeSj86
[62]. One difference is that we use

simple FBI-transforms from
Sj82
[126], rather than the more elaborate variant

that was necessary to treat the resonance theory in
HeSj86
[62].

We work locally. Let G(y, η) ∈ C∞(neigh ((y0, η0),R2n)) be real-valued
and small in the C∞ semi-norms. Then

ΛG = {(y, η) + iHG(y, η); (y, η) ∈ neigh ((y0, η0))}, HG =
∂G

∂η

∂

∂y
− ∂G

∂y

∂

∂η

is an I-Lagrangian manifold, i.e. a Lagrangian manifold for the real symplec-
tic form =σ. Here σ denotes the complex symplectic form

∑n
1 dη̃j ∧ dỹj. We

reserve the notation (y, η) for the real cotangent variables and let the tildes
indicate that we take the corresponding complexified variables.

ΛG can be represented by means of a nondegenerate phase function in
the sense of Hörmander

Ho71a
[81] in the following way:

Consider
ψ(ỹ, η) = −η · =ỹ +G(<ỹ, η)

where ỹ is complex and η real according to the convention above. Then

∇ηψ(ỹ, η) = −=ỹ +∇ηG(<ỹ, η),

and since G is small, we see that d ∂ψ
∂η1
, ..., d ∂ψ

∂ηn
are linearly independent and

by definition, this means that ψ is nondegenerate.2

2We neglect some other properties in Hörmander’s original definition, related to homo-
geneity.
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Let
Cψ = {(ỹ, η) ∈ neigh ((y0, η0),Cn ×Rn); ∇ηψ = 0}

and consider the corresponding I-Lagrangian manifold

Λψ = {(ỹ, 2

i

∂ψ

∂ỹ
(ỹ, η)); (ỹ, η) ∈ Cψ}.

Here ∂
∂ỹ

denotes the holomorphic derivative:

∂

∂ỹ
=

1

2

(
∂

<ỹ
+

1

i

∂

∂=ỹ

)
.

We first check that that Λψ is I-Lagrangian, using only that ψ is a non-
degenerate phase function: That Λψ is a submanifold with the correct real
dimension = 2n is classical since we can identify 2

i
∂ψ
∂ỹ

with ∇<ỹ,=ỹψ. Further,

−=(η̃ · dỹ)|Λψ
' −=

(
2

i

∂ψ

∂ỹ
· dỹ
)
|Cψ

=

− 1

2i

(
2

i

∂ψ

∂ỹ
dỹ +

2

i

∂ψ

∂ỹ
dỹ

)
|Cψ

=

(
∂ψ

∂ỹ
dỹ +

∂ψ

∂ỹ
dỹ

)
|Cψ

= dψ|Cψ

which is a closed form and using that =σ = d=(η̃ · dỹ), we get

−=σ|Λψ = 0.

We next check that ψ that Λψ = ΛG: If (ỹ, 2
i
∂ψ
∂ỹ

(ỹ, η)) is a general point

on Λψ, then =ỹ = ∇ηG(<ỹ, η) and

2

i

∂ψ

∂ỹ
(ỹ, η) =

2

i

1

2

(
∂

∂<ỹ
+

1

i

∂

∂=ỹ

)
(−η · =ỹ +G (<ỹ, η))

= −
(

∂

∂=ỹ
+ i

∂

∂<ỹ

)
(−η · =ỹ +G (<ỹ, η))

= η − i∇yG (<ỹ, η) .

Hence, (
ỹ,

2

i

∂ψ

∂η̃

)
= (y, η) + iHG(y, η),

if we choose y = <ỹ. 2
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Now consider an FBI (or generalized Bargmann-Segal) transform

Tu(x;h) = h−
3n
4

∫
eiφ(x,y)/ha(x, y;h)u(y)u(y)dy,

where φ is holomorphic near (x0, y0) ∈ Cn × Rn, =φ′′y,y > 0, detφ′′x,y 6= 0,

−∂φ
∂y

= η0 ∈ Rn, and a is holomorphic in the same neighborhood with a ∼
a0(x, y)+ha1(x, y)+ ... in the space of such functions with a0 6= 0. We regard
T as a Fourier integral operator with complex phase and with the associated
canonical transformation,

κ = κT : (y,−∂φ
∂y

(x, y)) 7→ (x,
∂φ

∂x
(x, y))

from a complex neighborhood of (y0, η0) to a complex neighborhood of (x0, ξ0),
where ξ0 = ∂φ

∂x
(x0, y0). Complex canonical transformations preserve the class

of I-Lagrangian manifolds and (locally),

κ(R2n) = ΛΦ0 = {(x, 2

i

∂Φ0

∂x
(x)); x ∈ neigh (x0,C

n)},

where Φ0 is smooth and strictly plurisubharmonic. Moreover, we can choose,

Φ0(x) = sup
y∈Rn

−=φ(x, y), (10.2.1) ir.1

where the supremum is attained at the nondegenerate point of maximum
yc(x). (See

Sj82
[126].)

ir1 Proposition 10.2.1 We have κ(ΛG) = ΛΦG, where

ΦG(x) = v.c.ỹ,η −=φ(x, ỹ)− η · =ỹ +G(<ỹ, η), (10.2.2) ir.2

and the critical value is attained at a unique nondegenerate critical point,
close to (y0, η0). By v.c.ỹ,η(...) we mean “critical value with respect to ỹ, η of
...”.

Proof. At a critical point we have

=ỹ = ∇ηG(<ỹ, η),

∂

∂=ỹ
=φ(x, ỹ) + η = 0,

− ∂

∂<ỹ
=φ(x, ỹ) + (∇yG)(<ỹ, η) = 0.

175



If f(z) is a holomorphic function, then

∂

∂=z
=f = <∂f

∂z
,

∂

∂<z
=f = =∂f

∂z
, (10.2.3) ir.3

so the equations for our critical point become

=ỹ = ∇ηG(<ỹ, η),

η = −<∂φ
∂ỹ

(x, ỹ),

−∇yG(<ỹ, η) = −=∂φ
∂ỹ
,

or equivalently,

(ỹ,−∂φ
∂ỹ

(x, ỹ)) = (<ỹ, η) + iHG(<ỹ, η),

which says that the critical point (ỹ, η) is determined by the condition that
κT maps the point (ỹ, η̃) ∈ ΛG to a point (x, ξ), situated over x. We next
check that the critical point is nondegenerate. G is small, so it suffices to do
this when G = 0: Then the Hessian matrix of −=φ(x, ỹ)− η · =ỹ+G(<ỹ, η)
with respect to the variables <y,=y, η is −=φ′′y,y B 0

tB C −1
0 −1 0


which is nondegenerate independently of B,C.

If Φ(x) denotes the critical value in (
ir.2
10.2.2), it remains to check that

2
i
∂Φ
∂x

= ξ where ξ = ∂φ
∂x

(x, ỹ), (ỹ, η) denoting the critical point. However,
since Φ is a critical value, we get

2

i

∂Φ

∂x
=

2

i

∂

∂x
(−=φ(x, ỹ)) =

∂φ

∂x
(x, ỹ).

2

When G = 0, we notice that the formula (
ir.2
10.2.2) produces the same

function as (
ir.1
10.2.1).

Write ỹ = y + iθ and consider the function

f(x; y, η; θ) = −=φ(x, y + iθ)− η · θ, (10.2.4) ir.5

which appears in (
ir.2
10.2.2).
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ir2 Proposition 10.2.2 f is a nondegenerate phase function with θ as fiber
variables, generating a canonical transformation which can be identified with
κT .

Proof.
∂

∂θ
f = −<∂φ

∂ỹ
(x, y + iθ)− η,

so f is nondegenerate. The canonical relation has the graph

{(y, 2

i

∂f

∂x
; y, η,−∂f

∂y
,−∂f

∂η
); ∂θf(x, y, η, θ) = 0}

= {(x, ∂φ
∂x

; y, η,
∂

∂y
=φ(x, y + iθ), θ); η = −<∂φ

∂ỹ
(x, y + iθ)}

= {(x, ∂φ
∂x

(x, y + iθ); y,−<∂φ
∂ỹ

(x, y + iθ),=∂φ
∂ỹ

(x, y + iθ), θ)}.

Up to permutations of the components on the preimage side and changes of
signs, we recognize the graph of κT . 2

ir3 Proposition 10.2.3 Let f(x, y, θ) ∈ C∞(neigh (x0, y0, θ0),Rn×Rn×RN) be
a nondegenerate phase function with (x0, y0, θ0) ∈ Cφ, generating a canonical
transformation which maps (y0, η0) = (y0,−∇yf(x0, y0, θ0)) to (x0,∇xf(x0, y0, θ0)).
If g(y) is smooth near y0 with ∇g(y0) = η0 and

k(x) = v.c.y,θf(x, y, θ) + g(y)

is well-defined with a nondegenerate critical point close to (y0, θ0) for x close
to x0, then we have the inversion formula,

g(y) = v.c.x,θ − f(x, y, θ) + k(x),

for y ∈ neigh (y0), where the critical point is nondegenerate and close to
(x0, θ0).

Proof. This is very much a routine statement in Fourier integral opera-
tor theory (cf.

Sj82
[126]) and we only give some hints. Let κ be the canon-

ical transformation and introduce Λg = {(y,∇yg); y ∈ neigh (y0)}. The
assumption is equivalent to the fact that κ−1(T ∗x0

Rn) is transversal to Λg at
(y0, η0). Defining Λk similarly to Λg, we have Λk = κ(Λg) and obviously Λk

is transversal to κ(T ∗y0
Rn) at (x0, ξ0). Now −f(x, y, θ) generates κ−1 and

writing Λg = κ−1(Λk), we get the associated critical value formula for g(y)
in the proposition. 2

Combining the three propositions, we get
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ir4 Proposition 10.2.4

G(y, η) = v.c.x,θ=φ(x, y + iθ) + η · θ + ΦG(x). (10.2.5) ir.6

If (Φ̃, G̃) is a second pair of functions close to Φ0, 0 and related through
(
ir.2
10.2.2), (

ir.6
10.2.5), then

G ≤ G̃ iff Φ ≤ Φ̃. (10.2.6) ir.7

Indeed, if for instance Φ ≤ Φ̃, introduce Φt = tΦ̃ + (1 − t)Φ, so that
∂tΦt ≥ 0. If Gt is the corresponding critical value as in (

ir.6
10.2.5), then

∂tGt = (∂tΦt)(xt) ≥ 0, where (xt, θt) is the critical point.

10.3 Evolution equations on the transform side
ev

Let P̃ (x, ξ;h) be a smooth symbol defined in neigh ((x0, ξ0); ΛΦ0), with an
asymptotic expansion

P̃ (x, ξ;h) ∼ p̃(x, ξ) + hp̃1(x, ξ) + ... in C∞(neigh ((x0, ξ0),ΛΦ0)).

Let P̃ also denote an almost holomorphic extension to a complex neighbor-
hood of (x0, ξ0):

P̃ (x, ξ;h) ∼ p̃(x, ξ) + hp̃1(x, ξ) + ... in C∞(neigh ((x0, ξ0),C2n),

where p̃, p̃j are smooth extensions such that

∂p̃, ∂p̃j = O(dist ((x, ξ),ΛΦ0)∞).

Then, as shown in
LaSj82
[88] and later in

MeSj02
[103], if u = uh is holomorphic in a neigh-

borhood V of x0 and belonging toHΦ0(V ) in the sense that ‖u‖L2(V,e−2Φ0/hL(dx))

is finite and of temperate growth in 1/h when h tends to zero, then P̃ u =

P̃ (x, hDx;h)u can be defined in any smaller neighborhood W b V by the
formula,

P̃ u(x) =
1

(2πh)n

∫∫
Γ(x)

e
i
h

(x−y)·θP̃ (
x+ y

2
, θ;h)u(y)dydθ, (10.3.1) ev.0.1

where Γ(x) is a good contour (in the sense of
Sj82
[126]) of the form θ = 2

i
∂Φ0

∂x
(x+y

2
)+

i
C1

(x− y), |x − y| ≤ 1/C2, C1, C2 > 0. Then ∂P̃ is negligible, i.e. of norm

O(h∞): HΦ0(V ) → L2
Φ0

(W ), and modulo such negligible operators, P̃ is in-

dependent of the choice of good contour. By solving a ∂-problem (assuming,
as we may, that our neighborhoods are pseudoconvex) we can always correct
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P̃ with a negligible operator such that (after an arbitrarily small decrease

of W ) P̃ = O(1) : HΦ0(V ) → HΦ0(W ). Also, if Φ = Φ0 + O(h ln 1
h
) in

C2, then P̃ = O(h−N0) : HΦ(V ) → HΦ(W ), for some N0. By means of

Stokes’ formula, we can show that P̃ will change only by a negligible term
if we replace Φ0 by Φ in the definition of Γ(x), and then it follows that

P̃ = O(1) : HΦ(V )→ HΦ(W ).
Recall (

MeSj02
[103]) that the identity operator HΦ0(V ) → HΦ0(W ) is up to a

negligible operator of the form

Iu(x) = h−n
∫∫

e
2
h

Ψ0(x,y)a(x, y;h)u(y)e−
2
h

Φ0(y)dydy, (10.3.2) ev.0.2

where Ψ0(x, y), a(x, y;h) are almost holomorphic on the antidiagonal y = x
with Ψ0(x, x) = Φ0(x), a(x, y;h) ∼ a0(x, y) + ha1(x, y) + ..., a0(x, x) 6= 0.

More generally a pseudodifferential operator like P̃ takes the form

P̃ u(x) = h−n
∫∫

e
2
h

Ψ0(x,y)q(x, y;h)u(y)e−
2
h

Φ0(y)dydy

q0(x, x) = p̃(x,
2

i

∂Φ0

∂x
(x))a0(x, x),

(10.3.3) ev.0.3

and where q0 denotes the first term in the asymptotic expansion of the symbol
q. In this discussion, Φ0 can be replaced by any other smooth exponent Φ
which is O(hδ) close to Φ0 in C∞ and we make the corresponding replacement
of Ψ0. A well-known consequence of the strict pluri-subharmonicity of Φ, is
that

2<Ψ(x, y)− Φ(x)− Φ(y) � −|x− y|2, (10.3.4) ev.0.4

so the uniform boundedness HΦ → HΦ follows from the domination of the
modulus of the kernel of e−Φ/h ◦ P̃ ◦ eΦ/h by a Gaussian convolution kernel.

Now, we study the evolution problem

(h∂t + P̃ )Ũ(t) = 0, Ũ(0) = 1, (10.3.5) ev.0.5

where t is restricted to the interval [0, hδ] for some arbitrarily small but fixed
δ > 0. We review the approximate solution of this problem by a geometrical
optics construction: Look for Ũ(t) of the form

Ũ(t)u(x) = h−n
∫∫

e
2
h

Ψt(x,y)at(x, y;h)u(y)e−2Φ0(y)/hdydy, (10.3.6) ev.0.6

where Ψt, at depend smoothly on all the variables and Ψt=0 = Ψ0, at=0 = a0

in (
ev.0.3
10.3.3), so Ũ(0) = 1 up to a negligible operator.
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Formally Ũ(t) is the Fourier integral operator

Ũ(t)u(x) = h−n
∫∫

e
2
h

(Ψt(x,θ)−Ψ0(y,θ))at(x, θ;h)u(y)dydθ, (10.3.7) ev.0.7

where we choose the integration contour θ = y. Writing 2Ψt(x, θ) = iφt(x, θ)
leads to more standard notation and we impose the eikonal equation

i∂tφ+ p̃(x, φ′x(x, θ)) = 0. (10.3.8) ev.0.8

We cannot hope to solve the eikonal equation exactly, but we can do so to
infinite order at t = 0, x = y = θ. If we put

Λφt(·,θ) = {(x, φ′x(t, x, θ))}, (10.3.9) ev.0.10

then
Λφt(·,θ) = exp(tĤ 1

i
p̃)(Λφ0(·,θ)), (10.3.10) ev.0.11

to ∞ order at t = 0, θ = x. Here Ĥp̃ = Hp̃ +Hp̃ denotes the real vector field

associated to the (1,0)-field Hp̃, and similarly for Ĥ 1
i
p̃. (As in Chapter

qmgd
9 we

sometimes drop the distinction between a vector field of type (1,0) and the
corresponding real vector field ν̂ = ν+ ν.) At a point where ∂p̃ = 0, we have

Ĥp̃ = H<σ<p̃ = H=σ=p̃ , Ĥip̃ = −H<σ=p̃ = H=σ<p̃ , (10.3.11) ev.0.12

where the other fields are the Hamilton fields of <p̃, =p̃ with respect to the
real symplectic forms <σ and =σ respectively. See

Sj82, MeSj02
[126, 103]. Thus (

ev.0.11
10.3.10)

can be written
Λφt(·,θ) = exp(tH−=σ<p̃ )(Λφ0(·,θ)). (10.3.12) ev.0.13

A complex Lagrangian manifold is also I-Lagrangian (i.e. a Lagrangian man-
ifold for =σ) and (

ev.0.13
10.3.12) can be viewed as a relation between I-Lagrangian

manifolds. It defines the I-Lagrangian manifold Λφt(·,θ) unambiguously, once
we have fixed an almost holomorphic extension of p̃. Locally, a smooth I-
Lagrangian manifold Λ, for which the x-space projection Λ 3 (x, ξ) 7→ x ∈ Cn

is a local diffeomorphism, takes the form Λ = ΛΦ where Φ is real and smooth
and

ΛΦ := {(x, 2

i

∂Φ

∂x
); x ∈ Ω}, Ω ⊂ Cn open.

With a slight abuse of notation, we can therefore identify the C-Lagrangian
manifold Λφ0 with the I-Lagrangian manifold Λ−=φ0 , since ∂φ0

∂x
= 2

i
∂(−=φ0)

∂x
,

at all points where ∂xφ0 = 0.
(
ev.0.4
10.3.4) shows that

Φ0(x) + Φ0(θ)− (−=φ0(x, θ)) � |x− θ|2. (10.3.13) ev.0.14
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Define
ΛΦt = exp(tH−=σ<p̃ )(ΛΦ0), (10.3.14) ev.0.16

and fix the t-dependent constant in this defintition of Φt by imposing the
real Hamilton-Jacobi equation,

∂tΦt + <p̃(x, 2

i

∂Φt

∂x
) = 0, Φt=0 = Φ0. (10.3.15) ev.0.17

The real part of (
ev.0.8
10.3.8) gives a similar equation for −=φt,

∂t(−=φ) + <p̃(x, 2

i

∂

∂x
(−=φ)) = 0. (10.3.16) ev.0.18

(
ev.0.14
10.3.13) implies that ΛΦ0 and Λ−=φ0(·,θ) intersect transversally at (x0(θ), ξ0(θ)),

where (xt(θ), ξt(θ)) := exp(tH−=σ<p̃ )(θ, 2
i
∂Φ0

∂x
(θ)). (

ev.0.16
10.3.14), (

ev.0.13
10.3.12) then

show that ΛΦt and Λ−=φt(·,θ) intersect transversally at (xt(θ, ξt(θ)). Then
(
ev.0.14
10.3.13), (

ev.0.17
10.3.15), (

ev.0.18
10.3.16) imply that Φt(x) − (−=φt(x, θ)) = O(|x −

xt(θ)|2) and again by (
ev.0.14
10.3.13) and the transversal intersection, we get

Φt(x) + Φ0(θ)− (−=φt(x, θ)) � |x− xt(θ)|2. (10.3.17) ev.0.19

Determining at by solving a sequence of transport equations, we arrive at
the following result:

ev01 Proposition 10.3.1 The operator Ũ(t) constructed above is O(1) : HΦ0(V )→
HΦt(W ), (W b V being small pseudoconvex neighborhoods of a fixed point
x0) uniformly for 0 ≤ t ≤ hδ and it solves the problem (

ev.0.5
10.3.5) up to negli-

gible terms. This local statement makes sense, since by (
ev.0.19
10.3.17) we have

2<Ψt(x, y)− Φt(x)− Φ0(y) � −|x− xt(y)|2. (10.3.18) ev.0.20

Using
ev.0.5
10.3.5, we get up to negligible errors that

(h∂t + P̃ )[P̃ , Ũ(t)] = 0, [P̃ , Ũ(0)] = 0,

and examining this evolution problem, we conclude that the Fourier integral
operator [P̃ , Ũ(t)] is negligible. In particular,

h∂tŨ(t) + Ũ(t)P̃ = 0, 0 ≤ t ≤ hδ, (10.3.19) ev.0.21

up to negligible errors.
Let us briefly recall alternate approach, leading to the same weights Φt

(cf
MeSj02
[103]):
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Consider formally:

(e−tP̃ /hu|e−tP̃ /hu)HΦt
= (ut|ut)HΦt

, u ∈ HΦ0 ,

and look for Φt such that the time derivative of this expression vanishes to
leading order. We get

0 ≈ h∂t

∫
utute

−2Φt/hL(dx)

= −
(

(P̃ ut|ut)HΦt
+ (ut|P̃ ut)HΦt

+

∫
2
∂Φt

∂t
(x)|u|2e−2Φt/hL(dx)

)
.

Here

(P̃ ut|ut)HΦt
=

∫
(p̃|ΛΦt

+O(h))|ut|2e−2Φt/hL(dx),

and similarly for (ut|P̃ ut)HΦt
, so we would like to have

0 ≈
∫

(2
∂Φt

∂t
+ 2<p̃|ΛΦt

+O(h))|ut|2e−2Φt/hL(dx).

We choose Φt to be the solution of (
ev.0.17
10.3.15). Then the preceding discus-

sion again shows that e−tP̃ /h = O(1) : HΦ0 → HΦt .

<p̃ is constant along the integral curves of H−=σ<p̃ . Therefore, the second
term in (

ev.0.17
10.3.15) is ≥ 0, so

Φt ≤ Φ0, t ≥ 0, (10.3.20) ev.2.5

under the assumption that
<p̃|ΛΦ0

≥ 0. (10.3.21) ev.0

Recall that we limit our discussion to the interval 0 ≤ t ≤ hδ.
To get a more detailed understanding, we can work with the correspond-

ing functions Gt as follows:
Let p be defined by p = p̃◦κT and define Gt up to a t-dependent constant

by
ΛΦt = κT (ΛGt).

Then we also have ΛGt = exp tHp(Λ0), where Λ0 = R2n. In order to fix
the t-dependent constant we use one of the equivalent formulae (cf (

ir.2
10.2.2),

(
ir.6
10.2.5)):

Φt(x) = v.c.ỹ,η(−=φ(x, ỹ)− η · =ỹ +Gt(<ỹ, η)), (10.3.22) ev.3
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Gt(y, η) = v.c.x,θ(=φ(x, y + iθ) + η · θ + Φt(x)). (10.3.23) ev.4

Denoting by (x(t, y, η), θ(t, y, η)) the critical point in the last formula, we get

∂Gt

∂t
(y, η) =

∂Φt

∂t
(x(t, y, η)) = −<p̃(x, 2

i

∂Φt

∂x
)
|x=x(t,y,η)

. (10.3.24) ev.5

The critical points in (
ev.3
10.3.22), (

ev.4
10.3.23) are directly related to κT , so (

ev.5
10.3.24)

leads to
∂Gt

∂t
(y, η) + <p((y, η) + iHGt(y, η)) = 0. (10.3.25) ev.6

Notice that Gt ≤ 0 by (
ir.7
10.2.6), (

ev.2.5
10.3.20).

Now Gt and its gradient are small and we can Taylor expand (
ev.6
10.3.25)

and get

∂Gt

∂t
(y, η) + <p(y, η) + <(iHGtp(y, η)) +O((∇Gt)

2) = 0, (10.3.26) ev.7

which simplifies to

∂Gt

∂t
(y, η) +H=pGt +O((∇Gt)

2) = −<p(y, η). (10.3.27) ev.8

Now, Gt ≤ 0, so by a classical inequlity for C2 functions of constant sign,
(∇Gt)

2 = O(Gt) and we obtain

(
∂

∂t
+H=p)Gt +O(Gt) = −<p, G0 = 0. (10.3.28) ev.9

This is a differential inequality along the integral curves of H=p, leading to

−Gt(exp(tH=p)(ρ)) �
∫ t

0

<p(exp sH=p(ρ))ds, (10.3.29) ev.10

for all ρ = (y, η) ∈ neigh (ρ0,R
2n), ρ0 = (y0, η0).

Now, introduce the following assumption corresponding to the case (2) in
Theorem

in2
10.1.2,

Hj
=p(<p)(ρ0)

{
= 0, j ≤ k − 1

> 0, j = k
, (10.3.30) ev.11

where k has to be even since <p ≥ 0. We will work in a sufficiently small
neighborhood of ρ0. Put

J(t, ρ) =

∫ t

0

<p(exp sH=p(ρ))ds, (10.3.31) ev.12
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so that 0 ≤ J(t, ρ) ∈ C∞(neigh (0, ρ0), [0,+∞[×R2n), and

∂j+1
t J(0, ρ0) = Hj

=p(<p)(ρ0)

{
= 0, j ≤ k − 1

> 0, j = k
. (10.3.32) ev.13

ev1 Proposition 10.3.2 Let 0 ≤ J(t, ρ) ∈ C∞(neigh (0, ρ0), [0,+∞[×R2n) sat-
isfy (

ev.13
10.3.32) for some k ≥ 1. Then there is a constant C > 0 such that

J(t, ρ) ≥ tk+1

C
, (t, ρ) ∈ neigh ((0, ρ0), ]0,+∞[×R2n). (10.3.33) ev.14

Proof. Assume that (
ev.14
10.3.33) does not hold. Then there is a sequence

(tν , ρν) ∈ [0,+∞[×R2n converging to (0, ρ0) such that

J(tν , ρν)

tk+1
ν

→ 0,

and since J(t, ρ) is an increasing function of t, we get

sup
0≤t≤tν

J(t, ρν)

tk+1
ν

→ 0. (10.3.34) ev.14.5

Introduce the Taylor expansion,

J(t, ρν) = a(0)
ν + a(1)

ν t+ ...+ a(k+1)
ν tk+1 +O(tk+2),

and define

uν(s) =
J(tνs, ρν)

tk+1
ν

, 0 ≤ s ≤ 1.

Then by (
ev.14.5
10.3.34),

sup
0≤s≤1

uν(s)→ 0, ν →∞.

On the other hand,

uν(s) =
a

(0)
ν

tk+1
ν

+
a

(1)
ν

tkν
s+ ...+ a(k+1)

ν sk+1︸ ︷︷ ︸
=:pν(s)

+O(tνs
k+2),

so
sup

0≤s≤1
pν(s)→ 0, ν →∞.

The corresponding coefficients of pν have to tend to 0, and in particular,

a(k+1)
ν =

1

(k + 1)!
(∂k+1
t J(0, ρν)→ 0

which is in contradiction with (
ev.13
10.3.32). 2

Combining (
ev.10
10.3.29) and Proposition

ev1
10.3.2, we get
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ev2 Proposition 10.3.3 Under the assumption (
ev.11
10.3.30) there exists C > 0

such that

Gt(ρ) ≤ −t
k+1

C
, (t, ρ) ∈ neigh ((0, ρ0), [0,∞[×R2n). (10.3.35) ev.15

We can now return to the evolution equation for P̃ and the t-dependent
weight Φt in (

ev.0.17
10.3.15). From (

ev.15
10.3.35), (

ev.3
10.3.22), we get

ev3 Proposition 10.3.4 Under the assumption (
ev.11
10.3.30), we have

Φt(x) ≤ Φ0(x)− tk+1

C
, (t, x) ∈ neigh ((0, x0), [0,∞[×Cn). (10.3.36) ev.16

10.4 The resolvent estimates
re

Let P be an h-pseudodifferential operator satisfying the general assumptions
of the introduction.

Let z0 ∈ (∂Σ(p)) \ Σ∞(p). We first treat the case of Theorem
in2
10.1.2 so

that,
z0 ∈ iR, (10.4.1) re.1

<p(ρ) ≥ 0 in neigh (p−1(z0), T ∗X), (10.4.2) re.2

∀ρ ∈ p−1(z0), ∃j ≤ k, such that Hj
=p<p(ρ) > 0. (10.4.3) re.3

re1 Proposition 10.4.1 ∃C0 > 0 such that ∀C1 > 0, ∃C2 > 0 such that we have
for z, h as in (

in.13.5
10.1.14), h < 1/C2, u ∈ C∞0 (X):

|<z|‖u‖ ≤ C0‖(z − P )u‖, when <z ≤ −h
k
k+1 ,

h
k
k+1‖u‖ ≤ C0 exp(

C0

h
(<z)

k+1
k

+ )‖(z − P )u‖,

when <z ≥ −h
k
k+1 ≤ <z ≤ O(1)

(
h ln

1

h

) k
k+1

.

(10.4.4) re.4

Proof. The required estimate is easy to obtain microlocally in the region
where P − z0 is elliptic,3 so we see that it suffices to show the following
statement:

3 in the sense that with χ as in (
re.5
10.4.5), then by standard calculus (

DiSj99
[40]), we have

‖(1− χ)u‖ ≤ O(1)‖(z − P )u‖+O(h∞)‖u‖ for small values of |z − z0|,
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For every ρ0 ∈ p−1(z0), there exists χ ∈ C∞0 (T ∗X), equal to 1 near ρ0,
such that for z, h as in (

in.13.5
10.1.14) and letting χ also denote a corresponding

h-pseudodifferential operator, we have

|<z|‖χu‖ ≤ C0‖(z − P )u‖+ CNh
N‖u‖, when <z ≤ −h

k
k+1 ,

h
k
k+1‖χu‖ ≤ C0 exp

(
C0

h
(<z)

k+1
k

+

)
‖(z − P )u‖+ CNh

N‖u‖,

when − h
k
k+1 ≤ <z ≤ O(1)

(
h ln

1

h

) k
k+1

,

(10.4.5) re.5

where N ∈ N is arbitry.
When <z ≤ −hk/(k+1) this is an easy consequence of the semi-classical

sharp G̊arding inequality (see for instance
DiSj99
[40]), so from now on we assume

that <z ≥ −hk/(k+1) .
Let T : L2 → HΦ0(neigh (x0,C

n)) be an FBI transform as in Section
ge
10.2,

with (y0, η0) = ρ0. We then have a conjugated operator (cf.
Sj82
[126]) P̃ as in

(
ev.0.1
10.3.1), with (x0, ξ0) = κT (y0, η0) ∈ ΛΦ0 , and ΛΦ0 = κT (T ∗X), p̃ = p ◦ κ−1

T

near (x0, ξ0), where p̃ denotes the leading symbol of P̃ , such that

‖TPu− P̃ Tu‖HΦ0
(V ) ≤ O(h∞)‖u‖L2 , (10.4.6) re.5.1

where V is a small neighborhood of x0. When suppχ is small enough, we
also have

‖χu‖ ≤ O(1)‖Tu‖HΦ0
(V ) +O(h∞)‖u‖L2 . (10.4.7) re.5.2

It suffices to show that

‖u‖HΦ0
(V1) ≤ h−

k
k+1C0 exp(

C0

h
(<z)

k+1
k

+ )‖(P̃ − z)u‖HΦ0
(V2) +O(h∞)‖u‖HΦ0

(V3),

(10.4.8) re.6

u ∈ HΦ0(V3), where V1 b V2 b V3 are neighborhoods of x0, given by (x0, ξ0) =
κT (ρ0) ∈ ΛΦ0 .

From Proposition
ev3
10.3.4 and the fact that Ũ(t) : HΦ0(V2)→ HΦt(V1), we

see that
‖Ũ(t)u‖HΦ0

(V1) ≤ Ce−t
k+1/C‖u‖HΦ0

(V2). (10.4.9) re.7

Choose δ > 0 small enough so that δ(k + 1) < 1 and put

R̃(z) =
1

h

∫ hδ

0

e
tz
h Ũ(t)dt. (10.4.10) re.8

Before verifying that R̃ is an approximate left inverse to P̃ − z, we study
the norm of this operator in HΦ0 . We have in L(HHΦ0

(V2), HHΦ0
(V1)):

‖e
tz
h Ũ(t)‖ ≤ C exp

1

h
(t<z − tk+1

C
). (10.4.11) re.9
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It can be checked that the right hand side isO(h∞) for t = hδ, since δ(k+1) <

1 and <z ≤ O(1) (h ln(1/h))k/(k+1).
We get

‖R̃(z)‖ ≤ C

h

∫ +∞

0

exp
1

h
(t<z − tk+1

C
)dt =

C
k+2
k+1

h
k
k+1

I(
C

1
k+1

h
k
k+1

<z), (10.4.12) re.10

where

I(s) =

∫ ∞
0

est−t
k+1

dt. (10.4.13) re.11

re2 Lemma 10.4.2 We have

I(s) = O(1), when |s| ≤ 1, (10.4.14) re.12

I(s) =
O(1)

|s|
, when s ≤ −1, (10.4.15) re.13

I(s) ≤ O(1)s−
k−1
2k exp

(
k

(k + 1)
k+1
k

s
k+1
k

)
, when s ≥ 1. (10.4.16) re.14

Proof. The first two estimates are straight forward and we concentrate on
the last one, where we may also assume that s � 1. A computation shows
that the exponent fs(t) = st − tk+1 on [0,+∞[ has a unique critical point
t = t(s) = (s/(k + 1))1/k which is a nondegenerate maximum,

f ′′s (t(s)) = −k(k + 1)
1
k s

k−1
k ,

with critical value

fs(t(s)) =
k

(k + 1)
k+1
k

s
k+1
k .

Now

f ′′s (t) = −(k + 1)ktk−1 . f ′′s (t(s)), for
t(s)

2
≤ t < +∞,

so
∫∞
t(s)/2

est−t
k+1
dt satisfies the required upper bound.

On the other hand we have

fs(t(s))− fs(t) ≥
s
k+1
k

C
, for 0 ≤ t ≤ t(s)

2
, s� 1,

so ∫ t(s)
2

0

est−t
k+1

dt ≤ O(1)s
1
k exp(fs(t(s))−

s
k+1
k

C
),

and (
re.14
10.4.16) follows. 2

Applying the lemma to (
re.10
10.4.12), we get
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re3 Proposition 10.4.3 We have

‖R̃(z)‖ ≤ C

h
k
k+1

, |<z| ≤ O(1)h
k
k+1 , (10.4.17) re.15

‖R̃(z)‖ ≤ C

|<z|
, −1� <z ≤ −h

k
k+1 , (10.4.18) re.16

‖R̃(z)‖ ≤ C

h
k
k+1

exp(Ck
(<z)

k+1
k

h
), h

k
k+1 ≤ <z ≤

(
h ln

1

h

) k
k+1

. (10.4.19) re.17

From the beginning of the proof of Lemma
re2
10.4.2, or more directly from

(
re.9
10.4.11), we see that

‖e
tz
h Ũ(t)‖ ≤ C exp

Ck
h

(<z)
k+1
k

+ ,

which is bounded by some negative power of h, since <z ≤ O(1)(h ln 1
h
)

k
k+1 .

Working locally, we then see that modulo a negligible operator,

R̃(z)(P̃ − z) ≡ 1

h

∫ hδ

0

e
tz
h (−h∂t − z)Ũ(t)dt ≡ 1,

where the last equivalence follows from an integration by parts and the fact
that etz/hŨ(t) is negligible for t = hδ. Combining this with Proposition
re3
10.4.3, we get (

re.6
10.4.8), which completes the proof of Proposition

re1
10.4.1. 2

We can now finish the
Proof of Theorem

in2
10.1.2. Using standard pseudodifferential machinery (see

for instance
DiSj99
[40]) we first notice that P has discrete spectrum in a neighbor-

hood of z0 and that P −z is a Fredholm operator of index 0 from D(P ) to L2

when z varies in a small neighborhood of z0. On the other hand, Proposition
re1
10.4.1 implies that P−z is injective and hence bijective for <z ≤ O(h ln 1

h
)

k
k+1

and we also get the corresponding bounds on the resolvent. 2

Proof of Theorem
in1
10.1.1: We may asume for simplicity that z0 = 0 and

consider a point ρ0 ∈ p−1(0). After conjugation with a microlocally defined
unitary Fourier integral operator, we may assume that ρ0 = (0, 0) and that
dp(ρ0) = dξn. Then from Malgrange’s preparation theorem (cf. Section

geopr
6.2

and
Ha06b
[54]) we get near ρ = (0, 0), z = 0,

p(ρ)− z = q(x, ξ, z)(ξn + r(x, ξ′, z)), ξ′ = (ξ1, ..., ξn−1), (10.4.20) re.18

where q, r are smooth and q(0, 0, 0) 6= 0. As in
DeSjZw04
[39], we notice that either

=r(x, ξ′, 0) ≥ 0 in a neighborhood of (0, 0) or =r(x, ξ′, 0) ≤ 0 in such a
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neighborhood. Indeed, otherwise there would exist sequences ρ+
j , ρ−j in Rn×

Rn−1, converging to (0, 0) such that±=r(ρ±j ) > 0. It is then easy to construct
a closed curve γj in a small neighborhood of ρ0, passing through the points
(ρ±j , 0), such that the image of γj under the map (x, ξ) 7→ ξn + r(x, ξ′, 0) is
a simple closed curve in C \ {0}, with winding number 6= 0. More precisely,
we can arrange so that the image curve is confined to the boundary of the
rectangle, |<w| < εj, =r(ρ−j ) < =w < =r(ρ+

j ). Then the same holds for the
image of γj under p, and we see that R(p) contains a full neighborhood of 0,
in contradiction with the assumption that 0 = z0 ∈ ∂Σ(p).

In order to fix the ideas, let us assume that =r ≤ 0 near ρ0 when z = 0, so
that <(i(ξn + r(x, ξ′, 0))) ≥ 0. From (

re.18
10.4.20), we get the pseudodifferential

factorization (cf. Section
geopr
6.2)

P (x, hDx;h)− z =
1

i
Q(x, hDx, z;h)P̂ (x, hDx, z;h), (10.4.21) re.19

microlocally near ρ0 when z is close to 0. Here Q and P̂ have the leading
symbols q(x, ξ, z) and i(ξn + r(x, ξ′, z)) respectively.

We can now obtain a microlocal apriori estimate for P̂ as before. Let
us first check that the assumption in (2) of Theorem

in1
10.1.1 amounts to the

statement that for z = z0 = 0:

Hj
<p̂=p̂(ρ0) > 0 (10.4.22) re.20

for some j ∈ {1, 2, ..., k}. In fact, the assumption in Theorem
in1
10.1.1 (2) is

invariant under multiplication of p by non-vanishing smooth factors, so we
drop the hats and assume from the start that p = p̂ and =p ≥ 0. Put ρ(t) =
exp tHp(ρ0), r(t) = exp tH<p(ρ0) and let j ≥ 0 be the order of vanishing of
=p(r(t) at t = 0.4 From ρ̇(t) = Hp(ρ(t)), ṙ(t) = H<p(r(t)), we get

d

dt
(ρ− r) = iH=p(r) +O(ρ− r),

so

ρ(t)− r(t) =

∫ t

0

O(∇=p(r(s)))ds.

If p2 = 1
2i

(p− p∗) is the almost holomorphic extension of =p, we get

p∗(ρ(t)) = ip2(ρ(t)) =

ip2(r(t)) + i∇p2(r(t)) · (ρ(t)− r(t)) +O((ρ(t)− r(t))2) =

ip2(r(t)) + i∇p2(r(t)) ·
∫ t

0

O(∇p2(r(s)))ds+O(1)(

∫ t

0

O(∇p2(r(s)))ds)2.

4 Here, we also denote by p and almost holomorphic extension and define exp tHp :=

exp tĤp, Ĥp = Hp +Hp.
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Here, ∇p2(r(t)) = O(p2(r(t))1/2) = O(tj/2), so p∗(ρ(t)) = ip2(r(t))+O(tj+1),
and we get the equivalence of the assumption in (2) and the property (

re.20
10.4.22)

with the same minimal j in each.
Then, if we conjugate with an FBI-Bargmann transform as above, we can

construct an approximation Ũ(t) of exp(−t ˜̂P/h), such that

‖Ũ(t)‖ ≤ C0e
(C0t|z−z0|−tk+1/C0)/h,

when |z − z0| = O((h ln 1
h
)k/(k+1)).

From this we obtain a microlocal apriori estimate for P̂ analogous to the
one for P − z in Proposition

re1
10.4.1, and the proof can be completed in the

same way as that of Theorem
in2
10.1.2. 2

10.5 Examples
ex

Consider
P = −h2∆ + iV (x), V ∈ C∞(X; R), (10.5.1) ex.1

where either X is a smooth compact manifold of dimension n or X = Rn.
In the second case we assume that p = ξ2 + iV (x) belongs to a symbol space
S(m) where m ≥ 1 is an order function. If V ∈ C∞b (R2) then we can take
m = 1 + ξ2 and if ∂αV (x) = O((1 + |x|)2) for all α ∈ Nn and satisfies the
ellipticity condition |V (x)| ≥ C−1|x|2 for |x| ≥ C, for some constant C > 0,
then we can take m = 1 + ξ2 + x2.

We have Σ(p) = [0,∞[+iV (X). When X is compact then Σ∞(p) is empty
and when X = Rn, we have Σ∞(p) = [0,∞[+iΣ∞(V ), where Σ∞(V ) is the
set of accumulation points at infinity of V .

Let z0 = x0 + iy0 ∈ ∂Σ(p) \ Σ∞(p).

• In the case x0 = 0 we see that Theorem
in2
10.1.2 (2) is applicable with

k = 2, provided that y0 is not a critical value of V .

• When x0 > 0, then y0 is either the maximum or the minimum value
of V . Assume that V −1(y0) is finite and that each element of that
set is a non-degenerate maximum or minimum. Then Theorem

in2
10.1.2

(2) is applicable to ±iP with k = 2. By allowing a more complicated
behaviour of V near its extreme points, we can produce examples where
the same result applies with k > 2.

Next, consider the non-self-adjoint harmonic oscillator

Q = − d2

dy2
+ iy2 (10.5.2) ex.2
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on the real line, studied by Boulton
Bou02
[20] and Davies

Da99a
[32]. Introduce a large

spectral parameter E = iλ + µ where λ � 1 and |µ| � λ. The change
of variables y =

√
λx permits us to identify Q with Q = λP , where P =

−h2 d2

dx2 + ix2 and h = 1/λ → 0. Hence Q − E = λ(P − (1 + iµ
λ
)) and

Theorem
in2
10.1.2 (2) is applicable with k = 2. We conclude that (Q−E)−1 is

well-defined and of polynomial growth in λ (which can be specified further)
respectively O(λ−1) when

µ

λ
≤ C1(λ−1 lnλ)

2
3 and

µ

λ
≤ C1 respectively,

for any fixed C1 > 0, i.e. when

µ ≤ C1λ
1
3 (lnλ)

2
3 and µ ≤ C1λ

1
3 respectively. (10.5.3) ex.3

Actually, we are here in dimension 1 with k = 2, so Theorem
rest1d2
6.1.4 gives an

even more precise result.
Finally, we make a comment about the Kramers–Fokker–Planck operator

P = hy · ∂x − V ′(x) · h∂y +
1

2
(y − h∂y) · (y + h∂y) (10.5.4) ex.4

on R2n = Rn
x × Rn

y , where V is smooth and real-valued. The associated
semi-classical symbol is

p(x, y; ξ, η) = i(y · ξ − V ′(x) · η) +
1

2
(y2 + η2)

on R4n, and we notice that <p ≥ 0. Under the assumption that the Hessian
V ′′(x) is bounded with all its derivatives, |V ′(x)| ≥ C−1 when |x| ≥ C for
some C > 0, and that V is a Morse function, F. Hérau, C. Stolk and the
author

HeSjSt05
[67] showed among other things that the spectrum in any given strip

i[ 1
C1
, C1] + R is contained in a half strip

i[
1

C1

, C1] + [
h2/3

C2

,∞[ (10.5.5) ex.5

for some C2 = C2(C1) > 0 and that the resolvent is O(h−2/3) in the com-
plementary halfstrip. (We refrain from recalling more detailed statements
about spectrum and absence of spectrum in the regions where |=z| is large
and small respectively.)

The proof of this uses exponentially weighted estimates, based on the
fact that H2

p2
p1 > 0 when p2 � 1, p1 � 1. This is reminiscent of Theorem

in2
10.1.2 (2) with k = 2 or rather the corresponding result in

DeSjZw04
[39], but more
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complicated, since our operator is not elliptic near ∞. Moreover, iR \ {0} is
not in the range of p but only in Σ∞(p). It seems likely that the estimates
on the spectrum of the KFP-operator above can be improved so that we can
replace h by h ln(1/h) in the confinement (

ev.5
10.3.24) of the spectrum of P in

the strip i[1/C1, C1] + R and that there are similar improvements for large
and small values of |=z|.
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Chapter 11

From resolvent estimates to
semi-group bounds

sg

11.1 Introduction
sgint

In Chapter
resestgd
10 we saw a concrete example of how to get resolvent bounds

from semi-group bounds. Naturally, one can go in the opposite direction and
in this chapter we discuss some abstract results of that type, Including the
theorems of Hille-Yoshida and Gearhardt-Prüss-Hwang-Greiner. As for the
latter, we also give a result of Helffer and the author

HeSj10
[63] that provides a

more precise bound on the semi-group. We refer to
HeSj10
[63] for the discussion of

some examples.

11.2 General results
sgg

We start by recalling some general results and here we follow
EnNa07
[44]. Let B be

a complex Banch space.

sgg1 Definition 11.2.1 A map [0,+∞[3 t 7→ T (y) ∈ L(B,B) is a strongly con-
tinuous semi-group if{

T (t+ s) = T (t)T (s), t, s ≥ 0,

T (0) = 1
(11.2.1) sgg.1

and the orbit maps
[0,+∞[3 t 7→ T (t)x ∈ B (11.2.2) sgg.2

are continous for every x ∈ B.
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sgg2 Example 11.2.2 Let A ∈ Mat (n, n) (the space of complex n× n matrices)
and put T (t) = exp tA : Cn → Cn. This is a uniformly continuous semi-
group: ‖T (t)− T (s)‖ → 0, t→ s for every s ≥ 0.

sgg3 Example 11.2.3 Translation semi-groups: Let B = Lp([0,+∞[), 1 ≤ p <
+∞ and define T (t) : B → B by T (t)u(x) = u(x+t). Then T (t), 0 ≤ t < +∞
is a strongly continuous semi-group which is not uniformly continuous.

sgg4 Example 11.2.4 Let B = L2(Rn) and let T (t)u = U(t, x) ∈ C1([0,+∞[;H0(Rn),
be the solution of the heat equation

∂tU(t, x) = ∆xU(t, x), U(0, x) = u(x).

Then T (t) is a strongly continuous semi-group and also a contraction semi-
group in in the sense that ‖T (t)‖ ≤ 1 for all t ≥ 0.

Let (T (t))0≤t<∞ be a strongly continuous semi-group. The Banach-Steinhaus
theorem implies that ∃M0 ≥ 1 such that ‖T (t)‖ ≤M0 for 0 ≤ t ≤ 1.

sgg5 Proposition 11.2.5 If (T (t))0≤t<∞ is a strongly continuous semi-group, then
there exist M ≥ 1, ω ∈ R such that we have have the following property
(P (M,ω)):

‖T (t)‖ ≤Meωt, t ≥ 0. (11.2.3) sgg.2

Proof. If t ≥ 0, let [t] ∈ N be the integer part of t, so that t = [t] + s where
0 ≤ s < 1. Then with M0 as above, we get

‖T (t)‖ = ‖(T (1))[t]T (s)‖ ≤ ‖T (1)‖[t]‖T (s)‖ ≤M
[t]+1
0 ≤M0 ×M t

0.

Thus we have (
sgg.2
11.2.3) with M = M0 and ω = lnM0. 2

sgg6 Definition 11.2.6 Let (T (t))0≤t<∞ be a strongly continuous semi-group. The
growth bound ω0 ∈ [−∞,+∞[ is

ω0 := inf{ω ∈ R; ∃M = Mω < +∞ such that ‖T (t)‖ ≤Meωt, ∀t ∈ [0,+∞[}.

If T (t) = exp tA : Cn → Cn, A ∈ Mat (n, n) we see that ω0 = maxλ∈σ(A)<λ.

The generator

sgg7 Definition 11.2.7 Let T (t), t ≥ 0 be a strongly continuous semi-group. We
define the generator A : B ⊂ D(A)→ B to be the linear operator with domain

D(A) = {x ∈ B; lim
ε→0

ε−1(T (ε)− 1)x = exists in B},

and when x ∈ D(A) we define Ax = limε→0 ε
−1(T (ε)− 1)x.
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sgg8 Theorem 11.2.8 The generator of a strongly continuous semi-group is closed
and densely defined

One can show that if x ∈ D(A), then for every t ≥ 0, T (t)(D(A)) ⊂ D(A)
and ∂tT (t)x = AT (t)x = T (t)Ax. A general problem is to characterize
the generators of semi-groups. The following result gives some necessary
conditions.

sgg9 Theorem 11.2.9 Let T (t), t ≥ 0 be a strongly continuous semi-group with
generator A and let M ≥ 1, ω ∈ R be such that (P (M,ω)) holds.

If λ ∈ C and

R̃(λ)x :=

∫ ∞
0

e−λsT (s)xds = lim
T→+∞

∫ T

0

e−λsT (s)xds

exists for all x ∈ B (as a limit of vector valued Riemann intergrals), then

λ ∈ ρ(A) and R̃(λ) = (λ − A)−1. In particular, if <λ > ω, then λ ∈ ρ(A)
and

‖(λ− A)−1‖ ≤ M

<λ− ω
.

sgg10 Corollary 11.2.10 Under the assumptions of Theorem
sgg9
11.2.9, let ω0 be the

growth bound of T (t). Then the spectrum of A is contained in the half-plane
<λ ≤ ω0.

The Hille-Yoshida theorem characterizes generators of contraction semi-
groups (when taking ω = 0):

sgg11 Theorem 11.2.11 Let ω ∈ R and let A : B ⊃ D(A) → B be a linear
operator. The following properties are equivalent:

(a) A generates a strongly continuous semi-group T (t), t ≥ 0, which satis-
fies (P (1, ω)).

(b) A is closed, densely defined. For every λ > ω we have λ ∈ ρ(A) and

‖(λ− A)−1‖ ≤ 1

λ− ω
.

(c) A is closed, densely defined. For every λ ∈ C with <λ > ω we have
λ ∈ ρ(A) and

‖(λ− A)−1‖ ≤ 1

<λ− ω
.
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Example 11.2.12 Let −A = −(h∂x)
2 + ix2 : L2 → L2 with domain B2

defined in the beginning of Subsection
sp.e
2.5. The numerical range of A is

contained in the third quadrant and in particular in the half-plane <λ < 0,
so we know that ‖(λ − A)−1‖ ≤ 1/<λ when <λ > 0. Consequently A
generates a contraction semi-group.

The following theorem of Feller, Miyadera and Phillips characterizes gen-
erators of general strongly continuous semi-groups:

Theorem 11.2.13 Let ω ∈ R, M ≥ 1 and let A : B ⊃ D(A) → B be a
linear operator. The following properties are equivalent:

(a) A generates a strongly continuous semi-group T (t), t ≥ 0 which satisfies
(P (M,ω)).

(b) A is closed, densely defined. For every λ > ω we have λ ∈ ρ(A) and

‖(λ− A)−n‖ ≤ M

λ− ω
, ∀n ∈ N.

(c) A is closed, densely defined. For every λ ∈ C with <λ > ω we have
λ ∈ ρ(A) and

‖(λ− A)−n‖ ≤ M

<λ− ω
, ∀n ∈ N.

A draw-back with the Hille-Yoshida theorem is that it is essentially lim-
ited to the special case of contraction semi-groups. The Feller-Miyadera-
Phillips theorem gives a general characterization of generators of strongly
continuous semi-groups but it may be less clear how to verify the conditions
of that theorem in concrete applications.

11.3 The Gearhardt-Prüss-Hwang-Greiner the-

orem
gp

In this section we first recall the Gearhardt-Prüss-Hwang-Greiner theorem
(see

EnNa07
[44], Theorem V.I.11,

TrEm05
[148], Theorem 19.1 as well as

We90
[152],

Da05b
[35]) and then

we give a variant with explicit bounds on the norm of the semi-group due to
Helffer and the author

HeSj10
[63]. The GPHG-theorem reads:

gp1 Theorem 11.3.1

(a) Assume that B = H is a Hilbert space and that ‖(z−A)−1‖ is uniformly
bounded in the half-plane <z ≥ ω. Then there exists a constant M > 0
such that P (M,ω) holds.
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(b) If P (M,ω) holds, then for every α > ω, ‖(z − A)−1‖ is uniformly
bounded in the half-plane <z ≥ α.

The part (b) follows from the more precise statement in Theorem
sgg9
11.2.9.

The idea in the proofs that we have seen, is basically to use that the
resolvent and the inhomogeneous equation (∂t − A)u = w in exponentially
weighted spaces are related via Fourier-Laplace transform and we can use
Plancherel’s formula. This is why we need to work in a Hilbert space. Vari-
ants of this simple idea have also been used in more concrete situations. See
BuZw, GaGaNi08, Hi03, Sch09
[23, 47, 68, 117]. Before stating the more explicit version we make some
simple remarks.

We can improve slightly the conclusion of (a). If the property (a) is true
for some ω then it is automatically true for some ω′ < ω.

gp2 Lemma 11.3.2 If for some r(ω) > 0, ‖(z − A)−1‖ ≤ 1
r(ω)

for <z > ω, then

for every ω′ ∈]ω − r(ω), ω] we have

‖(z − A)−1‖ ≤ 1

r(ω)− (ω − ω′)
, <z > ω′.

Proof. If z ∈ C and <z > ω′, we can find z̃ ∈ C with <z > ω, and the
lemma follows from Proposition

sp.a6
2.1.6. 2

gp3 Remark 11.3.3 Let

ω1 = inf{ω ∈ R; {z ∈ C;<z > ω} ⊂ ρ(A) and sup
<z>ω

‖(z − A)−1‖ <∞}.

For ω > ω1, we may define r(ω) by

1

r(ω)
= sup
<z>ω

‖(z − A)−1‖.

Then r(ω) is an increasing function of ω; for every ω ∈]ω1,∞[, we have
ω − r(ω) ≥ ω1 and for ω′ ∈ [ω − r(ω), ω] we have

r(ω′) ≥ r(ω)− (ω − ω′).

We may state all this more elegantly by saying that r is a Lipschitz function
on ]ω1,+∞[ satisfying

0 ≤ dr

dω
≤ 1 .

Moreover, if ω1 > −∞, then r(ω)→ 0 when ω ↘ ω1.
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gp4 Remark 11.3.4 By Theorem
sgg9
11.2.9, we already know that ‖(z − A)−1‖ is

uniformly bounded in the half-plane <z ≥ β, if β > ω0 where ω0 is the growth
bound for (T (t))0≤t<∞. If α ≤ ω0, we see that ‖(z − A)−1‖ is uniformly
bounded in the half-plane <z ≥ α, provided that

• we have this uniform boundedness on the line <z = α,

• A has no spectrum in the half-plane <z ≥ α,

• ‖(z − A)−1‖ does not grow too wildly in the strip α ≤ <z ≤ β: ‖(z −
A)−1‖ ≤ O(1) exp(O(1) exp(k|=z|)), where k < π/(β − α).

We then also have

sup
<z≥α

‖(z − A)−1‖ = sup
<z=α

‖(z − A)−1‖. (11.3.4) gp.1

This follows from the subharmonicity of ln ‖(z − A)−1‖, Hadamard’s theo-
rem (or Phragmén-Lindelöf in exponential coordinates) and the maximum
principle.

The following result of B. Helffer and the author
HeSj10
[63] gives explicit bounds

on the semigroup in the GPHG-theorem.

gp5 Theorem 11.3.5 We make the assumptions of Theorem
gp1
11.3.1, (a) and

define r(ω) > 0 by
1

r(ω)
= sup
<z≥ω

‖(z − A)−1‖.

Let m(t) ≥ ‖T (t)‖ be a continuous positive function. Then for all t, a, ã > 0,
such that t = a+ ã, we have

‖T (t)‖ ≤ eωt

r(ω)‖ 1
m
‖e−ω·L2([0,a])‖ 1

m
‖e−ω·L2([0,ã])

. (11.3.5) gp.2

Here the norms are always the natural ones obtained from H, L2, thus for
instance ‖T (t)‖ = ‖T (t)‖L(H,H), if u is a function on R with values in C or in
H, ‖u‖ denotes the natural L2 norm, when the norm is taken over a subset
J of R, this is indicated with a “L2(J)”. In (

gp.2
11.3.5) we also have the natural

norm in the exponentially weighted space e−ω·L2([0, a]) and similarly with ã
instead of a; ‖f‖e−ω·L2([0,a]) = ‖eω·f(·)‖L2([0,a]).

Notice that we only need the bound m(t) for small t, say 0 ≤ t ≤ 1 and
that we have (

gp.2
11.3.5) with m(t) replaced by m(t)1[0,1](t) +∞1]1,+∞[. Thus

from the given bound m(t) for small times and the resolvent bound, we get a
global bound m̃(t) on ‖T (t)‖. We can then replace m(t) by min(m(t), m̃(t))

198



and reapply the theorem. It is an interesting problem to understand what
would be the optimal bound that we can get from such an iteration. Some
steps in that direction were taken in

HeSj10
[63].

The following variant of the main result could be useful in problems of
return to equilibrium.

gp6 Theorem 11.3.6 We make the assumptions of Theorem
gp5
11.3.5, so that

(
gp.2
11.3.5) holds. Let ω̃ < ω and assume that A has no spectrum on the line
<z = ω̃ and that the spectrum of A in the half-plane <z > ω̃ is compact
(and included in the strip ω̃ < <z < ω). Assume that ‖(z − A)−1‖ is uni-
formly bounded on {z ∈ C; <z ≥ ω̃} \ U , where U is any neighborhood of
σ+(A) := {z ∈ σ(A); <z > ω̃} and define r(ω̃) by

1

r(ω̃)
= sup
<z=ω̃

‖(z − A)−1‖.

Then for every t > 0,

T (t) = T (t)Π+ +R(t) = T (t)Π+ + T (t)(1− Π+),

where for all a, ã > 0 with a+ ã = t,

‖R(t)‖ ≤ eω̃t

r(ω̃)‖ 1
m
‖e−ω̃·L2([0,a])‖ 1

m
‖e−ω̃·L2([0,ã])

‖I − Π+‖. (11.3.6) gp.3

Here Π+ denotes the spectral projection associated to σ+(A):

Π+ =
1

2πi

∫
∂V

(z − A)−1dz,

where V is any compact neighborhood of σ+(A) with C1 boundary, disjoint
from σ(A) \ σ+(A).

11.3.1 Proofs of the main statements

Proof of Theorem
gp5
11.3.5. We shall use the inhomogeneous equation

(∂t − A)u = w on R. (11.3.7) gp.4

Recall that if v ∈ H, then T (t)v ∈ C0([0,∞[;H), while if v ∈ D(A), then
T (t)v ∈ C1([0,∞[;H) ∩ C0([0,∞[;D(A)) and

AT (t)v = T (t)Av, (∂t − A)T (t)v = 0 . (11.3.8) gp.5
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Let C0
+(H) denote the subspace of all v ∈ C0(R;H) that vanish near

−∞. For k ∈ N, we define Ck
+(H) and Ck

+(D(A)) similarly. For w ∈ C0
+(H),

we define Ew ∈ C0
+(H) by

Ew(t) =

∫ t

−∞
T (t− s)w(s)ds. (11.3.9) gp.6

We to see that E is continuous: Ck
+(H) → Ck

+(H), Ck
+(D(A)) → Ck

+(D(A))
and if w ∈ C1

+(H) ∩ C0
+(D(A)), then u = Ew is the unique solution in the

same space of (
gp.4
11.3.7). More precisely, we have

(∂t − A)Ew = w, E(∂t − A)u = u, (11.3.10) gp.7

for all u,w ∈ C1
+(H) ∩ C0

+(D(A))
Recall that we have P (M,ω0) for some M,ω0 by Proposition

sgg5
11.2.5. If

ω1 > ω0 and w ∈ C0
+(H) ∩ eω1·L2(R;H) (by which we only mean that w ∈

C0
+(H) and that ‖w‖eω1·L2(R;H) < ∞, avoiding to define the larger space

eω1·L2(R;H)), then Ew belongs to the same space and

‖Ew‖eω1·L2(R;H) = ‖
∫ ∞

0

e−ω1sT (s)e−ω1(·−s)w(· − s)‖

≤
(∫ ∞

0

e−ω1t‖T (t)‖ dt
)
‖w‖eω1·L2(R;H)

≤ M

ω1 − ω0

‖w‖eω1·L2(R;H).

Now we consider Laplace transforms. If u ∈ eω·S(R;H), then the Laplace
transform

û(τ) =

∫ +∞

−∞
e−tτu(t)dt

is well-defined in S(Γω;H), where

Γω = {τ ∈ C;<τ = ω}

and we have Parseval’s identity

1

2π
‖û‖2

L2(Γω) = ‖u‖eω·L2 . (11.3.11) gp.8

Now we make the assumptions in Theorem
gp5
11.3.5, define ω and r(ω) as

there, and let M,ω0 be as above. Let w ∈ eω·S+(D(A)), where S+(D(A))
by definition is the space of all u ∈ S(R;D(A)), vanishing near −∞. Then
w ∈ eω1·S+(D(A)) for all ω1 ≥ ω. If ω1 > ω0 then u := Ew belongs to
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eω1·S+(D(A)) and solves (
gp.4
11.3.7). Laplace transforming that equation, we

get
(τ − A)û(τ) = ŵ(τ), (11.3.12) gp.9

for <τ > ω0. Notice here that ŵ(τ) is continuous in the half-plane <τ ≥ ω,
holomorphic in <τ > ω, and ŵ|Γω̃ ∈ S(Γω̃) for every ω̃ ≥ ω. We use the
assumption in the theorem to write

û(τ) = (τ − A)−1ŵ(τ), (11.3.13) gp.10

and to see that û(τ) can be extended to the half-plane <τ ≥ ω with the same
properties as ŵ(τ). By Laplace (Fourier) inversion from Γω we conclude that
u ∈ eω·S+(D(A)). Moreover, since

‖û(τ)‖H ≤
1

r(ω)
‖ŵ(τ)‖H, τ ∈ Γω,

we get from Parseval’s identity that

‖u‖eω·L2 ≤ 1

r(ω)
‖w‖eω·L2 . (11.3.14) gp.11

Using the density of D(A) in H together with standard cutoff and reg-
ularization arguments, we see that (

gp.11
11.3.14) extends to the case when w ∈

eω·L2(R;H) ∩ C0
+(H), leading to the fact that u := Ew belongs to the same

space and satisfies (
gp.11
11.3.14).

Consider u(t) = T (t)v, for v ∈ D(A), solving the Cauchy problem

(∂t − A)u = 0 , t ≥ 0 ,
u(0) = v .

Let χ be a decreasing Lipschitz function on R, equal to 1 on ] −∞, 0] and
vanishing near +∞. Then

(∂t − A)(1− χ)u = −χ′(t)u ,

and

‖χ′u‖2
eω·L2 =

∫ +∞

0

|χ′(t)|2‖u(t)‖2e−2ωt dt

≤ ‖χ′m‖2
eω·L2 ‖v‖2,

where we notice that χ′m is welldefined on R since suppχ′ ⊂ [0,∞[.

201



Now (1− χ)u, χ′u are well-defined on R, so

‖(1− χ)u‖eω·L2 ≤ r(ω)−1‖χ′u‖eω·L2 ≤ r(ω)−1‖χ′m‖eω·L2 ‖v‖ . (11.3.15) gp.12

Strictly speaking, in order to apply (
gp.11
11.3.14), we approximate χ by a sequence

of smooth functions. Similarly,

‖χu‖eω·L2(R+) ≤ ‖χm‖eω·L2(R+) ‖v‖ ,

so
‖u‖eω·L2(R+) ≤

(
r(ω)−1‖χ′m‖eω·L2 + ‖χm‖eω·L2(R+)

)
‖v‖ .

Let us now go from L2 to L∞. For t > 0, let χ+(s) = χ̃(t − s) with
χ̃ as χ above and in addition supp χ̃ ⊂] − ∞, t], so that χ+(t) = 1 and
suppχ+ ⊂ [0,∞[. Then

(∂s − A) (χ+(s)u(s)) = χ′+(s)u(s) ,

and

χ+u(t) =

∫ t

−∞
T (t− s)χ′+(s)u(s) ds .

Hence, we obtain

e−ωt‖u(t)‖ = e−ωt‖χ+(t)u(t)‖

≤
∫ t

−∞
e−ωtm(t− s)|χ̃′(t− s)|‖u(s)‖ ds

≤
∫ t

−∞
e−ω(t−s) m(t− s) |χ̃′(t− s)| e−ωs‖u(s)‖ ds

≤ ‖mχ̃′‖eω·L2 ‖u‖eω·L2(suppχ+) .

(11.3.16) gp.13

Assume that
χ = 0 on suppχ+ . (11.3.17) gp.14

Then u can be replaced by (1−χ)u in the last line in (
gp.13
11.3.16) and using

(
gp.12
11.3.15) we get

e−ωt‖u(t)‖ ≤ r(ω)−1‖mχ′‖eω·L2‖mχ̃′‖eω·L2‖v‖ . (11.3.18) gp.15

Let

suppχ ⊂]−∞, a] , supp χ̃ ⊂]−∞, ã], a+ ã = t , (11.3.19) gp.16

so that (
gp.14
11.3.17) holds.
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For a given a > 0, we look for χ in (
gp.16
11.3.19) such that ‖mχ′‖eω·L2 is as

small as possible. By the Cauchy-Schwarz inequality,

1 =

∫ a

0

|χ′(s)|ds ≤ ‖χ′m‖eω·L2‖ 1

m
‖e−ω·L2(]0,a[) , (11.3.20) gp.17

so

‖χ′m‖eω·L2 ≥ 1

‖ 1
m
‖e−ω·L2(]0,a[)

. (11.3.21) gp.18

We get equality in (
gp.18
11.3.21) if for some constant C,

|χ′(s)|m(s)e−ωs = C
1

m(s)
eωs, on [0, a],

i.e.

χ′(s)m(s)e−ωs = −C 1

m(s)
eωs, on [0, a],

where C is determined by the condition 1 =
∫ a

0
|χ′(s)|ds.

We get

C =
1

‖ 1
m
‖2
e−ω·L2(]0,a[)

,

Here χ(s) = 1 for s ≤ 0, χ(s) = 0 for s ≥ a,

χ(s) = C

∫ a

s

1

m(σ)2
e2ωσdσ, 0 ≤ s ≤ a.

With the similar optimal choice of χ̃, for which

‖χ̃′m‖eω·L2 =
1

‖ 1
m
‖e−ω·L2([0,ã])

,

we get from (
gp.15
11.3.18):

e−ωt‖u(t)‖ ≤ ‖v‖
r(ω)‖ 1

m
‖e−ω·L2([0,a])‖ 1

m
‖e−ω·L2([0,ã])

, (11.3.22) gp.19

provided that a, ã > 0, a + ã = t, for any v ∈ D(A). Recalling that D(A) is
dense in H, this completes the proof of Theorem

gp5
11.3.5. 2

Proof of Theorem
gp6
11.3.6. We can apply Theorem

gp5
11.3.5 to the restriction

S̃(t) of T (t) to the rangeR(1−Π+) of 1−Π+. The generator is the restriction

Ã of A so we get

‖S̃(t)‖ ≤ eω̃t

r(ω̃)‖ 1
m
‖e−ω̃·L2([0,a])‖ 1

m
‖e−ω̃·L2([0,ã])

. (11.3.23) gp.20

Then (
gp.3
11.3.6) follows from the fact that R(t) = S̃(t)(1− Π+). 2
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Chapter 12

Counting zeros of holomorphic
functions

countz

12.1 Introduction
intcz

In this chapter we will generalize Proposition
1dm9
3.4.6 of Hager about count-

ing the zeros of holomorphic functions of exponential growth. In
HaSj08
[55] we

obtained such a generalization, by weakening the regularity assumptions on
φ. However, due to some logarithmic losses, we were not quite able to re-
cover Hager’s original result, and we still had a fixed domain Γ with smooth
boundary.

In many spectral problems, the domain should be allowed to depend on
h, for instance, it could be a long thin rectangle, and the boundary regularity
should be relaxed. In this chapter, based on

Sj09b
[135] we revisit systematically

the proof of the counting proposition in
HaSj08
[55] and obtain a general and quite

natural result allowing an h -dependent exponent φ to be merely continu-
ous and the h-dependent domain Γ to have Lipschitz boundary. The result
generalizes the two earlier ones. By allowing suitable small changes of the
points zj we also get rid of the logarithmic losses. In comparison to the re-
sults in

Sj09b
[135] we relax a subharmonicity assumption about the exponent in

the exponential bounds.
We next formulate the results. Let Γ b C be an open set and let γ = ∂Γ

be the boundary of Γ. Let r : γ →]0,∞[ be a Lipschitz function of Lipschitz
modulus ≤ 1/2:

|r(x)− r(y)| ≤ 1

2
|x− y|, x, y ∈ γ. (12.1.1) intcz.1

We further assume that γ is Lipschitz in the following precise sense, where r
enters:
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There exists a constant C0 such that for every x ∈ γ there exist new affine
coordinates ỹ = (ỹ1, ỹ2) of the form ỹ = U(y− x), y ∈ C ' R2 being the old
coordinates, where U = Ux is orthogonal, such that the intersection of Γ and
the rectangle Rx := {y ∈ C; |ỹ1| < r(x), |ỹ2| < C0r(x)} takes the form

{y ∈ Rx; ỹ2 > fx(ỹ1), |ỹ1| < r(x)}, (12.1.2) intcz.2

where fx(ỹ1) is Lipschitz on [−r(x), r(x)], with Lipschitz modulus ≤ C0.
Notice that our assumption (

intcz.2
12.1.2) remains valid if we decrease r. It will

be convenient to extend the function to all of C, by putting

r(x) = inf
y∈γ

(r(y) +
1

2
|x− y|). (12.1.3) intcz.3

The extended function is also Lipschitz with modulus ≤ 1
2
:

|r(x)− r(y)| ≤ 1

2
|x− y|, x, y ∈ C.

Notice that

r(x) ≥ 1

2
dist (x, γ), (12.1.4) intcz.4

and that

|y − x| ≤ r(x)⇒ r(x)

2
≤ r(y) ≤ 3r(x)

2
. (12.1.5) intcz.5

For convenience, we shall also assume that Γ is simply connected. The
general version of our zero counting result is:

intcz1 Theorem 12.1.1 Let Γ b C be open, simply connnected and have Lipschitz
boundary γ with an associated Lipschitz weight r as in (

intcz.1
12.1.1), (

intcz.2
12.1.2),

(
intcz.3
12.1.3). Put γ̃αr = ∪x∈γD(x, αr(x)) for any constant α > 0. Let z0

j ∈ γ,
j ∈ Z/NZ be distributed along the boundary in the positively oriented sense
such that

r(z0
j )/4 ≤ |z0

j+1 − z0
j | ≤ r(z0

j )/2.

(Here “4” can be replaced by any fixed constant > 2.) Then for every constant
C1 large enough; ≥ C0

1 depending only on the constant C0 in the assumption
around (

intcz.2
12.1.2), there exists a constant C2 > 0 such that we have the follow-

ing for any zj ∈ D(z0
j , r(z

0
j )/(2C1)):

Let 0 < h ≤ 1 and let φ be a continuous subharmonic function defined
on some neighborhood of the closure of γ̃r and denote by the same symbol a
distribution extension to Γ ∪ γ̃r. If u is a holomorphic function on Γ ∪ γ̃r
satisfying

h ln |u| ≤ φ(z) on γ̃r, (12.1.6) intcz.6
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h ln |u(zj)| ≥ φ(zj)− εj, for j = 1, 2, ..., N, (12.1.7) intcz.7

where εj ≥ 0, then the number of zeros of u in Γ satisfies

|#(u−1(0) ∩ Γ)− 1

2πh
µ(Γ)| ≤

C2

h

(
µ(γ̃r) +

N∑
1

(
εj +

∫
D(zj ,

r(zj)

4C1
)

| ln |w − zj|
r(zj)

|µ(dw)

))
.

(12.1.8) intcz.8

Here µ := ∆φ ∈ D′(Γ ∪ γ̃r) is a positive measure on γ̃r so that µ(Γ) and
µ(γ̃r) are well-defined by

µ(Γ) = sup
χ∈C0(Γ;[0,1])

χ(z)∆φ(z)L(dz)

and similarly with Γ replaced with γ̃r. .

As a matter of fact, we can relax the subharmonicity assumption.

intcz1.5 Remark 12.1.2 The preceding theorem remains valid if we drop the sub-
harmonicity assumption and assume instead that φ is continuous in a neigh-
borhood of γ̃r and has the property that µ := ∆φL(dz) is a finite Radon
measure. Let µ = µ+− µ− be the Jordan decomposition of µ into the differ-
ence of two positive Radon measures (see

Fi12
[12]). Then in the conclusion, we

replace µ in the right hand side of (
intcz.8
12.1.8) with µ+. We now define µ(Γ) in

the left hand side as the limit of
∫
χν(z)µ(dz), where C0(Γ; [0, 1]) 3 χν ↗ 1Γ,

ν →∞.

By observing that the average of | ln |w−zj |
r(zj)
| with respect to the Lebesgue

measure L(dzj) over D(z0
j ,

r(z0
j )

2C1
) is O(1), we can get rid of the logarithmic

terms in Theorem
intcz1
12.1.1, to the price of making a suitable choice of zj = z̃j,

and we get:

intcz2 Theorem 12.1.3 Let Γ b C be simply connnected and have Lipschitz bound-
ary γ with an associated Lipschitz weight r as in (

intcz.1
12.1.1), (

intcz.2
12.1.2), (

intcz.3
12.1.3).

Let z0
j ∈ γ, j ∈ Z/NZ be distributed along the boundary in the positively

oriented sense such that

r(z0
j )/4 ≤ |z0

j+1 − z0
j | ≤ r(z0

j )/2.

(Here “4” can be replaced by any fixed constant > 2.) Then for every constant
C1 large enough; ≥ C0

1 depending only on the constant C0 in the assumption
around (

intcz.2
12.1.2), there exists a constant C2 > 0 such that we have the follow-

ing:
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Let 0 < h ≤ 1 and let φ be a continuous subharmonic function defined
on some neighborhood of the closure of γ̃r and denote by the same symbol a

distribution extension to Γ ∪ γ̃r. Then ∃ z̃j ∈ D(z0
j ,

r(z0
j )

2C1
) such that if u is a

holomorphic function on Γ ∪ γ̃r satisfying

h ln |u| ≤ φ(z) on γ̃r, (12.1.9) intcz.6.5

and
h ln |u(z̃j)| ≥ φ(z̃j)− εj, j = 1, 2, ..., N, (12.1.10) intcz.9

instead of (
intcz.7
12.1.7), then

|#(u−1(0) ∩ Γ)− 1

2πh
µ(Γ)| ≤ C2

h
(µ(γ̃r) +

∑
εj). (12.1.11) intcz.10

Further, this result can be extended to the non subharmonic case as in Remark
intcz1.5
12.1.2, by using the Radon decomposition µ = µ+ − µ− and replacing µ in
the right hand side of (

intcz.10
12.1.11) with µ+.

Of course, if we already know (in the subharmonic case) that∫
D(zj ,

r(zj)

4C1
)

| ln |w − zj|
r(zj)

|µ(dw) = O(1)µ(D(zj,
r(zj)

4C1

)), (12.1.12) intcz.11

then we can keep z̃j = zj in (
intcz.8
12.1.8) and get (

intcz.10
12.1.11). This is the case, if we

assume that µ is equivalent to the Lebesgue measure L(dω) in the following
sense:

µ(dw)

µ(D(zj,
r(zj)

4C1
))
� L(dw)

L(D(zj,
r(zj)

4C1
))

on D(zj,
r(zj)

4C1

),

uniformly for j = 1, 2, ..., N.

(12.1.13) intcz.12

Then we get,

d3 Theorem 12.1.4 Make the assumptions of Theorem
intcz1
12.1.1 as well as (

intcz.11
12.1.12)

or the stronger assumption (
intcz.12
12.1.13). Then from (

intcz.6
12.1.6), (

intcz.7
12.1.7), we con-

clude (
intcz.10
12.1.11). In the non-subharmonic case, we have the same statement

provided that µ is replaced with µ+ in (
intcz.12
12.1.13), (

intcz.12
12.1.13) and to the right

in (
intcz.10
12.1.11).

In particular, we recover Proposition
1dm9
3.4.6, where Γ, φ are independent of h,

γ of class C∞ and φ ∈ C2(neigh (γ)). Then |µ| ≤ O(1)L(dz) and it suffices
to choose r =

√
ε, εj = ε and to notice that we can replace φ by φ + ε. The

counting proposition in
HaSj08
[55] can also be recovered.
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There has been a considerable activity in the study of the zero set of
random holomorphic functions where the Edelman Kostlan formula has sim-
ilarities with the above results (and the earlier ones by Hager and others
mentioned above) and where many further results have been obtained. See
M. Sodin

So00
[145], Sodin, B. Tsirelson

SoTs05
[146], S. Zrebiec

Zr07
[155], B. Shiffman,

S. Zelditch, S. Zrebiec
ShZeZr08
[121]. The two last papers deal with holomorphic

functions of several variables and it would be interest to see if our results
also have extensions to the case of several variables. Our results are similar
in spirit to classical results on zeros of entire functions, see Levin

Lev80
[90].

The outline of the chapter is the following:
In Section

cz
12.2 we consider thin neighborhoods of the boundary where the

width is variable and determined by the function r. We verify that we can
find such neighborhoods with smooth boundary and estimate the derivatives
of the boundary defining function. Then we develop some exponentially
weighted estimates for the Laplacian in such domains in the spirit of what
can be done for the Schrödinger equation (

HeSj84
[61]) and a large number of works

in thin domains, see for instance
GrJe96, BoEx04
[42, 19]. From that we also deduce pointwise

estimates on the corresponding Green kernel.
In Section

di
12.3 we prove the main results by following the general strategy

of the proof of the corresponding result in
HaSj08
[55] and carry out the averaging

argument that leads to the elimination of the logarithms.
In Section

ap
12.4 we consider as a simple illustration the zeros of sums of

exponentials of holomorphic functions. These results can also be obtained
with more direct methods, cf

Da03, BlMa06, HiSj08b
[34, 13, 72].

This chapter is a slightly improved version of
Sj09b
[135], where a last section

– not included here – establishes a connection with classical results on zeros
of entire functions.

12.2 Thin neighborhoods of the boundary and

weighted estimates
cz

Let Γ, γ = ∂Γ, r be as in the introduction.
Using a locally finite covering with discs D(x, r(x)) and a subordinated

partition of unity, it is standard to find a smooth function r̃(x) satisfying

1

C
r(x) ≤ r̃(x) ≤ r(x), |∇r̃(x)| ≤ 1

2
, ∂αr̃(x) = O(r̃1−|α|), (12.2.1) a.6

where C > 0 is a universal constant.
From now on, we replace r(x) by r̃(x) and the drop the tilde. (

intcz.1
12.1.1),

(
intcz.2
12.1.2), (

intcz.5
12.1.5) remain valid and (

intcz.4
12.1.4) remains valid in the weakened
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form:

r(x) ≥ 1

C
dist (x, γ), (12.2.2) a.6.5

where C > 0 is new constant.
Consider the signed distance to γ:

g(x) =

{
dist (x, γ), x ∈ Γ

−dist (x, γ), x ∈ C \ Γ
(12.2.3) a.7

Possibly after replacing r by a small constant multiple of r we deduce from
(
intcz.2
12.1.2) that for every x ∈ γ there exists a normalized constant real vector

field ν = νx (namely ∂ỹ1 , cf. (
intcz.2
12.1.2)) such that

ν(g) ≥ 1

C
in Rx, C = (1 + C2

0)−1/2. (12.2.4) a.8

In the set ∪x∈γRx, we consider the regularized function

gε(x) =

∫
1

(εr(x))2
χ(
x− y
εr(x)

)g(y)L(dy), (12.2.5) a.9

where 0 ≤ χ ∈ C∞0 (D(0, 1)),
∫
χ(x)L(dx) = 1. Here ε > 0 is small and we

notice that r(x) � r(y), g(y) = O(r(y)), when χ((x − y)/(εr(x)) 6= 0. It
follows that gε(x) = O(r(x)) and more precisely, since g is Lipschitz, that

gε(x)− g(x) = O(εr(x)). (12.2.6) a.10

Differentiating (
a.9
12.2.5), we get

∇xgε(x) = (∇xg)ε + 2

∫
−∇r(x)

ε2r(x)2
χ(
x− y
εr(x)

)
g(y)

r(x)
L(dy) (12.2.7)

+

∫
1

ε2r(x)2
χ′(

x− y
εr(x)

) · x− y
εr(x)

(−∇r(x))
g(y)

r(x)
L(dy),

where (∇xg)ε is defined as in (
a.9
12.2.5) with g replaced by ∇xg. It follows that

∇xgε(x)− (∇g)ε(x) = O(1) sup
y∈D(x,εr(x))

|g(y)|
r(x)

. (12.2.8) a.12

In particular, ∇xgε = O(1) and with ν = νx:

ν(gε)(y) ≥ 1

2C
, when y ∈ Rx, and sup

|z−y|≤εr(y)

|g(z)| � r(y). (12.2.9) a.13
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Differentiating (
a.11
12.2.7) further, we get

∂αgε(x) = Oα((εr(x))1−|α|), |α| ≥ 1. (12.2.10) a.14

Let C > 0 be large enough but independent of ε. Put

γ̂ε,Cεr = {x ∈ ∪y∈γRy; |gε(x)| < Cεr(x)}. (12.2.11) a.15

If C > 0 is sufficiently large, then in the coordinates associated to (
intcz.2
12.1.2),

γ̂ε,Cεr takes the form

f−x (ỹ1) < ỹ2 < f+
x (ỹ1), |ỹ1| < r(x), (12.2.12) a.16

where f±x are smooth on [−r(x), r(x)] and satisfy

∂kỹ1
f±x = Ok((εr(x))1−k), k ≥ 1, (12.2.13) a.17

0 < f+
x − fx, fx − f−x � Cεr(x). (12.2.14) a.18

Later, we will fix ε > 0 small enough and write

γr = γ̂ε,Cεr and more generally, γαr = γ̂ε,Cεαr. (12.2.15) a.19

We shall next establish an exponentially weighted estimate for the Dirich-
let Laplacian in γr:

a1 Proposition 12.2.1 Let C > 0 be sufficiently large and ε > 0 sufficiently
small in the definition of γr in (

a.19
12.2.15). Then there exists a new constant

C > 0 such that if ψ ∈ C2(γr) and

|ψ′x| ≤
1

Cr
, (12.2.16) cz.7.3

we have

‖eψDu‖+
1

C
‖1

r
eψu‖ ≤ C‖reψ∆u‖, u ∈ (H1

0 ∩H2)(γr), (12.2.17) cz.7.6

where ‖w‖ denotes the L2 norm when the function w is scalar and we write

(v|w) =

∫ ∑
vj(x)wj(x)L(dx), ‖v‖ =

√
(v|v),

for Cn-valued functions with components in L2. H1
0 and H2 are the standard

Sobolev spaces.
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Proof. Let ψ ∈ C2(γr; R) and put

−∆ψ = eψ ◦ (−∆) ◦ e−ψ = D2
x − (ψ′x)

2 + i(ψ′x ◦Dx +Dx ◦ ψ′x),

where the last term is formally anti-self-adjoint. Then for every u ∈ (H2 ∩
H1

0 )(γr):
(−∆ψu|u) = ‖Dxu‖2 − ((ψ′x)

2u|u). (12.2.18) cz.7.1

We need an apriori estimate for Dx. Let v : γr → Rn be sufficiently
smooth. We sometimes consider v as a vector field. Then for u ∈ (H2 ∩
H1

0 )(γr):
(Du|uv)− (uv|Du) = i(div (v)u|u).

Assume div (v) > 0. If v = ∇w, then div (v) = ∆w, so it suffices to take
w strictly subharmonic. Then∫

div (v)|u|2dx ≤ 2‖uv‖‖Du‖ ≤ ‖Du‖2 + ‖uv‖2,

which we write ∫
(div (v)− |v|2)|u|2dx ≤ ‖Du‖2.

Using this in (
cz.7.1
12.2.18), we get

1

2
‖Du‖2 +

∫
(
1

2
(div (v)− |v|2)− (ψ′x)

2)|u|2dx ≤

‖1

k
(−∆ψ)u‖‖ku‖ ≤ 1

2
‖1

k
(−∆ψ)u‖2 +

1

2
‖ku‖2,

where k is any positive continuous function on γr. We write this as

1

2
‖Du‖2+

∫
(
1

2
(div (v)−|v|2−k2)−(ψ′x)

2)|u|2dx ≤ 1

2
‖1

k
(−∆ψ)u‖2. (12.2.19) cz.7.2

We shall see that we can choose v so that

div (v) ≥ r−2, |v| ≤ O(r−1). (12.2.20) cz.7.2.3

After replacing v by C−1v for a sufficiently large constant C, we then achieve
that

div (v)− |v|2 � r−2. (12.2.21) cz.7.2.7

Before continuing, let us establish (
cz.7.2.3
12.2.20): Let g = gε be the function

in the definition of γr = γ̂ε,Cεr in (
a.15
12.2.11), so that C−1 ≤ |∇g| ≤ 1 (with the

new C independent of ε, C in (
a.15
12.2.11)), ∂αg = Oε(r(x)1−|α|). Put

v = ∇(eλg/r), (12.2.22) b.1
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where λ > 0 will be sufficiently large. Notice that

∇(
g

r
) =
∇g
r
− g∇r

r2
,

where

|∇g
r
| � 1

r

uniformly with respect to ε and

|g∇r
r2
| = O(1)

g

r

1

r
= O(ε)

1

r
,

in γr, so if we fix ε > 0 sufficiently small, then

|∇(
g

r
)| � 1

r
.

We have

v = e
λg
r λ∇(

g

r
), |v| � eλO(ε)λ

r
,

so the second part of (
cz.7.2.3
12.2.20) holds for every fixed value of λ. Further,

div (v) = e
λg
r (λ2|∇(

g

r
)|2 + λ∆(

g

r
)).

Here,

|∇(
g

r
)|2 � 1

r2
, ∆(

g

r
) = O(

1

r2
),

so if we fix λ large enough, we also get the first part of (
cz.7.2.3
12.2.20).

If we choose k = (Cr)−1 for a sufficiently large constant C, we get from
(
cz.7.2.7
12.2.21), (

cz.7.3
12.2.16)

1

2
(div (v)− |v|2 − k2)− (ψ′x)

2 � r−2.

Thus, with a new sufficiently large constant C, we get from (
cz.7.2
12.2.19):

‖Du‖2 +
1

C

∫
γr

1

r2
|u|2dx ≤ C‖r(−∆ψ)u‖2, (12.2.23) cz.7.4

which we can also write as

‖Du‖+
1

C
‖1

r
u‖ ≤ C‖r(−∆ψ)u‖. (12.2.24) cz.7.5

Thus,

‖Deψu‖+
1

C
‖1

r
eψu‖ ≤ ‖reψ∆u‖

212



and by (
cz.7.3
12.2.16),

‖eψDu‖ ≤ ‖Deψu‖+ ‖O(1/r)eψu‖ ≤ O(1)‖reψ∆u‖,

so we get (
cz.7.6
12.2.17) with a new constant C. 2

If Ω b C has smooth boundary, let GΩ, PΩ denote the Green and the
Poisson kernels of Ω, so that the Dirichlet problem,

∆u = v, u|∂Ω
= f, u, v ∈ C∞(Ω), f ∈ C∞(∂Ω),

has the unique solution

u(x) =

∫
Ω

GΩ(x, y)v(y)L(dy) +

∫
∂Ω

PΩ(x, y)f(y)|dy|.

Recall that −GΩ ≥ 0, PΩ ≥ 0. It is also clear that

−GΩ(x, y) ≤ C − 1

2π
ln |x− y|, (12.2.25) c.1

where C > 0 only depends on the diameter of Ω. Indeed, let −G0(x, y)
denote the right hand side of (

c.1
12.2.25) and choose C > 0 large enough so

that −G0 ≥ 0 on Ω× Ω. Then on the operator level,

GΩv = G0v − PΩ(G0v|∂Ω
),

so that

GΩ(x, y) = G0(x, y)−
∫
∂Ω

PΩ(x, z)G0(z, y)|dz|,

and hence GΩ ≥ G0, −GΩ ≤ −G0. The same argument (replacing G0 by GΩ̃

with Ω̃ ⊃ Ω) shows that −GΩ is an increasing function of Ω:

Ω1 ⊂ Ω2 ⇒ −GΩ1 ≤ −GΩ2 on Ω1 × Ω1.

We will also use the elementary scaling property:

GΩ(
x

t
,
y

t
) = GtΩ(x, y), x, y ∈ tΩ, t > 0. (12.2.26) c.2

a2 Proposition 12.2.2 Under the same assumptions as in Proposition
a1
12.2.1

there exists a (new) constant C > 0 such that we have

−Gγr(x, y) ≤ C − 1

2π
ln
|x− y|
r(y)

, when |x− y| ≤ r(y)

C
, (12.2.27) c.3
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−Gγr(x, y) ≤ C exp(− 1

C

∫ πγ(x)

πγ(y)

1

r(t)
|dt|), when |x− y| ≥ r(y)

C
, (12.2.28) c.4

where it is understood that the integral is evaluated along γ from πγ(y) ∈ γ to
πγ(x) ∈ γ, where πγ(y), πγ(x) denote points in γ with |x−πγ(x)| = dist (x, γ),
|y − πγ(y)| = dist (y, γ), and we choose these two points (when they are not
uniquely defined) and the intermediate segment in such a way that the integral
is as small as possible.

Proof. Let y ∈ γr, and put t = r(y). Then we can find Ω b C uniformly
bounded (with respect to y) whose boundary is uniformly bounded in the
C∞ sense,1 such that γr coincides with y + tΩ =: Ωy in D(y, 2r(y)/C),

Ωy ⊂ D(y, 4r(y)
C

) and r � r(y) in that disc. In view of (
c.1
12.2.25), (

c.2
12.2.26) we

see that −GΩy(x, y) satisfies the upper bound in (
c.3
12.2.27). Let χ = χ(x−y

r(y)
) be

a standard cut-off equal to one on D(y, r(y)
C

) with suppχ( ·−y
r(y)

) ⊂ D(y, 2r(y)
C

),
and write the identity:

Gγr(·, y) = χ(
· − y
r(y)

)GΩy(·, y)−Gγr [∆, χ(
· − y
r(y)

)]GΩy(·, y). (12.2.29) c.5

Using that the non-negative function −GΩy satisfies (
c.3
12.2.27), we see that

the L2-norm of GΩy(·, y) over the cut-off region (i.e. the support of the x-
gradient of the cut-off) is O(r(y)). GΩy is harmonic with boundary value 0 in
a neighborhood of supp∇χ. From standard estimates for elliptic boundary
value problems, we conclude after scaling, that the L2-norm of ∇xGΩy(x, y)
over the same region is O(1). It follows that

‖[∆, χ(
· − y
r(y)

)]GΩy(·, y)‖ = O(
1

r(y)
),

and hence, by applying (
cz.7.6
12.2.17) with ψ = 0 to

u = Gγr [∆, χ(
· − y
r(y)

)]GΩy(·, y),

we get
1

r
Gγr [∆, χ(

· − y
r(y)

)]GΩy(·, y) = O(1), in L2(γr).

Away from supp [∆, χ( ·−y
r(y)

)] the function Gγr [∆, χ( ·−y
r(y)

)]GΩy(·, y) is harmonic
on γr with boundary value zero and, appealing as above to apriori estimates

1 i.e. given by an equation f(z) = 0, where f belongs to a bounded family of smooth
real functions with the property that f(z) = 0 =⇒ |∇f(z)| ≥ 1/O(1) uniformly for all f
in the family.
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for elliptic boundary value problem and scaling, we conclude that inside the
region where χ( ·−y

r(y)
) = 1, it is O(1). From (

c.5
12.2.29) we then get the estimate

(
c.3
12.2.27).

To get (
c.4
12.2.28) we now apply the same reasoning to (

c.5
12.2.29), now with ψ

as in (
cz.7.3
12.2.16), (

cz.7.6
12.2.17), together with standard arguments for exponentially

weighted estimates, for instance as in
HeSj84
[61], using again that |u| ≤ O(r(y))‖u‖

in a domain Ωy, where u is harmonic, near a part of the boundary where
u = 0. 2

We will also need a lower bound on Gγr on suitable subsets of γr. For
ε > 0 fixed and sufficiently small, we say that M b γr is an elementary piece
of γr if

• M ⊂ γ(1− 1
C

)r, cf. (
a.19
12.2.15),

• 1
C
≤ r(x)

r(y)
≤ C, x, y ∈M ,

• ∃y ∈M such that M = y+ r(y)M̃ , where M̃ belongs to a bounded set
of relatively compact subsets of C with smooth boundary.

In the following, it will be tacitly understood that we choose our elementary
pieces with some uniform control (C fixed and uniform control on the M̃).

a3 Proposition 12.2.3 If M is an elementary piece in γr, then

−Gγr(x, y) � 1 + | ln |x− y|
r(y)

|, x, y ∈M. (12.2.30) c.6

Proof. We just outline the argument. First, by using arguments from the
proof of Proposition

a2
12.2.2 (without any exponential weights), we see that

−Gγr(x, y) � − ln
|x− y|
r(y)

, when x, y ∈M,
|x− y|
r(y)

� 1. (12.2.31) c.7

Next, if M ′ is a slightly larger elementary piece of the form y+(1+ 1
C

)r(y)M̃ ,
then from Harnack’s inequality for the positive harmonic function −Gγr(·, y)
on M ′ \D(y, 1

2C
r(y)), we see that −Gγr(x, y) � 1 in M \D(y, 1

C
r(y)), which

together with (
c.7
12.2.31) gives (

c.6
12.2.30). 2
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12.3 Distribution of zeros
di

Let φ be a continuous function defined in some neighborhood of γr. Assume
that

µ = µφ = ∆φ (12.3.1) cz.9

is a locally finite Radon measure.
Let u be a holomorphic function defined in a neighborhood of Γ∪ γr. We

assume that
h ln |u(z)| ≤ φ(z), z ∈ γr. (12.3.2) cz.10

cz1 Lemma 12.3.1 Let z0 ∈M , where M is an elementary piece, such that

h ln |u(z0)| ≥ φ(z0)− ε, 0 < ε� 1. (12.3.3) cz.11

Then the number of zeros of u in M is

≤ C

h
(ε+

∫
γr

−Gγr(z0, w)µ(dw)). (12.3.4) cz.12

cz2 Remark 12.3.2 The integral in (
cz.12
12.3.4) is interpreted as∫

C

−Gγr(z0, w)χ(w)µ(dw) +

∫
C

−Gγr(z0, w)(1− χ(w))1γr(w)µ(dw),

where χ ∈ C∞0 (C) is supported in the interior of γr and = 1 near w = z0.
The first integral is by definition what we get from integration by parts, using
that µ = ∆φL(dw):∫

C

−∆w(Gγr(z0, w)χ(w))φ(w)L(dw) =

− φ(z0)−
∫
C

(2∇wGγr(z0, w) · ∇χ(w) +Gγr(z0, w)∆χ(w))φ(w)L(dw).

The second integral is well-defined since µ(dw) is a Radon measure and w 7→
−Gγr(z0, w)(1− χ(w))1γr(w) is of class C0(C)

When φ is of class C2, we have µ(dw) = ∆φ(w)L(dw), ∆φ ∈ C0 and∫
γr

Gγr(z0, w)µ(dw) = −φ(z0) +

∫
∂γr

Pγr(z0, w)φ(w)|dw|, (12.3.5) cz.12.5

where P is the Poisson kernel. For a general φ as in the lemma, we can make
a standard regularization and the first part of the remark, shows that the
left hand side in (

cz.12.5
12.3.5) passes to the limit and we get (

cz.12.5
12.3.5) in this case

also.
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Proof. Let
nu(dz) =

∑
2πδ(z − zj),

where zj are the zeros of u counted with their multiplicity. We may assume
that no zj are situated on ∂γr. Then, since ∆ ln |u| = nu,

h ln |u(z)| =∫
γr

Gγr(z, w)hnu(dw) +

∫
∂γr

Pγr(z, w)h ln |u(w)||dw|

≤
∫
γr

Gγr(z, w)hnu(dw) +

∫
∂γr

Pγr(z, w)φ(w)|dw|

=

∫
γr

Gγr(z, w)hnu(dw) + φ(z)−
∫
γr

Gγr(z, w)µ(dw).

(12.3.6) cz.13

Putting z = z0 in (
cz.13
12.3.6) and using (

cz.11
12.3.3), we get∫

γr

−Gγr(z0, w)hnu(dw) ≤ ε+

∫
γr

−Gγr(z0, w)µ(dw).

Now by (
c.6
12.2.30),

−Gγr(z0, w) ≥ 1

C
, w ∈M,

and we get (
cz.12
12.3.4). 2

Notice that this argument is basically the same as when using Jensen’s
formula to estimate the number of zeros of a holomorphic function in a disc
and has been used in the proof of Proposition

1dm9
3.4.6.

Let z0
j , zj be as in Theorem

intcz1
12.1.1. We may arrange so that γ̃r/C1 ⊂ γr ⊂

γ̃r. In particular, the assumptions of Theorem
intcz1
12.1.1 imply (

cz.10
12.3.2). Now

we sharpen the assumption (
cz.11
12.3.3) and assume as in Theorem

intcz1
12.1.1,

h ln |u(zj)| ≥ φ(zj)− εj. (12.3.7) cz.14

Let Mj ⊂ γr be elementary pieces such that

zj ∈Mj, dist (zj,Mk) ≥
r(zj)

C
when k 6= j, γr̃ ⊂ ∪jMj, r̃ = (1− 1

C̃
)r,

(12.3.8) cz.16.5

where C̃ � 1. Recall that γr = γ̂ε,Cεr where C, ε are now fixed (cf (
a.15
12.2.11),

and that γαr = γ̂ε,αCεr. We will also assume for a while that φ is smooth.
According to Lemma

cz1
12.3.1, we have

#(u−1(0) ∩Mj) ≤
C3

h
(εj +

∫
γr

−Gγr(zj, w)µ(dw)). (12.3.9) cz.17
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Consider the harmonic functions on γr̃,

Ψ(z) = h(ln |u(z)|+
∫
γr̃

−Gγr̃(z, w)nu(dw)), (12.3.10) cz.19

Φ(z) = φ(z) +

∫
γr̃

−Gγr̃(z, w)µ(dw). (12.3.11) cz.20

Then Φ(z) ≥ φ(z) with equality on ∂γr̃. Similarly, Ψ(z) ≥ h ln |u(z)| with
equality on ∂γr̃.

Consider the harmonic function

H(z) = Φ(z)−Ψ(z), z ∈ γr̃. (12.3.12) cz.21

Then on ∂γr̃, we have by (
cz.10
12.3.2) that

H(z) = φ(z)− h ln |u(z)| ≥ 0,

so by the maximum principle,

H(z) ≥ 0, on γr̃. (12.3.13) cz.22

By (
cz.14
12.3.7), we have

H(zj) =Φ(zj)−Ψ(zj)

=φ(zj)− h ln |u(zj)|

+

∫
γr̃

−Gγr̃(zj, w)µ(dw)−
∫
γr̃

−Gγr̃(zj, w)hnu(dw)

≤εj +

∫
γr̃

−Gγr̃(zj, w)µ(dw).

(12.3.14) cz.23

Harnack’s inequality2 implies that

H(z) ≤ O(1)(εj+

∫
−Gγr̃(zj, w)µ(dw)) on Mj∩γr̂, r̂ = (1− 1

C̃
)r̃. (12.3.15) cz.24

Now assume that u extends to a holomorphic function in a neighborhood
of Γ∪γr. We want to evaluate the number of zeros of u in Γ. Using (

cz.17
12.3.9),

we first have

#(u−1(0) ∩ γr̃) ≤
C

h

N∑
j=1

(
εj +

∫
γr

−Gγr(zj, w)µ(dw)

)
. (12.3.16) cz.25

2which says that if Ω b C is a connected open set with smooth boundary and K ⊂ Ω
a compact subset, then there exists a constant C = CΩ,K > 0 such that u(z1) ≤ Cu(z2)
for all z1, z2 ∈ K and every non-negative harmonic function u on Ω, uniformly if Ω varies
in a family uniformly bounded subsets of C and dist (K, ∂Ω) ≥ 1/O(1) uniformly,
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Let χ ∈ C∞0 (Γ ∪ γr̂; [0, 1]) be equal to 1 on Γ. Of course χ will have to
depend on r but we may assume that for all k ∈ N,

∇kχ = O(r−k). (12.3.17) cz.26

We are interested in∫
χ(z)hnu(dz) =

∫
γr̂

h ln |u(z)|∆χ(z)L(dz). (12.3.18) cz.27

Here we have on γr̃

h ln |u(z)| = Ψ(z)−
∫
γr̃

−Gγr̃(z, w)hnu(dw)

= Φ(z)−H(z)−
∫
γr̃

−Gγr̃(z, w)hnu(dw)

= φ(z) +

∫
γr̃

−Gγr̃(z, w)µ(dw)−H(z)−
∫
γr̃

−Gγr̃(z, w)hnu(dw)

= φ(z) +R(z),

(12.3.19) cz.28

where the last equality defines R(z).
Inserting this in (

cz.27
12.3.18), we get∫

χ(z)hnu(dz) =

∫
χ(z)µ(dz) +

∫
R(z)∆χ(z)L(dz). (12.3.20) cz.29

(Here we also used some extension of φ to Γ with µ = ∆φ.) The task is now
to estimate R(z) and the corresponding integral in (

cz.29
12.3.20). Put

µj = µ+(Mj ∩ γr̃), (12.3.21) cz.30

where µ = µ+ − µ− is the Radon decomposition of µ and we define the
left hand side in (

cz.30
12.3.21) as in Remark

intcz1.5
12.1.2. Using the exponential

decay property (
c.4
12.2.28) (equally valid for Gγr̃) we get for z ∈ Mj ∩ γr̃,

dist (z, ∂Mj) ≥ r(zj)/O(1):∫
γr̃

−Gγr̃(z, w)µ(dw) ≤
∫
Mj∩γr̃

−Gγr̃(z, w)µ+(dw) +O(1)
∑
k 6=j

µke
− 1
C0
|j−k|

,

(12.3.22) cz.31

where |j − k| denotes the natural distance from j to k in Z/NZ and C0 > 0.
Similarly from (

cz.24
12.3.15), we get

H(z) ≤ O(1)(εj +

∫
Mj∩γr̃

−Gγr̃(zj, w)µ+(dw) +
∑
k 6=j

e
− 1
C0
|j−k|

µk), (12.3.23) cz.32
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for z ∈Mj ∩ γr̃.
This gives the following estimate on the contribution from the first two

terms in R(z) to the last integral in (
cz.29
12.3.20), where we also use that ∆χ =

O(r−2):∫
γr̃

(∫
γr̃

−Gγr̃(z, w)µ(dw)−H(z)

)
∆χ(z)L(dz)

= O(1)
∑
j

(εj +

∫
Mj∩γr̃

−Gγr̃(zj, w)µ+(dw)) +
∑
k 6=j

e
− 1
C0
|j−k|

µk)

+O(1)
∑
j

∫
Mj∩γr̃

∫
Mj∩γr̃

−Gγr̃(z, w)µ+(dw)|∆χ(z)|L(dz).

(12.3.24) cz.32.5

Here, ∫
Mj∩γr̃

−Gγr̃(z, w)|∆χ(z)|L(dz) = O(1), (12.3.25) cz.32.7

so (
cz.32.5
12.3.24) leads to∫
γr̃

(∫
γr̃

−Gγr̃(z, w)µ(dw)−H(z)

)
∆χ(z)L(dz)

= O(1)

(
µ+(γr̃) +

∑
j

εj +
∑
j

∫
Mj∩γr̃

−Gγr̃(zj, w)µ+(dw)

)
.

(12.3.26) cz.33

The contribution from the last term in R(z) (in (
cz.28
12.3.19)) to the last

integral in (
cz.29
12.3.20) is∫

z∈γr̂

∫
w∈γr̃

Gγr̃(z, w)hnu(dw)∆χ(z)L(dz). (12.3.27) cz.34

Here, by using an estimate similar to (
cz.31
12.3.22) with µ(dw) replaced by L(dz),

together with (
cz.32.7
12.3.25), we get∫

z∈γr̂
Gγr̃(z, w)(∆χ)(z)L(dz) = O(1),

so the expression (
cz.34
12.3.27) is by (

cz.25
12.3.16)

O(h)#(u−1(0) ∩ γr̃)

= O(1)
N∑
j=1

(εj +

∫
γr

(−Gγr(zj, w))µ(dw))

= O(1)(µ+(γr) +
N∑
j=1

(εj +

∫
Mj

−Gγr(zj, w)µ+(dw))).

(12.3.28) cz.35
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This is quite similar to (
cz.33
12.3.26). Using Proposition

a2
12.2.2, we have∫

Mj∩γr̃
−Gγr̃(zj, w)µ+(dw) ≤

O(1)(

∫
|w−zj |≤

r(zj)

C

| ln |zj − w|
r(zj)

|µ+(dw) + µ+(Mj ∩ γr̃))

and similarly for the last integral in (
cz.35
12.3.28). Using all this in (

cz.29
12.3.20), we

get∫
χ(z)hnu(dz) =

∫
χ(z)µ(dz)

+O(1)(µ+(γr) +
∑
j

(εj +

∫
|w−zj |≤r(zj)/C

| ln(
|zj − w|
r(zj)

)|µ+(dw)). (12.3.29) cz.36

Now we observe that

|#(u−1(0) ∩ Γ)− 1

2πh

∫
χ(z)hnu(dz)| ≤ #(u−1(0) ∩ γr̃),

which can be estimated by means of (
cz.35
12.3.28), and combining this with

(
cz.36
12.3.29), we get

|#(u−1(0) ∩ Γ)− 1

2πh
µ(Γ)| ≤ (12.3.30)

O(1)

h

(
µ+(γr) +

∑
j

(εj +

∫
|w−zj |≤

r(zj)

C

| ln |zj − w|
r(zj)

|µ+(dw))

)
.

This completes the proof of Theorem
intcz1
12.1.1. 2

We next discuss when the contribution from the logarithmic integrals in
(
intcz.8
12.1.8) can be eliminated or simplified. Let r, C1, z0

j be as in Theorem
intcz1
12.1.1. Using the estimates above, we get∫

D(z0
j ,
r(z0

j
)

2C1
)

∫
D(z,

r(z)
4C1

)

| ln |w − z|
r(z)

|µ+(dw)
L(dz)

L(D(z0
j ,

r(z0
j )

2C1
))
≤

∫
D(z0

j ,
r(z0

j
)

2C1
)

∫
D(z0

j ,
r(z0

j
)

C1
)

| ln |w − z|
r(z)

|µ+(dw)
L(dz)

L(D(z0
j ,

r(z0
j )

2C1
))
≤

O(1)µ+(D(z0
j ,
r(z0

j )

C1

)),
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where we changed the order of integrations in the last step and also used

that r(z) � r(z0
j ) in D(z0

j ,
r(z0

j )

C1
). We conclude that the mean-value of

D(z0
j ,
r(z0

j )

2C1

) 3 z 7→
∫
D(z,

r(z)
4C1

)

| ln |w − z|
r(z)

|µ+(dw)

is O(1)µ+(D(z0
j ,

r(z0
j )

C1
)). Thus we can find z̃j ∈ D(z0

j ,
r(z0

j )

2C1
) such that

N∑
j=1

∫
D(z̃j ,

r(z̃j)

4C1
)

| ln |w − z̃j|
r(z̃j)

|µ+(dw) = O(1)µ+(D(z0
j , r(z

0
j )/C1)).

This gives Theorem
intcz2
12.1.3. 2

12.4 Application to sums of exponential func-

tions
ap

Consider the function

u(z;h) =
N∑
1

eφj(z)/h, (12.4.1) ap.1

where N is finite and φj are holomorphic in the open set Ω ⊂ C and inde-
pendent of h for simplicity. Put

ψj(z) = <φj(z), (12.4.2) ap.2

let Γ b Ω have C∞ boundary γ and assume

∀x ∈ γ, Ψ(x) := max
j
ψj(x) is attained

for at most 2 different values of j,
(12.4.3) ap.3

If x ∈ γ, Ψ(x) = ψj(x) = ψk(x), j 6= k,

then ν(x, ∂x)(ψj(x)− ψk(x)) 6= 0,
(12.4.4) ap.4

where ν denotes the normalized vector field (say positively oriented) that is
tangent to γ. We shall see that Theorem

intcz2
12.1.3 allows us to determine the

number of zeros of u in Γ up to O(1). This result can be further strengthened
by using direct arguments (see for instance

HiSj08b
[72]), but the purpose of this

section is simply to illustrate the results above. We also notice that the
results will be valid if u is holomorphic in Ω but with the representation
(
ap.1
12.4.1) and the φj defined only in a neighborhood of γ.
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We shall establish the following result (without any claim of novelty, see
HiSj08b
[72] as well as

Da03, BlMa06
[34, 13]). For a closely related old result on entire functions,

see
Lev80
[90], Chapter VI, Section 3, Theorem 9, attributed to A. Pfluger

Pf38
[107].

ap1 Proposition 12.4.1 We have

|#(u−1(0) ∩ Γ)− 1

2πh

∫
Γ

∆Ψ(z)L(dz)| = O(1). (12.4.5) ap.5

Here, in the case when ψj and Ψ are defined only in a neighborhood of γ,
we take any distribution extension of Ψ to a neighborhood of Γ. Notice that
near γ the function Ψ is subharmonic and ∆Ψ is supported by the union of
the curves γj,k. On each such curve, ∆Ψ = ∂

∂n
(ψj − ψk)|dz|, where n is the

unit normal to γj,k, oriented so that ∂
∂n

(ψj − ψk) > 0. This can be proved
with the help of Green’s formula, cf. the end of the proof of the main result
in

SjVo15
[141].
We shall prove Proposition

ap1
12.4.1 by means of Theorem

intcz2
12.1.3.

Put

Φ(z) = h ln(
N∑
1

eψj(z)/h), z ∈ neigh (γ), (12.4.6) ap.6

so that Φ(z) = hf(ψ1

h
, .., ψN

h
), where

f(x) = ln(
N∑
1

exj). (12.4.7) ap.7

If we define θj = exj/
∑
exk , then θj > 0, θ1 + ..+ θN = 1, and

∂xjf(x) = θj, (12.4.8) ap.8

f ′′(x) = diag (θj)− (θjθk)j,k. (12.4.9) ap.9

For y ∈ RN , we have

〈f ′′(x)y, y〉 =
∑

θjy
2
j − (

∑
θjyj)

2,

which is ≥ 0, since the function t 7→ t2 is convex. Hence f is convex.
We apply this to Φ(z), now with θj = eψj(z)/h/

∑
k e

ψk/h, and get

∂zΦ(z) =
∑

θj∂zψj, ∂z =
1

2
(∂<z +

1

i
∂=z) (12.4.10) ap.10

∂z∂zΦ(z) =
1

h
〈f ′′∂zψ|∂zψ〉 =

1

h
(
∑

θj|∂zψj|2 − |
∑

θj∂zψj|2). (12.4.11) ap.11
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In the last calculation, we also used that ψj are harmonic. It follows that Φ
is subharmonic near γ. Also notice that

∆Φ(z) = O(h−1), (12.4.12) ap.12

and that this estimate can be considerably improved away from the union
of the γj,k: Assume for instance that Ψ(z) = ψ1 ≥ maxj 6=1 ψj + δ, where
δ > 0 and notice that we can take δ = C−1d(x) with d(x) := dist (z,∪γj,k),
by (

ap.3
12.4.3), (

ap.4
12.4.4). Then

Φ = h ln(eψ1/h(1 +O(e−δ/h))) = ψ1 +O(he−δ/h). (12.4.13) ap.13

Further,

θ1 = 1 +O(e−δ/h), θj = O(e−δ/h) for j 6= 1, (12.4.14) ap.14

so
∂zΦ = ∂zψ1 +O(e−δ/h), (12.4.15) ap.15

f ′′(eψ1/h, .., eψN/h) = O(e−δ/h),

∂z∂zΦ = O(
1

h
e−δ/h). (12.4.16) ap.16

We will always be able to express the final result in terms of the simpler
function Ψ:

ap2 Lemma 12.4.2 We have∫
Γ

∆ΦL(dz)−
∫

Γ

∆ΨL(dz) = O(h). (12.4.17) ap.17

Proof. Using Green’s formula, the left hand side of (
ap.17
12.4.17) can be written∫

γ

(
∂Φ

∂n
− ∂Ψ

∂n
)|dz|,

where n is the suitably oriented normal direction. It then suffices to apply
(
ap.15
12.4.15), with ψ1 replaced by Ψ, in the region where d(z)� h and use that

the gradients of Φ, Ψ are O(1). 2

We next notice that
h ln |u(z;h)| ≤ Φ(z) (12.4.18) ap.18

in neighborhood of γ. On the other hand, for z near γ, d(z)� h, we have

h ln |u(z;h)| ≥ Φ(z)−O(h)e−d(z)/(Ch). (12.4.19) ap.19
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We can now apply Theorem
intcz2
12.1.3 with r = Const. h, d(z0

j ) ≥ Ch, εj =

O(he−d(z0
j )/(Ch)), φ = Φ. In view of (

ap.12
12.4.12), (

ap.16
12.4.16), we see that µ(γ̃r) =

O(h),
∑
εj = O(h), so

#(u−1(0) ∩ Γ)− 1

2πh

∫
Γ

∆ΦL(dz) = O(1),

and we obtain Proposition
ap1
12.4.1 from Lemma

ap2
12.4.2. 2

If we would like to work directly with φ = Ψ, we still have (
ap.19
12.4.19) with

Φ replaced by Ψ, while the upper bound (
ap.18
12.4.18) has to be replaced by

h ln |u(z)| ≤ Ψ(z) + Ch,

so we have to take φ = Ψ +Ch and at most places εj � h. The effect of that
deterioration can be limited by chosing the zj more sparcely away from the
union of the γj,k, but we can hardly avoid a remainder O(ln 1

h
) in (

ap.5
12.4.5).
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Chapter 13

Perturbations of Jordan blocks

pj

13.1 Introduction
intropj

In this chapter we shall study the spectum of a random perturbation of the
large Jordan block A0 in Section

sp.d
2.4:

A0 =


0 1 0 0 ... 0
0 0 1 0 ... 0
0 0 0 1 ... 0
. . . . ... .
0 0 0 0 ... 1
0 0 0 0 ... 0

 : CN → CN .

• M. Zworski
Zw02
[157] noticed that for every z ∈ D(0, 1), there are associated

exponentially accurate quasi-modes when N → ∞. Hence the open
unit disc is a region of spectral instability.

• We have spectral stability (a good resolvent estimate) in C \ D(0, 1),
since ‖A0‖ = 1.

• σ(A0) = {0}.

Thus, if Aδ = A0 + δQ is a small (random) perturbation of A0 we expect the
eigenvalues to move inside a small neighborhood of D(0, 1). In the special
case when Qu = (u|e1)eN , where (ej)

N
1 is the canonical basis in CN , we have

seen in Section
sp.d
2.4 that the eigenvalues of Aδ are of the form

δ1/Ne2πik/N , k ∈ Z/NZ,

so if we fix 0 < δ � 1 and let N → ∞, the spectrum “will converge to a
uniform distribution on S1”.
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E.B. Davies and M. Hager
DaHa09
[37] studied random perturbations of A0. They

showed that with probability close to 1, most of the eigenvalues are close to
a circle:

th1 Theorem 13.1.1 Let A = A0+δQ, Q = (qj,k(ω)) where qj,k are independent
random variables ∼ NC(0, 1). If 0 < δ ≤ N−7, R = δ1/N , σ > 0, then with
probability ≥ 1− 2N−2, we have σ(Aδ) ⊂ D(0, RN3/N) and

#(σ(Aδ) ∩D(0, Re−σ)) ≤ 2

σ
+

4

σ
lnN.

The angular distribution was not treated in
DaHa09
[37] except for more special

perturbations, and the main purpose of this chapter is to do so following the
general strategy of Hager’s thesis that we have already followed in Chapter
1dm
3. A result by A. Guionnet, P. Matched Wood and O. Zeitouni

GuMaZe14
[50] implies

that when δ is bounded from above by N−κ−1/2 for some κ > 0 and from
below by some negative power of N , then

1

N

∑
µ∈σ(A1)

δ(z − µ)→ the uniform measure on S1,

weakly in probability.
The main focus of the chapter is to get probabilistic statements about the

distribution of eigenvalues near the critical radius R = δ1/N when Q = (qj,k),
with qj,k ∼ NC(0, 1) independent. Then we know from Proposition

1dm6
3.4.1

that ‖Q‖HS ≤ C1N with probability ≥ 1−e−N2
. We distinguish between the

cases of small and of larger perturbations.

• Small perturbations:

e−CN ≤ δ ≤ N−
5
2
−ε0 , (13.1.1) small.pert

where C, ε0 > 0 are fixed.

• Larger perturbations:

N ε0− 5
2 ≤ δ � N−

3
2 .

The intermediate case can unbdoubtedly be treated along the lines of the
case of larger perturbations.

As an outgrowth of this chapter, Vogel and the author studied in
SjVo14
[140]

the expectation density of eigenvalues inside the critical disc, adapting some
methods from Vogel

Vo14
[149] devoted to Hager’s operator, somewhat in the

spirit of various works on zeros of random polynomials. This is a new and
probably very rich area, but for the present book we finally prefered to limit
the perspective to eigenvalue counting with probability. More recent results
on large Toeplitz matrices can be found in

SjVo15, SjVo16
[141, 142].
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13.2 Main results
mrpj

Small perturbations We now state our new results and take Q = (qj,k),
with qj,k ∼ NC(0, 1) independent. Then we know from Proposition

1dm6
3.4.1

(cf. Proposition
1dm7
3.4.2) that ‖Q‖HS ≤ C1N with probability ≥ 1− e−N2

. We
distinguish between the cases of small and of larger perturbations. We first
consider the case of small perturbations:

e−CN ≤ δ ≤ N−
5
2
−ε0 , (13.2.1) mrpj.1

where C, ε0 > 0 are fixed. Define a “spectral radius” R = Rσ > 0 to be the
unique solution in ]0, N/(N + 1)[ of

m(R) = 2C1Nδ, where m(R) := RN(1−R). (13.2.2) mrpj.2

Then, as we shall see,

e
1
N

(ln δ+lnN+O(1)) ≤ Rσ ≤ e
1
N

(ln δ+2 lnN+O(1)) ≤ e−
1
N

((ε0+ 1
2

) lnN+O(1)), (13.2.3) mrpj.3

and with probability ≥ 1− e−N2
,

σ(Aδ) ⊂ D(0, Rσ). (13.2.4) mrpj.3.5

To see the last inclusion, we notice that by (
sp.d.4
2.4.4),

‖(z − A0)−1‖ ≤ 1− |z|N

|z|N(1− |z|)
≤ 1

m(|z|)
, 0 < |z| ≤ N

N + 1
,

and that

‖(z − A0)−1‖ ≤ 1

m
(

N
N+1

) , N

N + 1
≤ |z| ≤ 1,

so when ‖Q‖ ≤ C1N we get for 0 < |z| ≤ N/(N + 1),

δ‖Q‖‖(z − A0)−1‖ ≤ C1Nδ/m(|z|)

which is ≤ 1/2 for |z| > Rσ, since m is increasing on [0, N/(N + 1)] The
same holds for |z| ≥ N/(N + 1) by the maximum principle, and writing
z − Aδ = (z − A0)(1 + (z − A0)−1δQ) we get (

mrpj.3.5
13.2.4).

mrpj1 Theorem 13.2.1 Let 0 ≤ θ1 < θ2 ≤ 2π, θ = θ2 − θ1, Ω =]r−, r+[ei]θ1,θ2[,
0 < ε1 < 1,

1

O(1)
≤ r− ≤ Rσ −

1

N
, Rσ +

1

N
≤ r+ ≤ (1 +Rσ)/2.
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With probability ≥ 1− e−2Nε1 − e−N2
, we have∣∣∣∣#(σ(Aδ) ∩ Ω)− θ

2π
N

(
1− r−

N(1− r−)

)∣∣∣∣
≤ O(θ)N

(
N ε1−1

Rσ − r−
+

δN
1
2

(1−Rσ)2
+N−ε0

)

+O(1)N

(
N ε1 lnN

N
+

(
Rσ

r−

)− N
O(1)

+

(
1

Rσ

)− N
O(1)

)
. (13.2.5) mrpj.3.7

In view of (
mrpj.3.5
13.2.4), the choice of r+ ≥ Rσ is of no real interest (and the

stronger lower bound for r+, is merely a pointer to the proof, where we shall
take r+ = (1 + Rσ)/2), and we could take r+ = Rσ. For (

mrpj.3.7
13.2.5) to be of

interest when θ > 0 is fixed, we would like the right hand side to be � N .
This is the case when Rσ−r− � N ε1−1, in particular when Rσ−r− � N ε2−1

for some ε2 > ε1. Then r−/(N(1 − r−)) = N−ε1 in the left hand side. Thus
for any such ε2, we have a uniform angular distribution of the eigenvalues in
a N ε2−1-neighborhood of the circle |z| = Rσ. Choosing θ = 2π, we see that
most of the N eigenvalues belong to such a neighborhood.

Larger perturbations Now assume,

N ε0− 5
2 ≤ δ � N−

3
2 . (13.2.6) mrpj.4

Then, when ‖Q‖ ≤ C1N (which holds with proba ≥ 1 − e−N
2
) we have

σ(Aδ) ⊂ D(0, 1 + C1δN) and we observe that δN � δ1/2N1/4, N−1 �
δ1/2N1/4.

mrpj2 Theorem 13.2.2 Let 0 ≤ r− ≤ 1 − 4(C1δ)
1
2N

1
4 , r+ ≥ 1 + C1δN . Let

0 < ε1 < 1. Then with probability ≥ 1−O(1)e−N
ε1 , we have∣∣∣∣#(σ(Aδ) ∩ Ω)− θ

2π

(
1− r−

N(1− r−)

)
N

∣∣∣∣ ≤
O(θ)N

(
e−

Nε0/2

O(1) +
δN

1
2

(1− r−)2
+
N ε1−1

1− r−

)
+O(1)N

(
N ε1−1 lnN + δ

1
2N

1
4

)
. (13.2.7) mrpj.5

The right hand side in (
mrpj.5
13.2.7) is � N when 1 − r− � δ1/2N1/4 and

1− r− � N ε1−1. Since

1− r− ≥
1

O(1)
δ

1
2N

1
4 =

1

O(1)
δ

1
2N

5
4N−1 ≥ 1

O(1)
N

ε0
2
−1,
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the last rquirement on 1−r− follows from the first, when ε0/2 > ε1, i.e. when
ε1 is chosen small enough. Again we have uniform angular distribution of the
eigenvalues in r− ≤ |z| ≤ r+, since we also have r−

N(1−r−)
� 1 for r− in the

range in the theorem. While in Theorem
mrpj1
13.2.1 we get uniform distribution

in shells of thickness close to 1/N around the critical circle |z| = Rσ, we now
need thicker shells that increase with δ and now contain the unit circle.

In the remainder of this chapter we prove the two theorems above. In
Section

iub
13.5, we also give an upper bounds on the number of eigenvalues in

discs inside the critical one.

13.3 Study in the region |z| > R

Let F and R be as at the end of Subsection
sp.d
2.4, satisfying (

pj.82
2.4.15).

Recall that det(z − A0) = zN . We get the following upper bound:

| det(z − Aδ)| = | det(z − A0)|| det(1− (z − A0)−1δQ)|
≤ |z|N exp ‖(z − A0)−1δQ‖tr

≤ |z|N exp (F (|z|)δ‖Q‖tr)) .

For the first inequality above we refer to
GoKr69
[49] or Section

trdet
8.4. Using that by

(
pj.2.5
2.4.13),

‖(z − Aδ)−1‖ ≤ F (|z|)(1− F (|z|)δ‖Q‖)−1,

when F (|z|)δ‖Q‖ < 1 (i.e. when |z| > R) we can permute the roles of A0

and Aδ,
z − A0 = (z − Aδ)(1 + δ(z − Aδ)−1Q),

and get a lower bound:

|z|N = | det(z − A0)| ≤ | det(z − Aδ)| exp

(
F (|z|)δ‖Q‖tr

(1− F (|z|)δ‖Q‖)

)
.

In conclusion we have under the assumption that |z| > R,

|z|N exp

(
− F (|z|)δ‖Q‖tr

1− F (|z|)δ‖Q‖

)
≤ | det(z − Aδ)| ≤ |z|N exp(F (|z|)δ‖Q‖tr).

(13.3.1) pj.4

Later, we shall impose the condition (
pj.49
13.7.22), saying that ‖Q‖HS ≤ C1N

for a certain probabilistic constant C1 > 0. Then by the Cauchy-Schwartz
inequality for the singular values of Q we know that ‖Q‖tr ≤ C1N

3/2 and
(
pj.4
13.3.1) tells us that

|z|N exp

(
− F (|z|)δC1N

3/2

1− F (|z|)δ‖Q‖

)
≤ | det(z − Aδ)| ≤ |z|N exp

(
F (|z|)δC1N

3/2
)
.

(13.3.2) pj.57
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Here and in (
pj.4
13.3.1), the second inequality does not require the assumption

that |z| > R.

13.4 Study in the region |z| < 1

Following
SjZw07
[143], we introduce an auxiliary Grushin problem. Define R+ :

CN → C by
R+u = u1, u = (u1 ... uN)t ∈ CN . (13.4.1) pj.5

Let R− : C→ CN be defined by

R−u− = (0 0 ... u−)t ∈ CN . (13.4.2) pj.6

Here, we identify vectors in CN with column matrices. Then for |z| < 1, the
operator

A0 =

(
R+ 0

A0 − z R−

)
: CN+1 → C1+N (13.4.3) pj.7

is bijective. In fact, its matrix is lower triangular with the entry 1 everywhere
on the main diagonal, the entry −z on the subdiagonal and all other entries
equal to 0. It has the inverse

E0 := A−1
0 =:

(
E0

+ E0

E0
−+ E0

−

)
,

given by a lower triangular matrix with (E0)j,k = zj−k for 1 ≤ k ≤ j ≤ N+1.
Then for 1 ≤ j ≤ N , 2 ≤ k ≤ N + 1,

E0
j,k =

{
0, j < k,

zj−k, k ≤ j
. (13.4.4) pj.8

Moreover,

E0
+ =


1
z
..

zN−1

 , E0
− =

(
zN−1 zN−2 ... 1

)
, (13.4.5) pj.9

E0
−+ = zN . (13.4.6) pj.10

Notice that this is equivalent to the more traditional approach: The inverse

of

(
A0 − z R−
R+ 0

)
is

(
E0 E0

+

E0
− E0

−+

)
.

As in Section
sp.d
2.4, we see that

‖E0‖ ≤ G(|z|), ‖E0
±‖ ≤ G(|z|)

1
2 , ‖E0

−+‖ ≤ 1. (13.4.7) pj.10.2
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where ‖ · ‖ denote the natural operator norms and

G(|z|) := min

(
N,

1

1− |z|

)
� 1 + |z|+ |z|2 + ...+ |z|N−1. (13.4.8) pj.10.4

F and G are related by

F (R) =
1

R
G(

1

R
), R ≥ 1, (13.4.9) pj.10.6

and we use this relation to extend the definition of G to ]0,+∞[.
Next, consider the natural Grushin problem for Aδ. If δ‖Q‖G(|z|) < 1,

we see that

Aδ =

(
R+ 0

Aδ − z R−

)
(13.4.10) pj.11

is bijective with inverse

Eδ =

(
Eδ

+ Eδ

Eδ
−+ Eδ

−

)
,

where

Eδ =E0 − E0δQE0 + E0(δQE0)2 − ... = E0(1 + δQE0)−1,

Eδ
+ =E0

+ − E0δQE0
+ + (E0δQ)2E0

+ − ... = (1 + E0δQ)−1E0
+,

Eδ
− =E0

− − E0
−δQE

0 + E0
−(δQE0)2 − ... = E0

−(1 + δQE0)−1,

Eδ
−+ =E0

−+ − E0
−δQE

0
+ + E0

−δQE
0δQE0

+ − ...
= E0

−+ − E0
−δQ(1 + E0δQ)−1E0

+.

(13.4.11) pj.11.5

We get

‖Eδ‖ ≤ G(|z|)
1− δ‖Q‖G(|z|)

, ‖Eδ
±‖ ≤

G(|z|) 1
2

1− δ‖Q‖G(|z|)
,

|Eδ
−+ − E0

−+| ≤
δ‖Q‖G(|z|)

1− δ‖Q‖G(|z|)
.

(13.4.12) pj.12

Indicating derivatives with respect to δ with dots and omitting sometimes
the super/sub-script δ, we have

Ė = −EȦE = −
(
EQE+ EQE
E−QE+ E−QE

)
. (13.4.13) pj.13

Integrating this from 0 to δ yields

‖Eδ − E0‖ ≤ G(|z|)2δ‖Q‖
(1− δ‖Q‖G(|z|))2

, ‖Eδ
± − E0

±‖ ≤
G(|z|) 3

2 δ‖Q‖
(1− δ‖Q‖G(|z|))2

.

(13.4.14) pj.14
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Notice that detA0 = 1. Combining (
pj.12
13.4.12) and (

pj.13
13.4.13), we get

|∂δ ln detA| = |tr (ȦE)| = |trQE| ≤ ‖Q‖tr‖E‖ ≤ ‖Q‖tr
G(|z|)

1− δ‖Q‖G(|z|)
,

and integration from 0 to δ yelds

| ln | det Eδ|| = | ln | detAδ|| ≤
G(|z|)

1− δ‖Q‖G(|z|)
δ‖Q‖tr. (13.4.15) pj.14.5

We now sharpen the assumption that δ‖Q‖G(|z|) < 1 to

δ‖Q‖G(|z|) < 1/2. (13.4.16) pj.15

Then

‖Eδ‖ ≤ 2G(|z|), ‖Eδ
±‖ ≤ 2G(|z|)

1
2 ,

|Eδ
−+ − E0

−+| ≤ 2δ‖Q‖G(|z|).
(13.4.17) pj.16

Combining this with the identity Ė−+ = −E−QE+ that follows from (
pj.13
13.4.13),

we get
‖Ė−+ + E0

−QE
0
+‖ ≤ 16G(|z|)2δ‖Q‖2, (13.4.18) pj.17

and after integration from 0 to δ,

Eδ
−+ = E0

−+ − δE0
−QE

0
+ +O(1)G(|z|)2(δ‖Q‖)2. (13.4.19) pj.18

Using (
pj.9
13.4.5), (

pj.10
13.4.6) we get with Q = (qj,k),

Eδ
−+ = zN − δ

N∑
j,k=1

qj,kz
N−j+k−1 +O(1)G(|z|)2(δ‖Q‖)2, (13.4.20) pj.19

still under the assumption (
pj.15
13.4.16). More explicitly, the modulus of the

remainder in (
pj.18
13.4.19), (

pj.19
13.4.20) is bounded by 8G(|z|)2δ2‖Q‖2

13.5 Upper bounds on the number of eigen-

values in the interior
iub

Let Q = (qj,k)1≤j,k≤N be a random matrix where the entries are independent
random variables ∼ NC(0, 1) and recall Proposition

1dm6
3.4.1 which implies that

‖Q‖HS ≤ C1N, with probability ≥ 1− e−N2

. (13.5.1) iub.2
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We assume that
δC1N ≤ 1/2. (13.5.2) iub.0

In this section we establish upper bounds on the number of eigenvalues in
discs D(0, r) with r not too large. We work in a disc D(0, R0), where R0 ≤ 1
is the largest number such that

δC1NG(R0) ≤ 1

2
. (13.5.3) iub.1

Then with probability ≥ 1− e−N2
, we have (

pj.15
13.4.16) for every z ∈ D(0, R0).

We can then apply (
pj.16
13.4.17) and see that with probability ≥ 1 − e−N2

, we
have

|Eδ
−+(z)| ≤ |z|N + 2δC1NG(|z|), z ∈ D(0, R0). (13.5.4) iub.2

With the same probability, we have (
pj.19
13.4.20) with the explicit bound

8G(|z|)2δ2(C1N)2 on the modulus of the remainder term and we apply it for
z = 0:

|Eδ
−+(0) + δqN,1| ≤ 8δ2(C1N)2. (13.5.5) iub.3

Since qn,1 ∼ NC(0, 1), we know that |qn,1| ≥ ε with probability ≥ e−ε
2

for
every fixed ε ≥ 0. Hence with probability ≥ e−ε

2 − e−N2
, we have

|Eδ
−+(0)| ≥ δε− 8(C1Nδ)

2 = δ(ε− 8C2
1δN

2). (13.5.6) iub.4

For this to be of interest, we strengthen the assumption (
iub.0
13.5.2) (working in

the limit N � 1) to
16C2

1δN
2 < ε� 1, (13.5.7) iub.5

and in particular,

δ <
1

16C2
1N

2
. (13.5.8) iub.6

Then (
iub.4
13.5.6) implies,

|Eδ
−+(0)| ≥ δε

2
. (13.5.9) iub.7

Recall that (still under the assumption that ‖Q‖HS ≤ C1N) the eigenval-
ues of A0 + δQ in D(0, R0) coincide with the zeros of Eδ

−+(z) in the same
set and the multiplicities agree (cf. Proposition

frgr6
8.1.6). Let 0 < R < R0 and

let λ1, ..., λN be the zeros in D(0, R) repeated according to their multiplicity.
Then by Jensen’s formula (

nonsa.42
8.4.29):

ln |Eδ
−+(0)| =

N∑
k=1

ln
|λk|
R

+
1

2πR

∫
|z|=R

ln |Eδ
−+(z)||dz|. (13.5.10) iub.8
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Equivalently,

N∑
k=1

ln
R

|λk|
= ln

1

|Eδ
−+(0)|

+
1

2πR

∫
|z|=R

ln |Eδ
−+(z)||dz|.

For 0 < r < R, let M(r) denote the number of λk in D(0, r). Then,

N∑
k=1

ln
R

|λk|
≥M(r) ln

R

r

and in view of (
iub.2
13.5.4), (

iub.7
13.5.9), (

iub.8
13.5.10), we get with probability ≥ e−ε

2 −
e−N

2
,

M(r) ln
R

r
≤ ln

2

δε
+ ln

(
RN + 2C1δNG(R)

)
= ln

(
2(RN + 2C1δNG(R))

δε

)
.

(13.5.11) iub.9

As we shall see in the beginning of Section
smr
13.8, there is a unique R =

Rσ ∈]0, 1− 1/N ] such that

RN = 2C1δNG(R),

provided that m(1− 1/N) ≥ 2C1δN , where m(t) = tN(1− t) for 0 ≤ t ≤ 1,
or more explicitly, (

1− 1

N

)N
1

N
≥ 2C1δN,

δ ≤ 1

2C1N2

(
1− 1

N

)N
=

1

2C1eN2

(
1 +O

(
1

N

))
.

We also know from the beginning of Section
smr
13.8 that

RN ≤ 2C1δNG(R), 0 ≤ R ≤ Rσ

and that Rσ obeys the estimate (
smr.3
13.8.3).

Now assume,

0 < δ < N−2 min

(
1

16C2
1

,

(
1− 1

N

)N
2C1

)
. (13.5.12) iub.10

Then from (
iub.9
13.5.11) we see that for every 0 < r < R ≤ Rσ, ε > 0 we have

M(r) ln
R

r
≤ ln (8C1NG(R)/ε) , with probability ≥ e−ε

2 − e−N2

. (13.5.13) iub.11

Summing up, we have
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iub1 Theorem 13.5.1 Let Aδ = A0 + δQ, where Q = (qj,k)1≤j,k≤N and qj,k are
independent random variables ∼ NC(0, 1). Let δ be in the range (

iub.10
13.5.12)

and let R = Rδ be the unique solution in ]0, 1 − 1/N ] of the equation RN =
2C1δNG(R), so that (

smr.3
13.8.3) holds:

N
1
N (2C1δ)

1
N ≤ Rσ ≤

(
1 +O

(
1

N

))
N

2
N (2C1δ)

1
N .

Then for every (r, R, ε) with 0 < r < R ≤ Rσ, ε > 0, we have (
iub.11
13.5.13),

where M(r) is the number of eigenvalues of Aδ in D(0, r), counted with their
multiplicity.

We shall next weaken the assumption (
iub.10
13.5.12) to:

δ � 1

N
. (13.5.14) iub.12

Then Lemma
pj2
13.7.2 can be applied with z = 0 and we see that if 0 < ε ≤ C

for any fixed C > 0, we have

|Eδ
−+(0)| ≥ δε

2
and |Q| ≤ C1N, with probability ≥ 1−O(ε2)− e−N2

.

(13.5.15) iub.13

Recall that R0 ≤ 1 is the largest number satisfying (
iub.1
13.5.3) and that (

iub.2
13.5.4)

holds with probability ≥ 1−e−N2
. Jensen’s formula now gives (

iub.9
13.5.11) with

probability ≥ 1−O(ε2)− e−N2
for every fixed (r, R) with 0 < r < R < R0.

Recall that we have defined R = Rσ in [0, 1 − 1/N ] as the unique solution
in that interval of the equation RN = 2C1δNG(R) when m(1 − 1/N) ≥
2C1δN (asymptotically equivalent to δ ≤ (2C1eN

2)−1(1 + O(1/N)). When
m(1 − 1/N) < 2C1δN , we define Rσ = 1 − 1/N and notice that Rσ < R0

also in this case. Again, we have RN < 2C1δNG(R) when R < Rσ.

iub2 Theorem 13.5.2 Instead of (
iub.10
13.5.12), we assume (

iub.12
13.5.14) and N � 1.

When δ > (1 − 1/N)N/(2C1N
2), we extend the definition of Rσ by putting

Rσ = 1 − 1/N . Let C > 0 be fixed. Then for 0 < ε ≤ C, 0 < r < R ≤ Rσ,
we have

M(r) ln
R

r
≤ ln (8C1NG(R)/ε) , with probability ≥ 1−O(ε2)− e−N2

.

(13.5.16) iub.14

13.6 Gaussian elimination and determinants

We review some standard material, see for instance
SjZw07b
[144] and Section 4 in

Sj13
[138]. Let Hj, Gj, j = 1, 2 be complex separable Hilbert spaces. Consider a
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bounded linear operator

A =

(
A11 A12

A21 A22

)
: H1 ×H2 → G1 × G2. (13.6.1) pj.20

When A is bijective (with bounded inverse) we denote the inverse by

A−1 = E =

(
E11 E12

E21 E22

)
. (13.6.2) pj.21

si1 Proposition 13.6.1 1) Assume that A11 is bijective. Then by Gaussian
elimination we have the standard factorization into lower and upper triangu-
lar matrices:

A =

(
A11 0
A21 1

)(
1 A−1

11 A12

0 A22 − A21A
−1
11 A12

)
. (13.6.3) pj.22

The first factor is bijective since A11 is, so the bijectivity of A is equivalent
to that of the second factor, which in turn is equivalent to that of A22 −
A21A

−1
11 A12. When A is bijective, we have the formula,

A−1 =

(
1 a
0 (A22 − A21A

−1
11 A12)−1

)(
A−1

11 0
b 1

)
=:

(
E11 E12

E21 E22

)
=: E ,

(13.6.4) pj.23

where a = −A−1
11 A12(A22 − A21A

−1
11 A12)−1, b = −A21A

−1
11 and in particular,

E22 = (A22 − A21A
−1
11 A12)−1. (13.6.5) pj.24

2) Now assume that A is bijective. Then A11 is bijective precisely when E22

is, and when that bijectivity holds we have

E−1
22 = A22 − A21A

−1
11 A12

A−1
11 = E11 − E12E

−1
22 E21

(13.6.6) pj.25

The first statement is clear. The second statement is also quite simple to
verify, by solving for x1 in the first equation in the system,{

A11x1 + A12x2 = y1,

A21x1 + A22x2 = y2,

and substitution in the second equation.
Let now H1 = G1, H2 = G2 be of finite dimension and assume that A is

bijective. From (
pj.23
13.6.4), (

pj.24
13.6.5) we get

detA−1 = (detE22) detA−1
11 ,
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provided that A11 is bijective. This can be written

(detA)(detE22) = detA11, (13.6.7) pj.26

and by a simple perturbation argument, we see that this identity extends to
the case when A11 is not necessarily bijective.

We apply this to A = Aδ in (
pj.11
13.4.10), or rather to

(
Aδ − z R−
R+ 0

)
with

inverse

(
Eδ Eδ

+

Eδ
− Eδ

−+

)
, under the assumption (

pj.15
13.4.16). Noticing that E22 =

Eδ
−+, −A11 = z − Aδ in this case and recalling (

pj.14.5
13.4.15), gives∣∣ln | det(z − Aδ)| − ln |Eδ

−+|
∣∣ ≤ 2G(|z|)δ‖Q‖tr. (13.6.8) pj.27

13.7 Random perturbations and determinants
rpd

We now let Q = (qj,k(ω))Nj,k=1, where qj,k are independent random variables
with the law NC(0, 1). According to Proposition

1dm6
3.4.1 we have

P(‖Q‖2
HS ≥ x) ≤ exp

(
C0

2
N2 − x

2

)
and hence if C1 > 0 is large enough,

‖Q‖2
HS ≤ C2

1N
2, with probability ≥ 1− e−N2

. (13.7.1) pj.28

In particular (
pj.28
13.7.1) holds for the ordinary operator norm of Q. We continue

to assume that |z| < 1 until further notice. We choose δ ≥ 0 so that

C1δNG(|z|) < 1

2
. (13.7.2) pj.29

Then with probability ≥ 1−e−N2
(
pj.15
13.4.16) holds and so does (

pj.19
13.4.20), which

gives
Eδ
−+ = zN + δ(Q|Z) +O(1) (G(|z|)δN)2 , (13.7.3) pj.30

where
Z =

(
zN−j+k−1

)N
j,k=1

. (13.7.4) pj.31

In the following, we often write | · | for the Hilbert-Schmidt norm ‖ · ‖HS. A
straight forward calculation shows that

|Z| =
N−1∑

0

|z|2ν =
1− |z|2N

1− |z|2
=

1− |z|N

1− |z|
1 + |z|N

1 + |z|
, (13.7.5) pj.32
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and in particular,
GΣ(|z|)

2
≤ |Z| ≤ GΣ(|z|), (13.7.6) pj.33

where GΣ(|z|) = 1 + |z| + ... + |z|N−1 � G(|z|) (cf. (
pj.10.4
13.4.8)). Then (

pj.30
13.7.3)

shows that

|Eδ
−+ − zN | ≤ δNGΣ(|z|) (1 +O(1)G(|z|)δN) ,

so
|Eδ
−+ − zN | ≤ O(1)δNG(|z|). (13.7.7) pj.33.5

From (
pj.30
13.7.3) and the Cauchy inequalities, we get

dQE
δ
−+ = δ|Z|(dQ|e1) +O

(
1

N

)
(δNG(|z|))2 (13.7.8) pj.34

in CN2
, where

e1 =
1

|Z|
Z. (13.7.9) pj.35

Complete e1 into an orthonormal basis e1, e2, ..., eN2 in CN2
and write

Q = Q′ +Q1e1, Q
′ =

N2∑
2

Qkek ∈ (e1)⊥.

Then (
pj.30
13.7.3), (

pj.34
13.7.8) give

Eδ
−+ = zN + δ|Z|Q1 +O

(
(G(|z|)δN)2

)
, (13.7.10) pj.36

dQE
δ
−+ = δ|Z|dQ1 +O

(
N−1(G(|z|)δN)2

)
, (13.7.11) pj.37

for |Q| ≤ C1N .
It will be convenient to extend Q 7→ Eδ

−+(Q) to a smooth function F :

CN2 → C, such that

F (Q) = zN + δ|Z|Q1 +O
(
(G(|z|)δN)2

)
=: zN + δ|Z|f(Q)

dQF = δ|Z|dQ1 +O
(
N−1(G(|z|)δN)2

) (13.7.12) pj.38

and the remainders vanish outside BCN2 (0, 2C1N). Indeed, we may assume
that the above estimates hold for |Q| ≤ 2C1N and take

F (Q) = zN + δ|Z|Q1 + χ

(
|Q|

2C1N

)
O
(
(G(|z|)δN)2

)
,
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where the O(...) is the same quantity as in (
pj.38
13.7.12) and

χ ∈ C∞0 (]− 1, 1[; [0, 1]), χ = 1 on [−1/2, 1/2].

Since F will in general not be holomorphic, the last estimate holds in the
space of real-linear mappings: CN2 → C. The function f satisfies

f(Q) = Q1 +O (NG(|z|)δN) , (13.7.13) pj.39

dQf = dQ1 +O (G(|z|)δN) . (13.7.14) pj.40

We now strengthen the assumption (
pj.29
13.7.2) to

G(|z|)δN � 1. (13.7.15) pj.41

Then the map C 3 Q1 7→ f(Q1, Q
′) ∈ C is bijective for every Q′ and has an

inverse g = g(ζ,Q′), satisfying

g(ζ,Q′) = ζ +O (NG(|z|)δN) , (13.7.16) pj.42

dζ,Q′g(ζ,Q′) = dζ +O (G(|z|)δN) . (13.7.17) pj.43

Let µ(dζ) be the direct image under f of the Gaussian measure π−N
2
e−|Q|

2
L(dQ).

We study µ in D(0, C) for any fixed C > 0. For ϕ ∈ C0(D(0, C)), we get∫
ϕ(ζ)µ(dζ) =

∫
ϕ(f(Q))π−N

2

e−|Q|
2

L(dQ)

=

∫
CN2−1

π1−N2

e−|Q
′|2
(∫

C
π−1e−|Q1|2ϕ(f(Q))L(dQ1)

)
L(dQ′)

=

∫
CN2−1

π1−N2

e−|Q
′|2
[∫

C
π−1e−|g(ζ,Q

′)|2ϕ(ζ)L(dζg)

]
L(dQ′),

where

L(dζg) = L(dQ1) = det

(
∂(Q1, Q1)

∂(ζ, ζ)

)
L(dζ).

We get for ϕ ∈ C0(D(0, C)),∫
ϕ(ζ)µ(dζ)

=

∫
C
ϕ(ζ)

(∫
CN2−1

π−1e−|g(ζ,Q
′)|2π1−N2

e−|Q
′|2det

(
∂(Q1, Q1)

∂(ζ, ζ)

)
L(dQ′)

)
L(dζ),

so that in D(0, C)

µ(dζ) =

(∫
CN2−1

(π−1e−|g(ζ,Q
′)|2π1−N2

e−|Q
′|2 det

(
∂(Q1, Q1)

∂(ζ, ζ)

)
L(dQ′)

)
L(dζ).

(13.7.18) pj.45
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We conclude that for |ζ0|, r ≤ O(1), the probability that |Q| ≤ C1N and
f(Q) ∈ D(ζ0, r) is bounded from above by∫

CN2−1

∫
ζ∈D(ζ0,r)

π−1e−|g(ζ,Q
′)|2L(dζg)π1−N2

e−|Q
′|2L(dQ′). (13.7.19) pj.46

From (
pj.43
13.7.17) we infer that

g(ζ,Q′)− g(ζ0, Q
′) = (1 +O(GδN))(ζ − ζ0),

so
{g(ζ,Q′); ζ ∈ D(ζ0, r)} ⊂ D(g(ζ0, Q

′), r̃), r̃ = (1 +O(δNG))r

and the last integral is ≤∫
CN2−1

∫
D(g(ζ0,Q′),r̃)

π−1e−|ω|
2

L(dω)π1−N2

e−|Q
′|2L(dQ′).

Here the inner integral is

≤
∫
D(0,r̃)

1

π
e−|ω|

2

L(dω) = 1− e−r̃2

. (13.7.20) pj.46.5

Indeed, by rotation symmetry, we may assume that g(ζ0, Q
′) = t ≥ 0 and by

Fubini’s theorem, we are reduced to show that F (t) ≤ F (0), where

F (t) =

∫ t+r̃

t−r̃
e−s

2

ds.

It then suffices to observe that F ′(t) ≤ 0.
Thus the integral in (

pj.46
13.7.19) is bounded by

1− e−r̃2 ≤ (1 +O(GδN))(1− e−r2

).

In terms of Eδ
−+, we get under the assumption (

pj.41
13.7.15):

pj1 Lemma 13.7.1 We recall (
pj.33
13.7.6). For 0 ≤ t ≤ CδG(|z|), |z|N ≤ CδG(|z|),

the probability that |Q| ≤ C1N and that |Eδ
−+| ≤ t is

≤ (1 +O (G(|z|)δN))

(
1− exp

(
−
(

t

δ|Z|

)2
))

.
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Recall that |Q| ≤ C1N with probability ≥ 1 − e−N2
. It follows that for t, z

as in the lemma,

P(|Q| ≤ C1N and |Eδ
−+| > t)

= P(|Q| ≤ C1N)−P(|Q| ≤ C1N and |Eδ
−+| ≤ t)

≥ 1− e−N2 − (1 +O(G(|z|)δN))

(
1− e−( t

|Z|δ )
2
)
.

Assuming
|z|N , t ≤ CG(|z|)δ, (13.7.21) pj.47

we get

pj2 Lemma 13.7.2 We work in the region |z| < 1 and assume (
pj.41
13.7.15), (

pj.47
13.7.21).

Then

P(|Q| ≤ C1N and |Eδ
−+| > t) ≥ 1−O(1)

(
t

G(|z|)δ

)2

− e−N2

.

From the bound
|Q| ≤ C1N, (13.7.22) pj.49

that we adopt from now on, and the Cauchy-Schwartz inequality for the
singular values of Q, we know that ‖Q‖tr ≤ C1N

3/2. It is of some interest to
introduce the following strengthening of (

pj.41
13.7.15):

G(|z|)δN
3
2 ≤ O(1). (13.7.23) pj.44

From (
pj.27
13.6.8) we get∣∣ln | det(z − Aδ)| − ln |Eδ

−+|
∣∣ ≤ 2GδC1N

3/2.

Thus
| det(z − Aδ)| ≥ e−2GδC1N3/2|Eδ

−+|, N →∞
and Lemma

pj2
13.7.2 gives,

pj2.5 Proposition 13.7.3 Under the assumptions (
pj.44
13.7.23), (

pj.47
13.7.21), we have

P(|Q| ≤ C1N and | det(z − Aδ)| > t) ≥ 1−O(1)

(
t

G(|z|)δ

)2

− e−N2

.

If we replace (
pj.44
13.7.23) by the weaker assumption (

pj.41
13.7.15) and keep (

pj.47
13.7.21),

we have

P(|Q| ≤ C1N and | det(z−Aδ)| > te−2C1GδN3/2

) ≥ 1−O(1)

(
t

G(|z|)δ

)2

−e−N2

.
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We sum up the estimates obtained so far.

pj2.7 Theorem 13.7.4 Consider Aδ = A0 + δQ, where the entries of Q are in-
dependent NC(0, 1) random variables. Then with probability ≥ 1 − e−N2

we
have (

pj.49
13.7.22): ‖Q‖HS ≤ C1N and we assume this estimate from now on.

Let G(r), F (R) be defined in (
pj.10.4
13.4.8) and (

pj.0
2.4.9), (

pj.0.5
2.4.10) respectively, so

that by (
pj.10.6
13.4.9),

G(r) =
1

r
F

(
1

r

)
, F (R) =

1

R
G

(
1

R

)
.

Then we have

(A) A general upper bound:

| det(z − Aδ)| ≤ |z|N exp
(
F (|z|)C1δN

3/2
)
, z 6= 0. (13.7.24) pj.49a

(B) An exterior lower bound: If F (|z|)C1δN < 1/2,

| det(z − Aδ)| ≥ |z|N exp
(
−2F (|z|)C1δN

3/2
)
, z 6= 0. (13.7.25) pj.49b

(C) Interior upper and lower bounds: If |z| < 1 and G(|z|)C1δN < 1/2,

| det(z − Aδ)|

{
≤
(
|z|N + 2C1δNG(|z|)

)
e2G(|z|)C1δN3/2

,

≥
(
|z|N − 2C1δNG(|z|)

)
+
e−2G(|z|)C1δN3/2

.
(13.7.26) pj.49c

(D) An interior probabilistic lower bound. Assume that |z| < 1 and that we
have (

pj.44
13.7.23), (

pj.47
13.7.21). Then we have

| det(z − Aδ)| > t with probability ≥ 1−O(1)

(
t

G(|z|)δ

)2

− e−N2

.

(13.7.27) pj.49d

Replacing (
pj.44
13.7.23) by (

pj.41
13.7.15) and keeping (

pj.47
13.7.21), leads to the

weaker estimate,

| det(z−Aδ)| > te−2C1δGN3/2

with proba ≥ 1−O(1)

(
t

G(|z|)δ

)2

−e−N2

.

(13.7.28) pj.49e

Proof. (A) and (B) follow from (
pj.57
13.3.2). (C) follows from the last part

of (
pj.12
13.4.12), (

pj.27
13.6.8) and the fact that ‖Q‖tr ≤ C1N

3/2. (D) follows from
Proposition

pj2.5
13.7.3. 2

243



pj3 Remark 13.7.5 Notice that F (1) = G(1) = N and recall that F is decreas-
ing, while G is increasing. Let rσ, Rσ > 0 be determined by the conditions
(cf. (

mrpj.2
13.2.2))

G(rσ) =
1

2C1δN
= F (Rσ).

• If N < 1/(2C1δN), then 0 < Rσ < 1 < rσ < +∞ and from (B), we
conclude that σ(Aδ) ⊂ D(0, Rσ) ⊂ D(0, 1). This is a case of small
perturbations.

• If N > 1/(2C1δN), the spectrum of Aδ is not necessarily included in
the closed unit disc. This is a case of “larger perturbations”.

• In the limiting case N = 1/(2C1δN), we have σ(Aδ) ⊂ D(0, 1).

In the next section we discuss the distribution of eigenvalues in a case of
small perturbations.

13.8 Eigenvalue distribution for small random

perturbations
smr

In this section we study the eigenvalue distribution when the spectral radius
Rσ in Remark

pj3
13.7.5 is smaller than 1 with some logarithmic margin. By

(
pj.0
2.4.9) we have F (R) = R−NG(R) for R ≤ 1 and when R ≤ 1−1/N we have

F (R) =
1

m(R)
, where m(R) := RN(1−R). (13.8.1) smr.1

Thus, we are interested in the equation

m(R) = 2C1δN, 0 ≤ R ≤ 1− 1/N. (13.8.2) smr.2

We have

m′(R) = (N + 1)RN−1

(
N

N + 1
−R

)
,

and hence we have a unique critical point R = Rmax = N/(N + 1) which is
the point of maximum of m. For N large, we get

mmax := m(Rmax) =
1 +O( 1

N
)

eN
.

A necessary condition for (
smr.2
13.8.2) is of course that mmax > 2C1δN We will

establish simple upper and lower bounds on R = Rσ in (
smr.2
13.8.2) under the

apriori assumption that Rσ ∈ [0, 1− 1/N ] and N is large.
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Clearly RN
σ > 2C1δN , since 0 < 1−Rσ < 1, so

Rσ > R1 := (2C1δN)
1
N = e

1
N

(ln 2C1δ+lnN).

Similarly, Rσ < Rmax = 1− 1/(N + 1), so 1−Rσ > 1/(N + 1) and hence

RN
σ /(N+1) < 2C1δN, Rσ < R2 := (2C1δN(N+1))1/N = e

1
N

(ln 2C1δ+2 lnN)+O(N−1).

We conclude that

e
1
N

(ln 2C1δ+lnN) ≤ Rσ ≤ e
1
N

(ln 2C1δ+2 lnN)+O(N−1). (13.8.3) smr.3

The smallness condition on the perturbation that we first adopt in this section
(to be sharpened later) is that ln 2C1δ + 2 lnN ≤ −ε0 lnN for some fixed
ε0 > 0, i.e.:

2C1δ ≤ N−2−ε0 . (13.8.4) smr.4

It is slightly stronger than the one for small perturbations in Remark
pj3
13.7.5

and it implies, as we have just seen, that

Rσ ≤ 1− ε0 lnN +O(1)

N
(13.8.5) smr.5

and in particular the apriori assumption that Rσ ≤ 1− 1/N .
In the remainder of this section, we restrict the attention to the disc

D(0, 1 − 1/N) where F (|z|) = |z|−N(1 − |z|)−1 = m(z)−1 and G(|z|) =
(1 − |z|)−1. The upper bounds in (A) and (C) in Theorem

pj2.7
13.7.4 become

respectively,

ln | det(z − Aδ)| ≤ N ln |z|+ C1δN
3
2

|z|N(1− |z|)
,

ln | det(z − Aδ)| ≤ ln

(
|z|N +

2C1δN

1− |z|

)
+

2C1δN
3
2

1− |z|
.

We will also assume, for simplicity, that δ is at most exponentially decaying:
∃C0 > 0 such that

e−C0N ≤ δ. (13.8.6) smr.5.5

As we shall see more precisely below, we may neglect the term 2C1δN/(1−
|z|) in the argument of the last logarithm as long as it is � |z|N . Now the
two terms are equal precisely when m(|z|) = 2C1δN , i.e. when |z| = Rσ and
therefore |z|N will be the dominant term in the region |z| ≥ Rσ + ε lnN/N
for any fixed ε > 0. So in that region, in order to compare the upper bounds
in (A) and (C), it suffices to compare

(a)
C1δN

3
2

|z|N(1− |z|)
and (c)

2C1δN
3
2

1− |z|
.
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These two terms are of the same order of magnitude when |z| = 1 − 1/N ,
but when |z| = 1 − ε(lnN)/N the first one dominates over the second one
with a factor which is roughly N ε. Though this is not a rigorous proof that
the bound in (C) is sharper than the one in (A) in all parameter ranges, we
choose to use only (C), (D) in D(0, 1− 1/N).

Let us first review some general facts about radial subharmonic functions
and about functions of the form ln(u+ v).

In polar coordinates z = reiθ, r > 0, θ ∈ S1, we have

r2∆ = (r∂r)
2 + ∂2

θ .

From this we see that a real continuous radial function, φ = φ(r), defined on
an annulus centered at 0, is subharmonic iff (r∂r)

2φ ≥ 0 or equivalently iff
φ(et) is convex.

We also recall:

smr1 Lemma 13.8.1 Let Ω ⊂ C be open and let u, v ∈ C2(Ω; R) be subharmonic
functions. Then w := ln(eu + ev) is subharmonic. The statement also holds
after replacing “subharmonic” with “convex”.

Proof. Write ∂ = ∂
∂z

, ∂ = ∂
∂z

. Differentiating the relation ew = eu + ev, we

get ew∂w = eu∂u+ev∂v. Applying ∂ to this, we get after some computations,

∂∂w = eu−w∂∂u+ ev−w∂∂v + eu+v−2w(|∂u|2 + |∂v|2 − 2<∂u∂v)

which is ≥ 0 since each of the three terms in the right hand side is ≥ 0.
The proof in the convex case is basically the same. 2

Consider again w = ln(eu + ev), with u, v ∈ C2(Ω; R). We have

max(u, v) ≤ w ≤ max(u, v) + ln 2.

Further, at a point where u ≥ v, we can write eu + ev = eu(1 + e−(u−v)) to
see that

w = u+ ln(1 + e−(u−v)) = u+ e−(u−v) +O(e−2(u−v)).

Similarly,

dw =
eu

eu + ev
du+

ev

eu + ev
dv = (1−O(e−(u−v)))du+O(e−(u−v))dv (13.8.7) smr.6

Now, consider the function ln
(
rN + 2C1δN/(1− r)

)
, r = |z| ∈]0, 1[,

which is of the form w = ln(eu + ev) with u = N ln r, v = ln 2C1δN
1−r , where
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r = |z|. u is harmonic and we check that v is subharmonic, i.e. v = ln 2C1δN
1−et

is convex for t < 0. Thus w is subharmonic by the lemma. For later use we
also notice that 1/(r − 1) is subharmonic for r > 1.

We consider the left-most point r = r0, where u(r) = v(r). This equation
is equivalent to m(r) = 2C1δN , already studied, so r0 = Rσ.

It is clear that u(r) ≤ v(r) for 0 < r ≤ Rσ with equality precisely for
r = Rσ and we look for a quantitative statement. We have

∂r(u− v) =
N

r
− 1

1− r
, u− v = N ln

r

Rσ

+ ln
1− r

1−Rσ

, (13.8.8) smr.7

and for r ≤ Rσ, 1
1−r ≤

1
1−Rσ . Here, Rσ = e−s, s � ln(1/δ)/N , so

1−Rσ ≥
ln 1/δ

O(1)N
,

1

1−Rσ

≤ O(N)

ln 1/δ
� N

r
, for r ≤ Rσ.

Hence, in the large N limit,

∂r(u− v) = (1 + o(1))
N

r
, 0 < r ≤ Rσ. (13.8.9) smr.8

In particular,

u− v = (1 + o(1))N(ln r − lnRσ), 0 < r ≤ Rσ. (13.8.10) smr.9

We now restrict the attention to a region

r ≤ 1− lnN

O(N)
. (13.8.11) smr.9.7

In this region we still have

1

1− r
≤ O(N)

lnN
� N

r

and (
smr.8
13.8.9), (

smr.9
13.8.10) remain valid.

smr2 Lemma 13.8.2 When (
smr.9.7
13.8.11) holds, we have in the limit of large N ,

∂r(u− v) = (1 + o(1))
N

r
, u− v = (1 + o(1))N (ln r − lnRσ) . (13.8.12) smr.10

Here,

u(r) = N ln r, v(r) = ln
2C1δN

1− r
. (13.8.13) smr.11
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Recalling that G(r) = 1/(1− r) when r ≤ 1− 1/N , we define h(r) by

Nh(r) =
2C1δN

3
2

1− r
+ ln

(
rN +

2C1δN

1− r

)
= N

1
2 ev(r) + ln (eu + ev) . (13.8.14) smr.12

Also, put
U(z) = ln | det(z − Aδ)|, (13.8.15) smr.13

so that U(z) ≤ Nh(|z|) for |z| ≤ 1 − (lnN)/O(N) by (
pj.49c
13.7.26). We have

seen that ln (eu + ev) is subharmonic and it follows from that discussion, or
by direct computation, that ev is subharmonic, so we have

smr3 Lemma 13.8.3 h(|z|) is subharmonic away from 0 on D(0, 1− 1/N).

Comparison of the bounds in (
pj.49c
13.7.26), when Rσ < |z| ≤ 1−(lnN)/O(N).

We write the lower bound in (
pj.49c
13.7.26) as

U(z) ≥ N(h(|z|)− ε(|z|)), Nε(r) = 2N
1
2 ev(r) + ln (eu + ev)− ln (eu − ev) .

(13.8.16) smr.14

We saw prior to (
smr.6
13.8.7) that

ln (eu + ev) = u+ e−(u−v) +O
(
e−2(u−v)

)
,

when u ≥ v (i.e. when r ≥ Rσ for our special functions u, v). Now restrict r
by imposing that

r ≥ Rσ +
1

N
, (13.8.17) smr.15

so that u(r) ≥ v(r) + 1 + o(1) by (
smr.10
13.8.12). Then eu ≥ e1+o(1)ev and as prior

to (
smr.6
13.8.7), we get

ln (eu − ev) = u− e−(u−v) +O
(
e−2(u−v)

)
.

Hence, for Rσ + 1/N ≤ r ≤ 1− lnN/O(N),

Nε(r) =
4C1δN

3
2

1− r
+ 2e−(u−v) +O

(
e−2(u−v)

)
. (13.8.18) smr.16

From (
smr.10
13.8.12) we have

eu−v =

(
r

Rσ

)N(1+o(1))

,

and (
smr.16
13.8.18) gives,

Nε(r) ≤ 4C1δN
3
2

1− r
+ 3

(
r

Rσ

)−N(1+o(1))

. (13.8.19) smr.17
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Comparison of the lower bound (
pj.49d
13.7.27) and the upper bound

in (
pj.49c
13.7.26). We now work in the region r < Rσ. Write t = es. Then

(
pj.49d
13.7.27) tells us that if |z|N , t ≤ CG(|z|)δ, we have

U(z) > s with probability ≥ 1− (1− |z|)2e2(s−ln δ) − e−N2

. (13.8.20) smr.18

Notice that |z|N ≤ 2C1G(|z|)δ, for |z| ≤ Rσ. Here we have to reconciliate the
wishes to have a large lower bound and a probability very close to 1. Recalling
the upper bound (

smr.4
13.8.4) on δ with the corresponding fixed parameter ε0 > 0,

we fix a new parameter ε1 with 0 < ε1 � 1 and choose

s = ln δ −N ε1 . (13.8.21) smr.19

Since, 1− |z| ≥ 1/N we get from (
smr.18
13.8.20) that

U(z) ≥ ln δ −N ε1 with probability ≥ 1−N−2e−2Nε1 − e−N2

. (13.8.22) smr.20

This estimate can be written

U(z) ≥ N (h(|z|)− ε(|z|)) ,

where

ε(|z|) =
2C1δN

1
2

1− r
+

1

N
ln

(
2C1N

1− r
+
rN

δ

)
+N ε1−1.

Now, restrict r to the region

r ≤ Rσ −
1

N
. (13.8.23) smr.21

Then 2C1N/(1− r) dominates over rN/δ by a factor close to e or larger, so

ln

(
2C1N

1− r
+
rN

δ

)
� ln

N

1− r
≤ O(lnN),

and we get

ε(r) ≤ 2C1δN
1
2

1− r
+
O(N ε1)

N
. (13.8.24) smr.22

Summing up, we have

smr4 Proposition 13.8.4 For each z ∈ D(0, Rσ − 1/N), we have

U(z) ≥ N(h(|z|)−ε(r)), with probability ≥ 1−N−2e−2Nε1−e−N2

, (13.8.25) smr.23

where ε(r) > 0 is a function satisfying (
smr.22
13.8.24).
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We also want to study ∆(h(|z|)) = (r−2(r∂r)
2h)(|z|) and more precisely its

integral over annuli centered at z = 0. We have∫
r1<|z|<r2

∆(h(|z|))L(dz) = 2π

∫ r2

r1

∂rr∂rh(r)dr = 2π [r∂rh(r)]r2r1 , (13.8.26) smr.24

where h(r) is given in (
smr.12
13.8.14), so we need to study

r∂r ln

(
rN +

2C1δN

1− r

)
on each side of r = Rσ. We will use (

smr.6
13.8.7), (

smr.10
13.8.12) with u, v as in

(
smr.11
13.8.13).

For Rσ ≤ r ≤ 1− (lnN)/O(N) we get

r∂r ln

(
rN +

2C1δN

1− r

)
= (1−O(e−(u−v)))N +O(e−(u−v))

r

1− r
,

where by (
smr.10
13.8.12),

u− v = N(1 + o(1)) ln
r

Rσ

.

Since r
1−r = O(N), we get

1

N
r∂r ln

(
rN +

2C1δN

1− r

)
=

(
1 +O(1)

(
r

Rσ

)−(1+o(1))N
)
. (13.8.27) smr.25

For r < Rσ we also use (
smr.6
13.8.7) with a permutation of the roles of u and

v:

r∂r ln

(
rN +

2C1δN

1− r

)
= (1−O(e−(v−u)))

r

1− r
+O(e−(v−u))N.

By (
smr.10
13.8.12), we get as before,

1

N
r∂r ln

(
rN +

2C1δN

1− r

)
=

r

N(1− r)
+O(1)

(
r

Rσ

)(1+o(1))N

. (13.8.28) smr.26

So far, we have treated the contributions to r∂rh(r) from the second term
in (

smr.12
13.8.14). The contribution from the first term is

r∂r
2C1δN

1
2

1− r
=

2C1δN
1
2

1− r
r

1− r
. (13.8.29) smr.27
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By (
smr.4
13.8.4), we have

r∂r
2C1δN

1
2

1− r
= O(1)N−ε0−

1
2

r

1− r
. (13.8.30) smr.28

Rather than distinguishing further between different regions in r, we now
strengthen (

smr.4
13.8.4) to

2C1δ ≤ N−
5
2
−εnew

0 , (13.8.31) smr.29

for some εnew
0 (= ε0 − 1

2
) > 0. Then (

smr.28
13.8.30) becomes,

r∂r
2C1δN

1
2

1− r
= O(1)N−ε

new
0

r

N(1− r)
, (13.8.32) smr.29.5

which is small compared to the leading terms, 1 and r
N(1−r) in (

smr.25
13.8.27),

(
smr.26
13.8.28).

smr5 Proposition 13.8.5 Under the assumption (
smr.29
13.8.31), we have

r∂rh(r) =

2C1δN
1
2

r

(1− r)2︸ ︷︷ ︸
O(N−ε

new
0 r

N(1−r))

+

{
1 +O(1)(r/Rσ)−(1+o(1))N , Rσ ≤ r ≤ 1− lnN

O(1)N
,

r
N(1−r) +O(1)(Rσ/r)

−(1+o(1))N , 0 < r ≤ Rσ.

(13.8.33) smr.30

The derivative of the first term to the right is O
(
δN

1
2 (1− r)−3

)
.

Estimates of the subharmonic measure of small discs. We next esti-
mate the integral of ∆h(z) over small discs contained inD(0, 1−(lnN)/(O(1)N)).
As a preparation (and this will also be used directly), we shall study the in-
tegral (

smr.24
13.8.26) over the annulus D(0, r1, r2) = {z ∈ C; r1 < |z| < r2}. We

shall assume for simplicity that

r2 ≥
1

O(1)
. (13.8.34) smr.31

We have directly from (
smr.24
13.8.26) and Proposition

smr5
13.8.5,

smr6 Proposition 13.8.6 Let I(r1, r2) be the integral in (
smr.24
13.8.26) and assume

(
smr.29
13.8.31), (

smr.31
13.8.34).
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a) If r2 ≤ Rσ, we have

I(r1, r2) =
2π

N

r2 − r1

(1− r1)(1− r2)
+O(1)

((
Rσ

r2

)−(1+o(1))N

+ δN
1
2

r2 − r1

(1− r1)(1− r2)2

)
,

where the last term in the remainder is ≤ δN
1
2

+3 = O(N1−εnew
0 ).

b) If Rσ ≤ r1 < r2 ≤ 1− (lnN)/(O(1)N), we have

I(r1, r2) = O(1)

(
δN

1
2

r2 − r1

(1− r1)(1− r2)2
+

(
r1

Rσ

)−(1+o(1))N
)
.

c) If r1 ≤ Rσ ≤ r2, we have

I(r1, r2) =2π − 2πr1

N(1− r1)

+O(1)

(
δN

1
2

r2 − r1

(1− r1)(1− r2)2
+

(
r2

Rσ

)−(1+o(1))N

+

(
Rσ

r1

)−(1+o(1))N
)
.

Consider open discs D(z, ρ) with |z| = r, r + ρ = r2, r − ρ = r1, so that
ρ = (r2 − r1)/2. Then, since h is a radial function,∫

D(z,ρ)

∆h(z)L(dz) ≤ O(1)I(r1, r2)ρ (13.8.35) smr.32

We first concentrate on the case a) in the last proposition and assume in
addition, that

ρ ≤ θ0(Rσ − r) (13.8.36) smr.33

for some fixed θ0 ∈]0, 1[, so that Rσ − r, Rσ − r1, Rσ − r2 are all of the same
order of magnitude. The same holds if we replace Rσ with 1.

Then we get

I(r1, r2) = O(1)

(
1

N

ρ

(1− r)2
+ (Rσ/r)

−N/O(1)

)
,

∫
D(z,ρ)

∆h(z)L(dz) = O(ρ)

(
1

N

ρ

(1− r)2
+ (Rσ/r)

−N/O(1)

)
. (13.8.37) smr.34

If γ̃ is a “band” of the type, {z ∈ C; dist (z, γ) ≤ ρ}, where γ is a Lipschitz
curve passing through z, then we define the ∆h-density along γ̃ at z ∈ γ by

∆h-dens (z, ρ) =
1

ρ

∫
D(z,ρ)

∆hL(dz), (13.8.38) smr.34.5
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which under the present assumptions satisfies

∆h-dens (z, ρ) = O(1)

(
1

N

ρ

(1− r)2
+ (Rσ/r)

−N/O(1)

)
. (13.8.39) smr.35

Next, recall that under the same assumptions, ε(r) is given by (
smr.22
13.8.24):

ε(r) ≤ 2C1δN
1/2

1− r
+
O(N ε1)

N
≤ O(1)

N ε1

N
.

Here we also assume (
smr.21
13.8.23). In both cases a) and b), we define the ε-

density by

ε-dens (z, ρ) =
ε(|z|)
ρ

,

so in the present case a), we have

ε-dens (z, ρ) ≤ O(1)
N ε1

Nρ
. (13.8.40) smr.36

We want to choose ρ in (
smr.33
13.8.36) making (∆h-dens + ε-dens )(z, ρ) as small

as possible. The minimum of ρ 7→ ρ
N(1−r)2 + Nε1

Nρ
over R+ is attained at

ρ = N ε1/2(1 − r) which is too large for (
smr.33
13.8.36) to hold, so we choose

ρ = ρmin = θ0(Rσ − r) and get the corresponding value,

(ε-dens + ∆h-dens )min(z) = O(1)

(
N ε1

N(Rσ − r)
+ (Rσ/r)

−N/O(1)

)
.

(13.8.41) smr.37

We next do the same estimates in the case b) of the proposition, now
under the additional assumption

ρ ≤ θ0(r −Rσ), r2 ≤ (1 +Rσ)/2, (13.8.42) smr.38

with θ0 as before. We get

∆h-dens (z, ρ) = O(1)

(
δN1/2ρ

(1−Rσ)3
+ (r/Rσ)−N/O(1)

)
, (13.8.43) smr.38.5

and by (
smr.17
13.8.19),

ε-dens (z, ρ) =
O(1)

ρ

(
δN1/2

1−Rσ

+
1

N
(r/Rσ)−N/O(1)

)
. (13.8.44) smr.39

Restrict ρ further by imposing

ρ ≥ 1

N
. (13.8.45) smr.40
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Then

(∆-dens + ε-dens )(z, ρ) = O(1)

(
δN1/2ρ

(1−Rσ)3
+

δN1/2

ρ(1−Rσ)
+ (r/Rσ)−N/O(1)

)
.

Without the condition (
smr.38
13.8.42) the optimal choice of ρ would be ρ = 1−Rσ

which is too large however, so we settle for ρ = ρmin = θ(r −Rσ) and get

(∆h-dens + ε-dens )min(z) = O(1)

(
δN1/2

(r −Rσ)(1−Rσ)
+ (r/Rσ)−N/O(1)

)
.

(13.8.46) smr.41

We shall next combine our estimates with Theorem (
intcz2
12.1.3), with “1/h”

there replaced by N and ”φ” by “h”. Let

Ω = {z ∈ C; θ1 < arg z < θ2, r− < |z| < r+}, (13.8.47) smr.42

where 1/O(1) ≤ r− ≤ Rσ − 1/N , Rσ + 1/N ≤ r+ ≤ (1 + Rσ)/2. Let
θ = θ2 − θ1. The main term in Theorem (

intcz2
12.1.3) is

N

2π

∫
Ω

∆h(z)L(dz) = Nθ [r∂rh(r)]r+r− ,

which according to (
smr.30
13.8.33) is equal to

Nθ

(
1 +

2C1δN
1
2 r+

(1− r+)2
− 2C1δN

1
2 r−

(1− r−)2
− r−
N(1− r−)

+O

((
r+

Rσ

)− N
O(1)

+

(
Rσ

r−

)− N
O(1)

))

= Nθ

(
1− r−

N(1− r−)
+O(1)

(
N−ε

new
0 +

(
r+

Rσ

)− N
O(1)

+

(
Rσ

r−

)− N
O(1)

))
.

(13.8.48) smr.43

In Theorem
intcz2
12.1.3 we choose the local radius r = r(z), z ∈ ∂Ω of the

form r(z) = max θ0||z| − Rσ|, 2/N), where we recognize ρ = ρ(|z|) above,
= θ0||z| − Rσ|. We let z0

j in that theorem avoid a 1/N -neighborhood of the
circle |z| = Rσ. The remainder term is

O(1)N

(∫
{z∈∂Ω; ||z|−Rσ |≥ 1

N
}
(ε-dens + ∆h-dens )min(z)|dz|+O

(
1

N

))
,

(13.8.49) smr.44
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where the last term corresponds to {z ∈ ∂Ω; ||z|−Rσ| < 1/N}, more precisely
to the integral of ∆h over a N−1-neighborhood of that set. The boundary
integral can be decomposed into 4 terms, Bia, Bir, Bea, Ber, where i stands
for interior, e for exterior, a for arc and r for radial. From (

smr.37
13.8.41), we get

Bia = O(1)θ

(
N ε1

N(Rσ − r−)
+ (Rσ/r−)−

N
O(1)

)
,

Bir = O(1)

∫ Rσ− 1
N

r−

(
N ε1

N(Rσ − r)
+ (Rσ/r)

− N
O(1)

)
dr

= O(1)

(
N ε1 lnN

N
+

1

N

)
= O(1)

N ε1 lnN

N
.

From (
smr.41
13.8.46) we get

Bea = O(1)θ

(
δN

1
2

(r+ −Rσ)(1−Rσ)
+ (r+/Rσ)−

N
O(1)

)
,

Ber =

∫ r+

Rσ+ 1
N

(
C1δN

1
2

(r −Rσ)(1−Rσ)
+ (r/Rσ)−

N
O(1)

)
dr

= O(1)

(
δN

1
2 lnN

1−Rσ

+
1

N

)
.

Then the remainder (
smr.44
13.8.49) is ≤ O(N) times

θ
N ε1−1

Rσ − r−
+ θ

δN
1
2

(r+ −Rσ)(1−Rσ)
+
N ε1 lnN

N
+

(
Rσ

r−

)− N
O(1)

+

(
r+

Rσ

)− N
O(1)

.

(13.8.50) smr.45

Combining this with (
smr.43
13.8.48) and Theorem

intcz2
12.1.3, we get

smr7 Theorem 13.8.7 Let e−CN ≤ δ ≤ N−
5
2
−εnew

0 for some εnew
0 > 0, so that

Rσ is bounded from above in (
smr.5
13.8.5) and bounded from below by 1/O(1) in

(
smr.3
13.8.3). Let

1

O(1)
≤ r− ≤ Rσ −

1

N
, Rσ +

1

N
≤ r+ ≤ (1 +Rσ)/2.

Define Ω by (
smr.42
13.8.47), θ := θ2 − θ1 and let ε1 > 0 be small and fixed. Then

with probability
≥ 1− e−2Nε1 − e−N2

, (13.8.51) smr.46
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we have

|#(σ(Aδ) ∩ Ω)− θ

2π
N

(
1− r−

N(1− r−)

)
| ≤

O(1)N

(
θ
N ε1−1

Rσ − r−
+ θ

δN
1
2

(r+ −Rσ)(1−Rσ)
+ θN−ε

new
0 +

N ε1 lnN

N
+

(
Rσ

r−

)− N
O(1)

+

(
r+

Rσ

)− N
O(1)

)
.

(13.8.52) smr.47

The eigenvalues of Aδ sit in D(0, Rσ), so we are free to choose r+ conveniently.
We choose r+ = (1 +Rσ)/2. Then (

smr.47
13.8.52) gives:

|#(σ(Aδ) ∩ Ω)− θ

2π
N

(
1− r−

N(1− r−)

)
| ≤

O(1)N

(
θ
N ε1−1

Rσ − r−
+ θ

δN
1
2

(1−Rσ)2
+ θN−ε

new
0

N ε1 lnN

N
+

(
Rσ

r−

)− N
O(1)

+R
N
O(1)
σ

)
.

(13.8.53) smr.48

From this we get Theorem
mrpj1
13.2.1 with ε0 there equal to εnew

0 .

13.9 Eigenvalue distribution for larger ran-

dom perturbations
lar

When δ is larger we cannot exclude eigenvalues outside the unit disc. In
addition to the upper bound on ln | det(z − Aδ)| that follows from the first
part of (

pj.49c
13.7.26), we shall use the one given by (

pj.49a
13.7.24). However, in order to

have some simplifications, we sacrifice the maximal sharpness and consider
these estimates only in the regions |z| < 1 and |z| > 1 respectively, and
in order to simplify further, we replace G and F by their upper bounds
1/(1− |z|) and 1/(|z| − 1) respectively.

Our first problem, is then to study the largest radial subharmonic function
h(r) = h1(r) on ]0,∞[ such that

h(r) ≤

{
1
N

ln(rN + 2C1δN
1−r ) + 2C1δN

1
2

1−r =: f(r), 0 < r < 1,

ln r + 2C1δN1/2

r−1
=: g(r), r > 1.

(13.9.1) lar.1

Here we replaced the C1 in (
pj.49a
13.7.24) by 2C1 to get more symmetric expres-

sions. To simplify the expressions, we will introduce δnew = 2C1δ and drop
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the subscript “new”. Putting r = et and subtracting the linear function
Nt, we get the equivalent problem of studying the largest convex function
h(t) = h0(t) on R (slightly abusing notation, by denoting functions of r and
of t = ln r with the same letters) such that

h(t) ≤

{
f0(t) := 1

N
ln(eNt + δN

1−et ) + δN
1
2

1−et − t, t < 0,

g0(t) := δN1/2

et−1
, t > 0.

(13.9.2) lar.2

The functions f0, g0 > 0 are convex, as we have already seen.
The problem is invariant under addition of a linear function of t, so we

can replace f0, g0 by

fs(t) =
1

N
ln

(
eNt +

δN

1− et

)
− (1− s)t+

δN1/2

1− et
, t < 0,

gs(t) = st+
δN1/2

et − 1
, t > 0,

where we let the real parameter s vary in a small fixed neighborhood of 1/2.
(Thus, f = f1, g = g1.)

Let fmin
s and gmin

s denote the minima of fs, gs, attained at tmin(fs) < 0
and tmin(gs) > 0 respectively. If we can choose s, so that fmin

s = gmin
s , then

the desired largest convex function h = hs, satisfying (
lar.2
13.9.2) with (f, g)

replaced by (fs, gs), is given by

hs(t) =


fs(t), t < tmin(fs),

fmin
s (= gmin

s ), tmin(fs) ≤ t ≤ tmin(gs),

gs(t), t > tmin(gs).

(13.9.3) lar.3

The desired function h = h1 is then given by

h(t) =


f(t), for t < tmin(fs),

f(tmin(fs))
tmin(gs)−t

tmin(gs)−tmin(fs)
+ g(tmin(gs))

t−tmin(fs)
tmin(gs)−tmin(fs)

,

for tmin(fs) ≤ t ≤ tmin(gs),

g(t), for t > tmin(gs).

(13.9.4) lar.4

In the following, we assume that for some fixed ε0 > 0,

N ε0−5/2 ≤ δ � N−3/2. (13.9.5) lar.5

We start with the study of gs and see that t = tmin(gs) is given by

0 = g′s(t) = s− δN1/2et

(et − 1)2
= 0.
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This leads to a second order equation for r = et which has the solutions:

r = 1 +
δN1/2

2s
±
(
δ

s
N1/2 +

δ2N

4s2

)1/2

.

We choose the solution which is > 1, that is the one with the plus sign.
From the upper bound in (

lar.5
13.9.5) and (recalling that s varies in a small fixed

neighborhood of 1/2) we know that δN1/2 = O(N−1) and we get by Taylor
expanding,

r = 1 + (δ/s)1/2N1/4 +O(δN1/2).

Consequently,
tmin(gs) = (δ/s)1/2N1/4 +O(δN1/2). (13.9.6) lar.6

A direct calculation gives,

gmin
s = (1 +O(δ1/2N1/4))2(δs)1/2N1/4. (13.9.7) lar.7

Also,

∂sg
min
s = tmin(gs) = (1 +O(δ1/2N1/4))(δ/s)1/2N1/4. (13.9.8) lar.8

Another direct calculation shows that

∂2
t gs =

δN
1
2 et(et + 1)

(et − 1)3
,

which implies that for t � tmin(gs) � δ1/2N1/4,

∂2
t gs � δ−1/2N−1/4 � 1/tmin(gs). (13.9.9) lar.9

In order to do the same work for fs, we consider two simplified functions:

a) The much simplified function

f̃s(t) =
δN1/2

1− et
− (1− s)t,

b) The less simplified function

f̂s(t) =
1

N
ln

(
δN

1− et

)
+ f̃s(t).

As we shall see, eNt � δN/(1− et) near the critical points tmin(f̃s) and

tmin(f̂s), so f̂s is an excellent approximation to fs there.
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From the symmetry relation

f̃s(−t) = δN1/2 + g1−s(t), (13.9.10) lar.10

the calculations for gs give corresponding results for f̃s:

tmin(f̃s) = −tmin(g1−s) = −(1 +O(δ1/2N1/4))

(
δ

1− s

)1/2

N1/4, (13.9.11) lar.11

∂sf̃
min
s = tmin(fs) = −(1 +O(δ1/2N1/4))

(
δ

1− s

)1/2

N1/4 � −1/N,

(13.9.12) lar.12

∂2
t f̃s � δ−1/2N−1/4 � 1/|tmin(f̃s)|, for t � tmin(f̃s). (13.9.13) lar.13

We next look at f̂s and notice that

∂t
1

N
ln

δN

1− et
=

et

N(1− et)
� 1

N |tmin(f̃s)|
when t � tmin(f̃s). (13.9.14) lar.14

In particular,(
∂tf̂s

)
(tmin(f̃s)) �

1

N |tmin(f̃s)|
� 1

δ1/2N5/4
, (13.9.15) lar.15

cf. (
lar.5
13.9.5).

Further,

∂2
t

1

N
ln

δN

1− et
=

1

N

et

(1− et)2
� 1

N |tmin(f̃s)|2
, when t � tmin(f̃s).

We compare this with (
lar.13
13.9.13) and find for t � tmin(f̃s):

∂2
t

1

N
ln

δN

1− et
� ∂2

t f̃s
δ1/2N5/4

, (13.9.16) lar.16

so

∂2
t f̂s =

(
1 +

O(1)

δ1/2N5/4

)
∂2
t f̃s, when t � tmin(f̃s). (13.9.17) lar.17

Since (∂tf̂s)(tmin(f̃s)) > 0, we know that tmin(f̂s) < tmin(f̃s). For t ≤ tmin(f̃s),

t � tmin(f̃s) we have by (
lar.15
13.9.15), (

lar.17
13.9.17), (

lar.13
13.9.13),

∂tf̂s(t) ≤
C/N

|tmin(f̃s)|
− 1

C|tmin(f̃s)|

(
tmin(f̃s)− t

)
=

1

|tmin(f̃s)|

(
C

N
− 1

C
(tmin(f̃s)− t)

)
,

(13.9.18) lar.18
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and we conclude that

tmin(f̃s)− tmin(f̂s) ≤
C2

N
≤ O(1)

|tmin(f̃s)|
δ1/2N5/4

≤ O(1)
|tmin(f̃s)|
N ε0/2

. (13.9.19) lar.19

Combining this estimate with the bound ∂tf̃s = O(1) in the interesting re-
gion, we get

f̂min
s − f̃min

s = (f̂s − f̃s)(tmin(f̂s)) + f̃s(tmin(f̂s))− f̃s(tmin(f̃s))

=
1

N

(
ln

δN

1− etmin(f̂)
+O(1)

)
=

1

N

(
O(1) +

1

2
ln
(
δN3/2

))
= O(1)

lnN

N
.

(13.9.20) lar.20

We are now ready to look at fs. The main observation here is that eNt is
much smaller than δN/(1− et) for t � tmin(f̃s). Indeed, for such t, we have

δN

1− et
� δN

δ1/2N1/4
� δ1/2N5/4N−1/2 ≥ N (ε0−1)/2/O(1),

while
eNt ≤ exp(−δ1/2N5/4/O(1)) ≤ exp(−N ε0/2/O(1)),

so
δN

1− et
+ eNt = (1 +O(e−N

ε0/2/O(1)))
δN

1− et
,

and consequently, for t � tmin(f̃s),

fs − f̂s = O(1/N)e−N
ε0/2/O(1). (13.9.21) lar.21

In order to treat also the derivatives of the difference, we write

fs − f̂s =
1

N
ln

(
1 +

eNt(
δN

1−et
)) . (13.9.22) lar.22

We have just seen that

eNt(
δN

1−et
) = O(1/N)e−N

ε0/2/O(1),

and this extends to a complex domain:

<t � tmin(f̃s), =t = O(1)tmin(f̃s).
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Hence by the Cauchy inequalities, we get for real t � tmin(f̃s), and k ∈ N,

∂kt
(
eNt/(δN/(1− et))

)
= Ok(1)e−N

ε0/2/O(1),

Using this in (
lar.22
13.9.22), we get for every k ∈ N that for t � tmin(f̃s):

∂kt (fs − f̂s) = Ok(1)
(
e−N

ε0/2/O(1)
)
. (13.9.23) lar.23

It is now clear that fs has a unique critical point tmin(fs) = tmin(f̂s) +

O
(
e−N

ε0/2/O(1)
)

which is a nondegenerate minimum and that

fmin
s = fs(tmin) = f̂min

s +O
(
e−N

ε0/2/O(1)
)
. (13.9.24) lar.24

Combining this with (
lar.20
13.9.20), we get

fmin
s − f̃min

s =
1

2N

(
ln
(
δN3/2

)
+O(1/N)

)
. (13.9.25) lar.25

By the symmetry relation (
lar.10
13.9.10), we know that

tmin(g1/2) = −tmin(f̃1/2), f̃min
1/2 = δN1/2 + gmin

1/2 ,

and in view of (
lar.25
13.9.25),

fmin
1/2 =

1

2N
ln
(
δN3/2

)
+O(1/N) + gmin

1/2 . (13.9.26) lar.26

We look for s ≈ 1/2 such that gmin
s = fmin

s . Consider F (s) := gmin
s − fmin

s , so
that

F

(
1

2

)
= − 1

2N
ln
(
δN3/2

)
+O(1/N). (13.9.27) lar.27

We have for s in a neighborhood of 1/2:

∂sF (s) = tmin(gs)− tmin(fs) � δ1/2N1/4. (13.9.28) lar.28

This gives,

lar1 Proposition 13.9.1 There exists a unique point s0 in a neighborhood of 1/2
such that

fmin
s0

= gmin
s0
. (13.9.29) lar.29

Moreover,

s0 =
1

2
+O(1)

| ln(δN3/2)|+ 1

δ1/2N5/4
=

1

2
+ o(1).
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From the calculations above we also have

tmin(gs0) = (1 + o(1))(2δ)1/2N1/4, tmin(fs0) = −(1 + o(1))(2δ)1/2N1/4.
(13.9.30) lar.30

We can now apply (
lar.4
13.9.4) and the corresponding discussion and get

lar2 Proposition 13.9.2 Let h = h1 be the largest convex function in (
lar.1
13.9.1).

Then there exists s0 = 1
2

+ o(1) such that h is given by (
lar.4
13.9.4) with s = s0.

We also have (
lar.30
13.9.30).

Recall that we work under the assumption (
lar.5
13.9.5): N ε0−5/2 ≤ δ � N−3/2

for some fixed ε0 > 0. Also recall that since (
lar.2
13.9.2) we have simplified the

notations by writing δ for 2C1δ. We now reinstate the original δ. Let us
review the estimates in Theorem

pj2.7
13.7.4 that will be used:

With probability ≥ 1− e−N2
we have the interior upper bound (

pj.49c
13.7.26):

ln | det(z − Aδ)| ≤ ln

(
rN +

2C1δN

1− r

)
+

2C1δN
3/2

1− r
=: Nf(r), (13.9.31) lar.31

when r < 1, C1δN
1−r < 1

2
. Here and below, we frequently write r = |z|.

With probability ≥ 1−e−N2
, we have the exterior upper bound (

pj.49a
13.7.24):

ln | det(z − Aδ)| ≤ N ln r +
2C1δN

3/2

r − 1
=: Ng(r), (13.9.32) lar.32

when r > 1. Recall that f = f1, g = g1 in the notation of the beginning
of this section. Let h(r) = h1(r) be the largest subharmonic function (of z)
such that

h(r) ≤ f(r), 0 < r < 1, h(r) ≤ g(r), r > 1.

If we identify functions of r with functions of t via the substitution r = et,
Proposition

lar2
13.9.2 gives,

h(r) =

{
f(r) for r ≤ 1− (1 + o(1))(4C1δ)

1/2N1/4,

g(r) for r ≥ 1 + (1 + o(1))(4C1δ)
1/2N1/4,

(13.9.33) lar.33

now with the original δ reinstated.
Concerning (

lar.31
13.9.31), we notice that if r ≤ 1 − (1 + o(1))(4C1δ)

1/2N1/4,
then

C1δN

1− r
≤ 1 + o(1)

2
(C1δ)

1/2N3/4 < 1/2,

by (
lar.5
13.9.5) and hence (

lar.31
13.9.31) applies. Thus we can apply the maximum

principle and conclude that with probability ≥ 1− e−N2
, we have

ln | det(z − Aδ)| ≤ Nh(r), z ∈ C. (13.9.34) lar.34
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With probability≥ 1−e−N2
we have the exterior lower bound in (

pj.49b
13.7.25):

ln | det(z − Aδ)| ≥ Ng(r)− 6
C1δN

3/2

r − 1
, (13.9.35) lar.35

for r > 1 and C1δN
r−1

< 1
2
. As before, the last condition on r is satisfied when

r ≥ 1 + (1 + o(1))(4C1δ)
1/2N1/4.

We also recall the interior probabilistic lower bound (
pj.49e
13.7.28) which says

that if

|z| < 1− 1

N
, |z|N ≤ O(1)

δ

1− r
, t ≤ O(1)

δ

1− r
,

δN

1− r
� 1,

then

ln | det(z−Aδ)| > ln t−O(1)
δN3/2

1− r
, with proba ≥ 1−O(1)

(
t(1− r)

δ

)2

−e−N2

.

(13.9.36) lar.36

We choose t = e−N
−ε1 for some small fixed ε1. (This is almost the same choice

as in the case of small random perturbations, the factor δ is now squeezed
between two powers of N and is therefore superfluous.) Then we see that

ln | det(z−Aδ)| > −N ε1−O(1)
δN3/2

1− r
with proba ≥ 1−O(1)

(1− r)2

δ2
e−2Nε1 ,

(13.9.37) lar.37

for every fixed z with r < 1 − 1/N , rN ≤ O(δ)/(1 − r), provided that
e−N

ε1 ≤ O(δ)/(1−r), δN/(1−r)� 1. When r ≤ 1−(1+o(1))(4C1δ)
1/2N1/4,

these conditions on r are fulfilled, so (
lar.37
13.9.37) applies.

Recall that f = h precisely when t ≤ tmin(fs0). From (
lar.30
13.9.30), (

lar.1
13.9.1),

we get in that region, |f | ≤ O(δN1/2/(1 − r) + N ε1−1), so (
lar.37
13.9.37) implies

that
ln | det(z − Aδ)| ≥ N(f(r)− ε(r)), (13.9.38) lar.38

where, as in (
smr.22
13.8.24),

ε(r) ≤ O
(
N ε1−1 +

δN1/2

1− r

)
, r < 1, (13.9.39) lar.39

and we get

lar3 Proposition 13.9.3 For every z ∈ D(0, 1 − (1 + o(1))(4C1δ)
1/2N1/4), we

have
ln | det(z − Aδ)| ≥ N(h(r)− ε(r)), (13.9.40) lar.40

with probability as in (
lar.37
13.9.37). Here ε(r) satisfies (

lar.39
13.9.39).
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We shall combine this with the upper bound (
lar.34
13.9.34) and the exterior lower

bound (
lar.35
13.9.35), that gives

ln | det(z − Aδ)| ≥ N(h(r)− ε(r)), (13.9.41) lar.41

for r ≥ 1 + (1 + o(1))(4C1δ)
1/2N1/4, where

ε(r) = 6
C1δN

1/2

r − 1
, r > 1. (13.9.42) lar.42

As in Section
smr
13.8 we will study I(r1, r2) =

∫
r1<|z|<r2 ∆h(|z|)L(dz) (cf.

(
smr.24
13.8.26)) and we restrict the attention to the case |rj−1| ≥ (1+o(1))(4C1δ)

1/2N1/4.
When r ≤ 1 − (1 + o(1))(4C1δ)

1/2N1/4, we have h(r) = f(r) and by
(
lar.21
13.9.21),

f − f̂ = O(e−N
ε0/2/O(1)) (13.9.43) lar.43

and similarly for (r∂r)
k(f − f̂). Here (see b) after (

lar.9
13.9.9))

f̂(r) =
1

N
ln

(
2C1δN

1− r

)
+

2C1δN
1/2

1− r
.

We have

r∂rf̂(r) =
r

N(1− r)
+

2C1δN
1/2r

(1− r)2
. (13.9.44) lar.44

This is an increasing function of r which reaches a value � 1 at the right end
point r = 1− (1 + o(1))(4C1δ)

1/2N1/4.
When r ≥ 1 + (1 + o(1))(4C1δ)

1/2N1/4, we have h(r) = g(r) = ln r +
2C1δN1/2

r−1
and we see that

r∂rh(r) = 1− 2C1δN
1/2r

(r − 1)2
. (13.9.45) lar.45

We get the following result, similar to Proposition
smr6
13.8.6:

lar4 Proposition 13.9.4 a) When 0 ≤ r1 < r2 ≤ 1 − (1 + o(1))(4C1δ)
1/2N1/4,

we have

I(r1, r2) =
r2 − r1

N(1− r1)(1− r2)
+O(1)

(
e−N

ε0/2/O(1) +
C1δN

1/2(r2 − r1)

(1− r2)3

)
.

b) 1 + (1 + o(1))(4C1δ)
1/2N1/4 ≤ r1 ≤ r2 ≤ 2, we have

I(r1, r2) = O(1)
C1δN

1/2(r2 − r1)

(r1 − 1)3
.
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c) When, 1− r1, r2 − 1 ≥ (1 + o(1))(4C1δ)
1/2N1/4,

I(r1, r2) = 1− r1

N(1− r1)
+O(1)

(
e−N

ε0/2/O(1) +
C1δN

1/2r1

(1− r1)2
+
C1δN

1/2r2

(r2 − 1)2

)
,

where
r1

N(1− r1)
≤ O(1)N−ε0/2.

We next turn to the ∆h-density (cf. (
smr.32
13.8.35) and the subsequent esti-

mates). Consider open discs D(z, ρ) with |z| = r, r+ ρ = r2, r− ρ = r1 with
r1, r2 as in case a) or b) of the proposition. Again we have (

smr.32
13.8.35), where

in Case a) we assume in addition that

ρ ≤ θ0(1− r), ρ ≥ exp
(
−o(1)N ε0/2

)
, (13.9.46) lar.46

for some fixed θ0 ∈]0, 1[, so that 1− r, 1− r1, 1− r2 are of the same order of
magnitude. Then,

I(r1, r2) = O(1)

(
ρ

N(1− r)2
+
δN1/2ρ

(1− r)3

)
.

Defining ∆h-dens as in (
smr.34.5
13.8.38), we get

∆h-dens (z, ρ) = O(1)

(
ρ

N(1− r)2
+
δN1/2ρ

(1− r)3

)
. (13.9.47) lar.47

In case b), we take |z| = r, r + ρ = r2, r − ρ = r1 where r1, r2 are as in
case b) and in addition,

ρ ≤ θ0(r − 1), (13.9.48) lar.48

for some fixed θ0 ∈]0, 1[. Then,

∆h-dens (z, ρ) = O
(
δN1/2ρ

(r − 1)3

)
. (13.9.49) lar.49

We next look at the ε-density, defined as after (
smr.35
13.8.39). In case a) we

get from (
lar.38
13.9.38), (

lar.39
13.9.39),

ε-dens (z, ρ) = O(1)
1

ρ

(
N ε1−1 +

δN1/2

1− r

)
, (13.9.50) lar.50

and in case b) (cf. (
lar.35
13.9.35)),

ε-dens (z, ρ) = O(1)
1

ρ

δN1/2

r − 1
. (13.9.51) lar.51
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Thus, with the restrictions on ρ, to be respected, we have in case a)

(∆h-dens + ε-dens)(z, ρ) ≤

O(1)

(
ρ

(
1

N(1− r)2
+

δN1/2

(1− r)3

)
+

1

ρ

(
N ε1−1 +

δN1/2

1− r

))
≤ O(1)

(
ρ

(1− r)2
+

1

ρ

)(
N ε1−1 +

δN1/2

1− r

) (13.9.52) lar.52

and in case b)

(∆h-dens + ε-dens)(z, ρ) ≤ O(1)

(
ρ
δN1/2

(r − 1)3
+

1

ρ

δN1/2

r − 1

)
≤ O(1)

(
ρ

(r − 1)2
+

1

ρ

)
δN1/2

r − 1
.

(13.9.53) lar.53

In both cases, we strengthen the assumption on r to

|r − 1| ≥ 2(4C1δ)
1/2N1/4 (13.9.54) lar.54

and choose

ρ = ρmin =
1

3
|r − 1|. (13.9.55) lar.55

Then we get

(∆-dens + ε-dens)(z, ρmin) ≤ O(1)

{
1

1−r

(
N ε1−1 + δN1/2

1−r

)
in case a),

1
r−1

δN1/2

r−1
in case b).

(13.9.56) lar.56

We now adapt the discussion from (
smr.41
13.8.46) to Theorem

smr7
13.8.7. Define

Ω as in (
smr.42
13.8.47), now with

1− r−, r+ − 1 ≥ 2(1 + o(1))(4C1δ)
1/2N1/4, (13.9.57) lar.57

and apply Theorem
intcz2
12.1.3 with “1/h” there replaced by by N and with “φ”

replaced by h(z). As noted after (
smr.42
13.8.47), the main term in that theorem is

N

2π

∫
Ω

∆h(z)L(dz) = Nθ [r∂rh(r)]r+r− ,

which now according to c) in Proposition
lar4
13.9.4 is equal to

Nθ

(
1− r−

N(1− r−)
+O(1)

(
e−N

ε0/2/O(1) +
δN1/2r−
(1− r−)2

+
δN1/2r+

(r+ − 1)2

))
.

(13.9.58) lar.58
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Before continuing, let us observe that by (
pj.82
2.4.15), the spectrum of Aδ is

contained in D(0, Rσ) when ‖Q‖ ≤ C1N where Rσ ≤ R0 and R0 is given by

1

R0 − 1
=

1

C1δN
, that is, R0 = 1 + C1δN.

Here δN � δ1/2N1/4, so the spectrum of Aδ in Ω does not depend on the
choice of r+, satisfying (

lar.57
13.9.57). For simplicity, we choose r+ = r+(r−) such

that 1− r− = r+ − 1.
The remainder terms in the theorem can be written

O(N)

(∫
∂Ωia∪∂Ωea

(ε-dens + ∆h-dens )(z, ρmin)|dz|+R

)
, (13.9.59) lar.59

where ∂Ωia = ∂Ω ∩ {r = r−} and ∂Ωea = ∂Ω ∩ {r = r+} are the interior and
exterior arcs in the boundary of Ω, and R is the contribution from the two
radial segments in ∂Ω. The integral in (

lar.59
13.9.59) is bounded by

O(θ)
1

1− r−

(
N ε1−1 +

δN1/2

1− r−

)
(13.9.60) lar.60

by (
lar.56
13.9.56).

We have,

R =O(1)

∫ rmin(fs0 )

r−

(ε-dens + ∆h-dens)(r, ρmin)dr

+O(1)

∫ r+

rmin(gs0 )

(ε-dens + ∆h-dens)(r, ρmin)dr

+O(1) ((rmin(gs0)− rmin(fs0)) I(rmin(fs0), rmin(gs0)))

=O(1)

(∫ rmin(fs0 )

r−

(
N ε1−1

1− r
+

δN
1
2

(1− r)2

)
dr +

∫ r+

rmin(gs0 )

δN
1
2

(r − 1)2
dr

)
+O(1)δ

1
2N

1
4 I(rmin(fs0), rmin(gs0)).

Here, I(rmin(fs0), rmin(gs0)) = O(1) by c) in Proposition
lar4
13.9.4 and the second

integral will satisfy the same upper bounds as the first one (up to a factor
O(1)), since r+, r− are symmetrically placed around 1, and rmin(fs0), rmin(gs0)
have approximately the same property.

Thus,

R = O(1)

(∫ rmin(fs0 )

r−

(
N ε1−1

1− r
+

δN
1
2

(1− r)2

)
dr + δ

1
2N

1
4

)

= O(1)

(
N ε1−1| ln(δ

1
2N

1
4 )|+ δN

1
2 (rmin(fs0)− r−)

(1− rmin(fs0))(1− r−)
+ δ

1
2N

1
4

)
.
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Here the second term in the last expression is O(δ1/2N1/4) and ln(δ1/2N1/4) =
O(1) lnN , since N−2+ε0 ≤ δN1/2 ≤ N−1. Thus,

R = O(1)
(
N ε1−1 ln(N) + δ

1
2N

1
4

)
. (13.9.61) lar.61

Applying Theorem
intcz2
12.1.3, (

lar.58
13.9.58)–(

lar.61
13.9.61), we get,

lar5 Theorem 13.9.5 Let Aδ = A0 + δQ be the N ×N matrix in the beginning
of this chapter, where the entries of Q are independent complex random vari-
ables, ∼ NC(0, 1) and N−

5
2

+ε0 ≤ δ � N−
3
2 for a fixed ε0 > 0. Define Ω as

in (
smr.42
13.8.47) and put θ = θ2 − θ1. Let

rmin(gs0) = exp tmin(gs0) = 1 + (1 + o(1))(4C1δ)
1
2N

1
4 ,

rmin(fs0) = exp tmin(fs0) = 1− (1 + o(1))(4C1δ)
1
2N

1
4 ,

be as in Proposition
lar1
13.9.1 and (

lar.30
13.9.30) (with “δ” there replaced by 2C1δ).

Fix 0 < ε1 ≤ 1 and choose r−, r+ in the definition of Ω, so that

1

C
≤ r− ≤ rmin(fs0), r+ ≥ 1 + C1δN.

Then with probability ≥ 1−O(1) exp(−N ε1), we have∣∣∣∣# (σ(Aδ) ∩ Ω)− θ

2π
N

(
1− r−

N(1− r−)

)∣∣∣∣ ≤
NO(θ)

(
e−N

ε0/2/O(1) +
δN

1
2

(1− r−)2
+
N ε1−1

1− r−

)
+NO(1)

(
N ε1−1 lnN + δ

1
2N

1
4

)
.

This gives Theorem
mrpj2
13.2.2.
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Part III

Spectral asymptotics for
differential operators in higher

dimension
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Chapter 14

Weyl asymptotics for the
damped wave equation

dwe

14.1 Eigenvalues of perturbations of self-adjoint

operators

The damped wave equation is closely related to non-self-adjoint perturbations
of a self-adjoint operator P of the form

Pε = P + iεQ. (14.1.1) dwe.1

Here, P is a semi-classical pseudodifferential operator of order 0 on L2(X)
where we consider two cases:

• X = Rn and P has the symbol P ∼ p(x, ξ) + hp1(x, ξ) + .... in S(m),
as in Section

int
6.1, where the description is valid also in the case n > 1.

We assume for simplicity, that the order function m(x, ξ) tends to +∞,
when (x, ξ) tends to∞. We also assume that P is formally self-adjoint.
Then by elliptic theory (and the ellipticity assumption on P ) we know
that P is essentially self-adjoint with purely discrete spectrum.

• X is a compact smooth manifold with positive smooth volume form
dx and P is a formally self-adjoint differential operator, which in local
coordinates takes the form,

P =
∑
|α|≤m

aα(x;h)(hDx)
α, m > 0

where aα(x;h) ∼
∑∞

k=0 h
kaα,k(x) in C∞ and the “classical” principal

symbol

pm(x, ξ) =
∑
|α|=m

aα,0(x)ξα,
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satisfies
0 ≤ pm(x, ξ) � |ξ|m,

so m has to be even. In this case the semi-classical principal symbol is
given by

p(x, ξ) =
∑
|α|≤m

aα,0(x)ξα.

We assume that Q : L2(X) → L2(X) is bounded with norm ≤ 1. This
operator may depend on ε and h. Let I = [a, b], −∞ < a < b < +∞. We
assume that a, b are not critical values of p:

dp 6= 0 on p−1(∂I). (14.1.2) dwe.2

Then it is a classical result (see
DiSj99
[40] and further references given there) that

P has discrete spectrum and that we have the Weyl asymptotics,

#(σ(P ) ∩ I) =
1

(2πh)n
(
vol (p−1(I) +O(h)

)
, (14.1.3) dwe.4

and that
#(σ(P ) ∩ (∂I + [−δ, δ])) = O(1)δh−n, (14.1.4) dwe.5

uniformly for 0 < h ≤ δ � 1.
The following result is due to A.S. Markus, V.I. Matseev

MaMa79
[94], see also

Ma88
[93],

Sj00
[128].

dwe1 Theorem 14.1.1 For 0 ≤ ε � 1, the spectrum of Pε is purely discrete and
contained in R + i[−ε, ε]. We have

#(σ(P ) ∩ (I + i[−ε, ε])) =
1

(2πh)n
(
vol p−1(I) +O(max(ε, h)

)
, (14.1.5) dwe.6

where the eigenvalues are counted with their algebraic multiplicity.

The inclusion σ(Pε) ⊂ R + i[−ε, ε] follows from the fact that

|=(Pεu|u)| ≤ ε‖u‖2,

and from this estimate we also deduce that

‖(Pε − z)−1‖ ≤ 1

|=z| − ε
, when |=z| > ε.

The assumptions about P and in particular the ellipticity assumtion near
infinity, imply that (P − z0)−1, Q(P − z0)−1 and (P − z0)−1Q are compact
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when z0 6∈ σ(P )1. For such a z0 (take for instance z0 away from the real axis)
we write

z − Pε = (z0 − P )(1 + (z0 − P )−1(z − z0 − iεQ))

= (1 + (z − z0 − iεQ)(z0 − P )−1)(z0 − P ).

Here, (z0 − P )−1(z − z0 − iεQ), (z − z0 − iεQ)(z0 − P )−1) are compact for
z 6= z0 and since we can here vary z0, it follows from Fredholm theory, that
the spectrum of Pε is discrete.
Proof of (

dwe.6
14.1.5). This is the main part of the theorem and we shall follow

the general strategy of
MaMa79
[94] (see also

Ma88
[93],

Sj00
[128]) which consists in introducing

a self-adjoint finite rank perturbation of P which has no spectrum near ∂I.
The use of the results in Chapter

countz
12 will allow us to shorten the proof slightly

by avoiding a standard argument (now included in the proof of the results of
that chapter).

Without loss of generality we may assume that h ≤ ε, for if ε < h, we
can write εQ = h((ε/h)Q) and use h as a new perturbation parameter, since
‖(ε/h)Q‖ ≤ 1.

Let λj, j ∈ N denote the eigenvalues of P repeated with their multiplicity
and let ej, j ∈ N be a corresponding orthonormal basis of eigenvectors.
Define for ε < δ � 1,

λ̃j =


a point in ∂I + {−δ, δ} with dist (λj, ∂I + {−δ, δ}) = |λj − λ̃j|
when λj ∈ ∂I+]− δ, δ[,
λj when λj ∈ R \ (∂I+]− δ, δ[).

We define our modified operator to be

P δu =
∑

λ̃j(u|ej)ej, (14.1.6) dwe.7

where the spectral resolution of P is

Pu =
∑

λj(u|ej)ej.

It follows that
‖P δ − P‖ ≤ δ, (14.1.7) dwe.8

‖P δ − P‖tr ≤ δ#(σ(P ) ∩ (∂I+]− δ, δ[) ≤ O(1)δ2h−n, (14.1.8) dwe.9

σ(P δ) ∩ (∂I+]− δ, δ[) = ∅. (14.1.9) dwe.10

1 Strictly speaking, the two operators are compact: D(P )→ D(P ) and L2 → L2 respec-
tively. The two properties are equivalent since the operators are related by conjugation
by z0 − P .
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By construction and (
dwe.5
14.1.4),

#(σ(P δ) ∩ I) = #(σ(P ) ∩ I) +O(δh−n). (14.1.10) dwe.11

Recalling that Pε = P + iεQ, we put

P δ
ε = P δ + iεQ. (14.1.11) dwe.12

Then P δ
ε has a purely discrete spectrum contained in R + i[−ε, ε] and more

precisely,
σ(P δ

ε ) ⊂ (R \ (∂I+]− δ, δ[)) +D(0, ε) (14.1.12) dwe.13

and in particular (∂I+]− δ + ε, δ − ε[) + iR is disjoint from the spectrum of
P δ
ε . By a simple deformation argument, we see that

#(σ(P δ
ε ) ∩ (I + iR)) = #(σ(P δ) ∩ I), (14.1.13) dwe.14

to be combined with (
dwe.11
14.1.10).

In the following, we choose

δ = C0ε, (14.1.14) dwe.15

where C0 > 1 is a large constant to be fixed later.
Let

Ω = I + i[−1, 1], (14.1.15) dwe.16

and consider the following neighborhood of ∂Ω:

W̃ =
⋃
z∈∂Ω

D(z, r̃(z)), (14.1.16) dwe.17

where
r̃(z) = 4ε+ |=z|/4. (14.1.17) dwe.18

If C0 in (
dwe.15
14.1.14) is sufficiently large, it is clear that

D(z, 2r̃(z))∩((R \ (∂I+]− δ + ε, δ − ε[)) + i[−ε, ε]) = ∅, z ∈ W̃ . (14.1.18) dwe.18.5

It follows that P δ
ε has no spectrum in W̃ and that

‖(P δ
ε − z)−1‖ ≤ O(1/r̃(z)), z ∈ W̃ . (14.1.19) dwe.19

We shall view the eigenvalues of Pε in Ω as the zeros of a relative deter-
minant. Let 0 ≤ χ ∈ C∞0 (T ∗X) be equal to 2 on a sufficiently large compact
subset of T ∗X. Then, if p̃ = p + iχ, we see that (p̃ − z)−1 is a uniformly

bounded function for z in a fixed neighborhood of the closure of Ω∪ W̃ . We
can then quantize p̃ − p + P as an h-pseudodifferential operator and get an
operator P̃ such that
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• P̃ − P is uniformly bounded in L2(X),

• ‖P̃ − P‖tr < +∞,

• P̃ has no spectrum in W̃ ∪Ω and the resolvent (P̃ − z)−1 is uniformly

bounded on that set. The same holds for P̃ε := P̃ + iεQ.

The eigenvalues of Pε in Ω∪W̃ are the zeros of the determinant of a trace
class perturbation of the identity, namely,

Dε(z) := det
(

(Pε − z)(P̃ε − z)−1
)

= det
(

1− (P̃ − P )(P̃ε − z)−1
)
.

(14.1.20) dwe.20

Similarly the eigenvalues of P δ
ε in Ω ∪ W̃ are the zeros of

Dδ
ε (z) = det

(
(P δ

ε − z)(P̃ε − z)−1
)

= det
(

1− (P̃ − P + P − P δ)(P̃ε − z)−1
)

(14.1.21) dwe.21

and we have seen that there are no such values in W̃ .

dwe1.5 Remark 14.1.2 We can identify the algebraic multiplicities of the eigenval-
ues and the corresponding zeros of a determinant by expanding the discussion
in Section

g1db
5.4 slightly: Let P (z) : F → G, z ∈ A be a holomorphic family

of Fredholm operators of index zero, where A ⊂ C is open and connected.
Assume that P (z) is bijective for at least one value of z. Then the set Γ ⊂ A
of points where it is not bijective is discrete. Let z0 ∈ Γ. Then we can find
1 ≤ N0 ∈ N and bounded operators R+(z) : F → CN0 , R−(z) : CN0 → G,
depending holomorphically on z ∈ neigh (z0, A), of maximal rank, such that

P(z) =

(
P (z) R−(z)
R+(z) 0

)
: F ×CN0 → G ×CN0 (14.1.22) dwea.1

is bijective for z ∈ neigh (z0, A). Define the multiplicity

m(z0, P ) = tr
1

2πi

∫
γ

P (z)−1∂zP (z)dz, (14.1.23) dwea.2

where C is the oriented boundary of the disc D(z0, r) with r > 0 so small
that D(z0, r)∩Γ = {z0}. We shall see that m(z0, P ) is well-defined in general.
When P (z) = z−P it is the rank of the spectral projection, hence the usual
multiplicity.

Let

E(z) =

(
E(z) E+(z)
E−(z) E−+(z)

)
: G ×CN0 → F ×CN0 (14.1.24) dwea.3
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be the inverse of P(z). Then (cf. Section
g1db
5.4), we have

P (z)−1 = E(z)− E+(z)E−1
−+E−(z), (14.1.25) dwea.3.5

and E(z)∂zP (z) being holomorphic near D(z0, r), when r > 0 is small
enough, we get

1

2πi

∫
γ

P (z)−1∂zP (z)dz = − 1

2πi

∫
γ

E+(z)E−+(z)−1E−(z)∂zP (z)dz

which is of trace class, so m(z0, P ) is well-defined and we can take the trace
of the last integral, move the trace inside the integral and get

m(z0, P ) = − 1

2πi

∫
γ

tr
(
E+(z)E−+(z)−1E−(z)∂zP (z)

)
dz

= − 1

2πi

∫
γ

tr
(
E−1
−+E−(∂zP )E+

)
dz,

(14.1.26) dwea.4

using the cyclicity of the trace for the last equality. Using that ∂zE =
−E(∂zP)E , we get

− ∂zE−+ = E−(∂zP )E+ + E−+(∂zR+)E+ + E−(∂zR−)E−+, (14.1.27) dwea.5

−E−(∂zP )E+ = ∂zE−+ + E−+(∂zR+)E+ + E−(∂zR−)E−+,

and substitution of the last identity in (
dwea.4
14.1.26) gives

m(z0, P ) = I + II + III, (14.1.28) dwea.5.5

where

I =
1

2πi

∫
γ

tr
(
E−1
−+∂zE−+

)
dz = m(z0, detE−+),

the multiplicity of z0 as a zero of detE−+,

II =
1

2πi

∫
γ

tr
(
E−1
−+E−+(∂zR+)E+

)
dz =

1

2πi

∫
γ

tr ((∂zR+)E+) dz = 0,

the integrand of the last intergal being holomorphic,

III =
1

2πi

∫
γ

tr
(
E−1
−+E−(∂zR−)E−+

)
dz =

1

2πi

∫
γ

tr (E−(∂zR−)) dz = 0.

Thus,
m(z0, P ) = m(z0, detE−+). (14.1.29) dwea.6
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Similarly one can show that

m(z0, P ) = tr
1

2πi

∫
γ

(∂zP (z))P (z)−1dz.

If P (z) = P1(z)P2(z), where P2(z) : F → H, P1(z) : H → G are
Fredholm operators as above, one of which is bijective at z = z0, then

m(z0, P ) =

{
m(z0, P1), when P2(z0) is bijective,

m(z0, P2), when P1(z0) is bijective.
(14.1.30) dwea.7

The two cases are very similar and we only treat the second one when P1(z0)
is bijective. Let

P2(z) =

(
P2(z) R2

−(z)
R2

+(z) 0

)
be associated to P2 as in (

dwea.1
14.1.22). Let

E2 =

(
E2 E2

+

E2
− E2

−+

)

P =

(
P P1R

2
−

R2
+ 0

)
=

(
P1 0
0 1

)
P2

is bijective and we have (
dwea.1
14.1.22) with R+ = R2

+, R− = P1R
2
−. The inverse

of P is

E =

(
E2 E2

+

E2
− E2

−+

)(
P−1

1 0
0 1

)
=

(
E2P−1

1 E2
+

E2
−P
−1
1 E2

−+

)
and of the form (

dwea.3
14.1.24) with E−+ = E2

−+. Hence we have (
dwea.7
14.1.30) when

P1(z0) is bijective. The other case can be treated similarly. Finally let us
recall that when P2 = 1 + K(z) where K is holomorphic and of trace class,
then m(z0, P2) as defined above, is equal to m(z0, detP2); the multiplicity of
z0 as a zero of detP2 (defined in Section

trdet
8.4).

We have

Dε(z)

Dδ
ε (z)

= det
(

(Pε − z)(P̃ε − z)−1(P̃ε − z)(P δ
ε − z)−1

)
= det

(
(Pε − z)(P δ

ε − z)−1
)

= det
(
1− (P δ − P )(P δ

ε − z)−1
)
.

(14.1.31) dwe.22

Thus, ∣∣Dε(z)/Dδ
ε (z)

∣∣ ≤ exp ‖(P δ − P )(P δ
ε − z)−1‖tr. (14.1.32) dw.23
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Here,
‖(P δ − P )(P δ

ε − z)−1‖tr ≤ ‖(P δ
ε − z)−1‖‖P δ − P‖tr,

and by (
dwe.19
14.1.19), (

dwe.9
14.1.8), we get for z ∈ W̃ :

‖(P δ − P )(P δ
ε − z)−1‖tr ≤ O(1)

δ2

r̃(z)hn
.

From (
dw.23
14.1.32), we conclude that

ln |Dε(z)| − ln |Dδ
ε (z)| ≤ O(1)

δ2

r̃(z)hn
, z ∈ W̃ . (14.1.33) dwe.24

For every fixed θ > 0, we have

‖(Pε − z)−1‖ ≤ Oθ(1)

r̃(z)
, z ∈ W̃ , |=z| ≥ (1 + θ)ε. (14.1.34) dwe.25

Using this and a formula similar to (
dwe.22
14.1.31) with P δ

ε replaced by Pε we get
upper bound

ln |Dδ
ε (z)| − ln |Dε(z)| ≤ O(1)δ2

r̃(z)hn
,

in the same region as in (
dwe.25
14.1.34), so in addition to (

dwe.24
14.1.33) we have the

lower bound,

ln |Dε(z)| − ln |Dδ
ε (z)| ≥ − O(δ2)

r̃(z)hn
, z ∈ W̃ , |=z| ≥ (1 + θ)ε. (14.1.35) dwe.26

In W̃ we have
ln |Dδ

ε (z)| = Φ0(z)/hn, (14.1.36) dwe.28

where Φ0 depends on the various parameters and is harmonic in W̃ . Extend
Φ0 to a smooth function on Ω∪W̃ and notice that we have the exact formula,

#(σ(P δ
ε ) ∩ Ω) =

1

2πhn

∫
Ω

∆Φ0(z)L(dz). (14.1.37) dwe.29

Let r(z) = r̃(z)/(1 + θ) for some fixed θ with 0 < θ � 1, and define (cf.
(
dwe.17
14.1.16))

W =
⋃
z∈∂Ω

D(z, r(z)). (14.1.38) dwe.27

From (
dwe.24
14.1.33), we have

ln |Dε(z)| ≤ Φ(z)/hn, z ∈ W̃ , (14.1.39) dwe.30
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where

Φ(z) = Φ0(z) +
Cδ2

((=z)2 + δ2)1/2
, (14.1.40) dwe.31

provided that C is large enough.
We can find χ ∈ C∞0 (W̃ , [0, 1]), equal to 1 on W , such that

∇α
<z,=zχ = O(1)r(z)−|α|, for all α ∈ N2. (14.1.41) dwe.32

We extend the definition of Φ to W̃ ∪ Ω, by putting

Φ(z) = Φ0(z) +
Cδ2χ(z)

((=z)2 + δ2)1/2.
(14.1.42) dwe.33

Then,

∆Φ−∆Φ0 =
O(δ2)

(|=z|+ δ)3

and it follows that∫
|∆Φ−∆Φ0|L(dz) = O(δ2) +O(1)

∫ 1

0

δ2

(s+ δ)2
ds

= O(δ).

(14.1.43) dwe.34

In particular, since Φ0 is harmonic on W̃ ,∫
W̃

|∆Φ|L(dz) = O(δ). (14.1.44) dwe.35

In view of the choice of r̃(z) in (
dwe.18
14.1.17), if we choose θ > 0 small enough

in the definition of r(z), we can find distinct points zj ∈ ∂Ω, j ∈ Z/NZ
distributed in the positive sense so that j 7→ arg (zj− (a+b)/2) is increasing,
with the properties:

1) There are precisely 4 points zj that minimize the distance to R, namely
a± i5ε/4, b± i5ε/4,

2) r(zj)/(2C) ≤ |zj+1−zj| ≤ r(zj)/C for some fixed large constant C ≥ 1.

It follows that N = O(1) ln(1/ε) and that

∂Ω ⊂
⋃
j

D(zj, r(zj)/2). (14.1.45) dwe.35.5

Let

εj =
Cδ2

|=zj|+ δ
, (14.1.46) dwe.36
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for C > 0 sufficiently large. Then by (
dwe.26
14.1.35), (

dwe.33
14.1.42),

ln |Dε(z)| ≥ 1

hn
(Φ(z)− εj), z ∈ D(zj, r(zj)/C), (14.1.47) dwe.37

and we recall that ln |Dε(z)| ≤ Φ(z)/hn on W , by (
dwe.30
14.1.39). By construction,∑

εj = O(δ). (14.1.48) dwe.38’

To sum up the discussion, we have by (
dwe.11
14.1.10), (

dwe.14
14.1.13),

#(σ(P δ
ε ) ∩ Ω) = #(σ(P δ) ∩ I) = #(σ(P ) ∩ I) +O(δh−n).

Here #(σ(P δ
ε ) ∩ Ω) is given by the integral formula (

dwe.29
14.1.37), where by

(
dwe.34
14.1.43),

1

2πhn

∫
Ω

∆Φ0L(dz) =
1

2πhn

∫
Ω

∆ΦL(dz) +O(δh−n).

Thus,

#(σ(P ) ∩ I) =
1

2πhn

∫
Ω

∆ΦL(dz) +O(δh−n).

On the other hand, Theorem
intcz2
12.1.3, (

dwe.30
14.1.39), (

dwe.37
14.1.47), (

dwe.35
14.1.44), (

dwe.38’
14.1.48)

show that

|#(σ(Pε) ∩ Ω)− 1

2πhn

∫
Ω

∆ΦL(dz)| ≤ O(δh−n),

so
|#(σ(Pε) ∩ Ω)−#(σ(P ) ∩ I)| ≤ O(δh−n),

which concludes the proof of (
dwe.6
14.1.5) in view of (

dwe.4
14.1.3). 2

dwe2 Remark 14.1.3 Notice that Theorem
dwe1
14.1.1 is an application of a more

general abstract theorem, that we do not formulate in detail. In particular,
there are extensions of the theorem to the case of boundary value problems.
See

MaMa79, Ma88
[94, 93].

14.2 The damped wave equation

Let X be compact Riemannian manifold of dimension n. The damped wave
equation is then of the form

(∂2
t −∆ + 2a(x)∂t)v(t, x), (t, x) ∈ R×X. (14.2.1) dwe.36’
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Here ∆ denotes the Laplace-Beltrami operator onX and we let a ∈ C∞(X; R).
Because of the “damping term” 2a∂tv this evolution is no more energy con-
serving (for a suitable energy) and we have to expect exponential growth or
decay of the solutions, when |t| → ∞. Clearly this is related to the eigen-
frequencies of the corresponding stationary problem. Put v(t, x) = eitτu(x),
τ ∈ C. Then v solves (

dwe.36’
14.2.1) iff

(−∆− τ 2 + 2ia(x)τ)u(x) = 0. (14.2.2) dwe.37’

When (u, τ) is a non-trivial solution of (
dwe.37’
14.2.2), we call τ an eigenfre-

quency or simply an eigenvalue and u “the” corresponding eigenfunction. It
is easy to show that if τ is an eigenfrequency, then

inf a ≤ =τ ≤ sup a, when <τ 6= 0, (14.2.3) dwe.38

2 min(inf a, 0) ≤ =τ ≤ 2 max(sup a, 0), when <τ = 0. (14.2.4) dwe.39

In this chapter we content ourselves with establishing the most basic re-
sult about the distribution of eigenfrequencies, namely that their real parts
obey Weyl asymptotics

MaMa79
[94]. Many other important results concern the dis-

tribution of imaginary parts and the growth-decay of solutions and they are
closely related to the geometry and the interplay between the damping coeffi-
cient a and the classical trajectories (“rays”). We refer to

Leb96, Ri12, Hi03
[89, 114, 68], where

more references can be found. Some very detailed results in 2 dimensions are
applicable to the eigenfrequencies . (See

HiSj15
[73] for a more recent work on that

theme.)
When a = 0, the eigenfrequencies are real and symmetrically disctributed

around 0. In fact, they are the square roots (with both signs) of the eigen-
values of −∆. In this case, (neglecting the case of τ = 0 which has the
multiplicity 2 as we shall see) we define the multiplicity of an eigenfrequency
τ to be equal to that of τ 2 as an eigenvalue of −∆. Applying the standard
result on the Weyl asymptotics for the eigenvalues of −∆ (see for instance
GrSj94
[51] and further references given there) we have

dwe3 Proposition 14.2.1 When a = 0 the eigenfrequencies are real and symmet-
ric around 0. The number of eigenfrequencies τ in [0, λ], counted with their
multiplicity, is equal to(

λ

2π

)n (
vol

(
p−1([0, 1]) +O

(
λ−1
)))

, (14.2.5) dwe.40

when λ → +∞. Here p(x, ξ) denotes the principal symbol of −∆ (equal to
the dual Riemannian metric on T ∗X).
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Back to the general case, we notice that the set of eigenfrequencies is
symmetric under reflexion in the imaginary axis and can be identified with
the set of eigenvalues of the unbounded operator

P =

(
0 1
−∆ 2ia(x)

)
: H1(X)×H0(X)→ H1(X)×H0(X), (14.2.6) dwe.41

with domain H2 ×H1. In fact, the relation between (
dwe.37’
14.2.2) and

(P − τ)

(
u0

u1

)
= 0, (14.2.7) dwe.42

is given by u0 = u, u1 = τu.
Let P0 be the operator in (

dwe.41
14.2.6) with a = 0. Let 0 = λ0 < λ1 ≤

.... → +∞ be the eigenvalues of −∆ and let e0, e1, ... be a corresponding
orthonormal basis of eigenfunctions. For k 6= 0, we put

f±k =
1√
2

(
λ
−1/2
k ek
±ek

)
∈ H1 ×H0,

and for k = 0:

f 0
0 =

(
e0

0

)
, f 1

0 =

(
0
e0

)
.

Let (e0)⊥ denote the L2 orthogonal to Ce0. Then λ
−1/2
1 e1, λ

−1/2
2 e2, ... is an

orthonormal basis in H1 ∩ (e0)⊥, equipped with the scalar product [u|v] =
(−∆u|v). From this we see that f1, f2, ... is an orthonormal basis in H =
(H1 ∩ (e0)⊥)× (H0 ∩ (e0)⊥), with the scalar product((

u0

u1

) ∣∣∣(ũ0

ũ1

))
H

=

((
−∆ 0

0 1

)(
u0

u1

) ∣∣∣(ũ0

ũ1

))
L2×L2

= [u0|ũ0] + (u1|ũ1).

Also P0f
±
k = ±λ1/2

k f±k , so the restriction of P0 to H is self-adjoint with f±k
as a corresponding orthonormal basis of eigenvectors.

From this we see that P0 has a purely discrete spectrum, given by 0,
±
√
λk, k ≥ 1. 0 is an eigenvalue of algebraic multiplicity 2 and the full

spectral decomposition of H1 ×H0 is

H1 ×H0 = Cf 0
0 ⊕Cf 1

0 ⊕H.

The algebraic multiplicity of ±
√
λk, is equal to the multiplicity of λk as an

eigenvalue of −∆, when k ≥ 1.
When τ 2 6= λk for all k ≥ 0, the resolvent (P0 − τ)−1 is of the form

(P0 − τ)−1 = (−∆− τ 2)−1(P0 + τ). (14.2.8) dwe.43
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Let

Q =

(
0 0
0 2ia

)
, so that P = P0 +Q.

Then we see that Q(P0 − τ)−1, (P0 − τ)−1Q are compact on H1 × H0 and
H2 × H1 respectively. The norms of these operators tend to zero when
τ → ∞ in closed sectors that are disjoint from R away from 0. It follows
that P has purely discrete spectrum and we define the multiplicity of an
eigenfrequecy to be equal to its algebraic multiplicity as an eigenvalue of
P . Thus the eigenfrequencies form a discrete set, confined to the region
defined by (

dwe.38
14.2.3), (

dwe.39
14.2.4) and the elements have a natural multiplicity

defined above. (In
Sj00
[128] two further equivalent definitions of the multiplicity

are given.) The set of eigenfrequencies, counted with their multiplicities, is
invariant under the map τ 7→ −τ of reflexion in the imaginary axis. We can
then state a theorem which is due to Markus-Matseev

MaMa79
[94]:

dwe4 Theorem 14.2.2 Under the assumptions above, the number of eigenfrequen-
cies of (

dwe.36’
14.2.1) with real part in [0, λ], counted with their multiplicity, is equal

to (
λ

2π

)n (
vol

(
p−1([0, 1]) +O

(
λ−1
)))

, λ→ +∞. (14.2.9) dwe.44

Proof. We reformulate the problem semi-classically. Let h � 1/λ and put
τ = z/h, so that |z| � 1, when |τ | � λ. Then (

dwe.37’
14.2.2) becomes

(−h2∆− z2 + 2iahz)u = 0, (14.2.10) dwe.45

and we define the semi-classical eigenfrequencies in the obvious way and
define the multiplicity of the semi-classical eigenfrequency z to be that of the
eigenfrequency τ = z/h. We then have to show that the number of semi-
classical eigenfrequencies (counted with their multiplicity) with real part in
[0, b], where b � 1, is equal to

1

(2πh)n
(
vol

(
p−1([0, b])

)
+O(h)

)
, h→ 0. (14.2.11) dwe.46

The set of semi-classical eigenfrequencies is symmetric around the imag-
inary axis, and we have a uniform bound on the number of eigenfrequencies
on the imaginary axis, so equivalently, we have to show that the number of
semi-classical eigenfrequencies with real part in [a, b], where a := −b, is equal
to

2

(2πh)n
(
vol

(
p−1([0, b])

)
+O(h)

)
, h→ 0. (14.2.12) dwe.47

282



As in the non-semi-classical case, the eigenfrequencies appear as eigen-
values of a matrix operator, namely

Ph =

(
0 1

−h2∆ 2iah

)
= P0 + ihQ : H1

h ×H0 → H1
h ×H0, (14.2.13) dwe.48

where

Q =

(
0 0
0 2a

)
,P0 =

(
0 1

−h2∆ 0

)
, (14.2.14) dwe.49

and it is here convenient to endow Hk = Hk
h with the semi-classical norm

‖u‖Hk
h

= ‖〈hD〉ku‖L2 = ‖(1− h2∆)k/2u‖L2 .

For =z 6= 0, the resolvent of P0 is of the form

(P0 − z)−1 = (−h2∆− z2)−1(P0 + z), (14.2.15) dwe.50

and using the semi-classical Sobolev norms, we see that

(P0 − z)−1 = O(1/|=z|) : H1
h ×H0 → H2

h ×H1
h, (14.2.16) dwe.51

uniformly when |z| � 1.
Again, P0 is self-adjoint on H = (H1

h × H0) ∩
(
(e0)⊥ × (e0)⊥

)
and has

the spectral decomposition Cf 0
0 ⊕Cf 1

0 ⊕ (H1
h ×H0) ∩

(
(e0)⊥ × (e0)⊥

)
. The

number of eigenvalues of P0 in b+[−δ, δ] and in −b+[−δ, δ] is O(δh−n) when
h < δ � 1 (and b � 1) and we can construct a perturbation Pδ0 of P0 which
satisfies (

dwe.8
14.1.7)–(

dwe.10
14.1.9) with I = [a, b] = [−b, b]. We are therefore basically

in the same situation as in the proof of Theorem
dwe1
14.1.1 (with ε there equal

to h), and the remainder of the proof is then the same. 2
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Chapter 15

Distribution of eigenvalues for
semi-classical elliptic operators
with small random
perturbations, results and
outline

weyloutline

In this chapter we will state a result saying that for elliptic semi-classical
(pseudo-)differential operators the eigenvalues distribute according to Weyl’s
law “most of the time” in a probabilistic sense. The first three sections are
devoted to the formulatation of the results and in the last section we give an
outline of the proof that will be carried out in the chapters

Chub
16,

Chlb
17.

15.1 The unperturbed operator
upo

In this section we describe the class of unperturbed operators.
Let X be a smooth compact manifold of dimension n. It is also possible

to treat the case when X = Rn (cf
Sj08a
[131]), but we will concentrate on the

compact manifold case.
Let P be an h-differential operator on X which in local coordinates takes

the form,

P =
∑
|α|≤m

aα(x;h)(hD)α, (15.1.1) upo.1

where we use standard multiindex notation and let D = Dx = 1
i
∂
∂x

. We
assume that the coefficients aα are uniformly bounded in C∞ for h ∈]0, h0],
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0 < h0 � 1. (We will also discuss the case when we only have some Sobolev
space control of a0(x).) Assume

aα(x;h) = a0
α(x) +O(h) in C∞,

aα(x;h) = aα(x) is independent of h for |α| = m.
(15.1.2) upo.2

Notice that this assumption is invariant under changes of local coordinates.
The second part of (

upo.2
15.1.2) is for convenience only.

Also assume that P is elliptic in the classical sense, uniformly with respect
to h:

|pm(x, ξ)| ≥ 1

C
|ξ|m, (15.1.3) upo.3

for some positive constant C, where the classical principal symbol

pm(x, ξ) =
∑
|α|=m

aα(x)ξα (15.1.4) upo.4

is invariantly defined as a function on T ∗X. It follows that pm(T ∗X) is a
closed cone in C and we assume that

pm(T ∗X) 6= C. (15.1.5) upo.5

If z0 ∈ C \ pm(T ∗X), we see that λz0 6∈ Σ(p) if λ ≥ 1 is sufficiently large and
fixed, where Σ(p) := p(T ∗X) and p is the semiclassical principal symbol

p(x, ξ) =
∑
|α|≤m

a0
α(x)ξα. (15.1.6) upo.6

Actually, (
upo.5
15.1.5) can be replaced by the weaker condition that Σ(p) 6= C.

Standard elliptic theory and analytic Fredholm theory now show that if we
consider P as an unbounded operator: L2(X)→ L2(X) with domain D(P ) =
Hm(X) (the Sobolev space of order m), then P has purely discrete spectrum.
(When we only assume that Σ(p) 6= C, we need to use the assumption that
h > 0 is small enough.)

In the case of multiplicative random perturbations we will need the sym-
metry assumption

P = ΓP ∗Γ, (15.1.7) upo.7

where P ∗ denotes the formal complex adjoint of P in L2(X, dx), with dx
denoting some fixed smooth postive density of integration and Γ is the an-
tilinear operator of complex conjugation; Γu = u. Notice that the left hand
side in (

upo.7
15.1.7) is equal to the “real” transpose P t, defined by∫

(Pu)vdx =

∫
u(P tv)dx, u, v ∈ C∞(X).

and that the assumption implies that

p(x,−ξ) = p(x, ξ). (15.1.8) upo.8
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15.2 The random perturbation
rp

Let
h2R̃ =

∑
(hDxj)

∗rj,k(x)hDxk (15.2.1) rp.1

be a non-negative elliptic operator with smooth h-independent coefficients
on X, where the star indicates that we take the adjoint with respect to some
fixed positive smooth density on X. Then h2R̃ is essentially self-adjoint with
domainH2(X) and it has an orthonormal basis of eigenfunctions, εj ∈ L2(X),
j = 1, 2, ... with corresponding eigenvalues µ2

j = (hµ0
j)

2, where 0 ≤ µ0
j ↗

+∞. By Weyl’s law for the large eigenvalues of a positive elliptic operator
of order 2, we know that

#{j; µ0
j ≤ λ} = (1 + o(1))(2π)−nCwλ

n, λ→ +∞, (15.2.2) rp.2

where Cw is the symplectic volume of {(x, ξ) ∈ T ∗X; r(x, ξ) ≤ 1}. Here

r(x, ξ) =
∑
j,k

rj,k(x)ξjξk (15.2.3) rp.2

is the principal symbol of R̃ and also the semi-classical principal symbol of
h2R̃.

Our random perturbation will be of the form δqω where δ > 0 is a small
parameter and

qω(x) =
∑

0<µk≤L

αk(ω)εk(x), |α|CD ≤ R. (15.2.4) rp.3

Here we choose L = L(h), R = R(h) in the interval

h
−3n

s−n2−ε � L ≤ Ch−M , M ≥ 3n

s− n
2
− ε

,

1

C
h−(n

2
+ε)M− 3n

2 ≤ R ≤ Ch−M̃ , M̃ ≥ 3n

2
+ (

n

2
+ ε)M,

(15.2.5) rp.4

for some ε ∈]0, s − n
2
[, s > n

2
, so by Weyl’s law for the large eigenvalues

of elliptic self-adjoint operators, the number of terms D in (
rp.3
15.2.4) is of

the order of magnitude (L/h)n. The small parameter δ will be of the form
δ = τ0h

N2−n, 0 < τ0 ≤ h2, where N2 ≥ N2(n, s, ε) is a sufficiently large
constant.

The random variables αj(ω) will have a joint probability distribution

P(dα) = C(h)eΦ(α;h)L(dα), (15.2.6) rp.5

where for some N4 > 0,
|∇αΦ| = O(h−N4), (15.2.7) rp.6

and L(dα) is the Lebesgue measure. (C(h) is the normalizing constant,
assuring that the probability of BCD(0, R) is equal to 1.)
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15.3 The result
res

Let Pδ = P + δqω, δ = τ0h
N2−n, where qω is as in (

rp.3
15.2.4)–(

rp.6
15.2.7). Let

N3 = (M + 1)n, N5 = N4 + M̃, N6 = max(N3, N5).

Let Ω b C b a fixed open simply connected set with smooth boundary. In
Section

sh
16.4 below we introduce a continuous subharmonic function φ on Ω

satisfying (
sh.6
16.4.6):

∆φ

2π
L(dz) = p∗(dxdξ), (15.3.1) res.0.5

where the right hand side denotes the direct image under p of the symplectic
volume element.

Let Γ b Ω be a Lipschitz domain as in Chapter
countz
12 of constant scale

r =
√
h. Let

G(w,Γ) =

∫
∂Γ

h

h+ |w − z|2
|dz|√
h
. (15.3.2) res.0.7

res1 Theorem 15.3.1 Let δ̃ > 0. Then with probability

≥ 1−O(1)h−N6−n

(
ln

1

τ0

(
ln

1

h

)2 ∫
Ω

G(w,Γ)∆φ(w)L(dw) + |∂Γ|h
1
2

)
e−

h−δ̃
O(1) ,

the number of eigenvalues of Pδ in Γ (counted with their algebraic multiplic-
ity) satisfies∣∣∣∣#(σ(Pδ) ∩ Γ)− 1

(2πh)n
vol (p−1(Γ))

∣∣∣∣ ≤
O(1)

hn

(
h−δ̃ ln

1

τ0

(
ln

1

h

)2 ∫
Ω

G(w,Γ)∆φ(w)L(dw) + |∂Γ|h
1
2

)
.

(15.3.3) res.1

res1.5 Remark 15.3.2 Actually, we shall prove the theorem for the slightly more
general operators, obtained by replacing P by P0 = P + δ0(h

n
2 q0

1 + q0
2), for

0 ≤ δ0 ≤ h2, ‖q0
1‖Hs

h
, ‖q0

2‖Hs ≤ 1, (15.3.4) res.1.3

where ‖ · ‖Hs
h

is the natural semi-classical norm on Hs that we shall review
in Subsection

al
16.2. If we weaken (

res.1.3
15.3.4) to

0 ≤ δ ≤ h2−ϑ, (15.3.5) res.1.6

for some fixed ϑ ∈]0, 1/2[, then we get the slightly weaker statement in the

theorem obtained by replacing |∂Γ|h 1
2 with |∂Γ|h 1

2
−ϑ both in the lower bound

on the probability and in the estimate (
res.1
15.3.3).
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As in
HaSj08
[55] we also have a result valid simultaneously for a family C of

domains Γ ⊂ Ω satisfying the assumptions of Theorem
res1
15.3.1 uniformly

in the natural sense: With a probability as in Theorem
res1
15.3.1 and after

replacing h−N6−n there by h−N6−n−1/2 (or after increasing N6 by 1/2) the
estimates (

res.1
15.3.3) hold simultaneously for all Γ ∈ C.

res2 Remark 15.3.3 When R̃ has real coefficients, we may assume that the
eigenfunctions εj are real. Then, as will follow from the proofs below, we
may restrict α in (

rp.3
15.2.4) to be in RD so that qω is real, still with |α| ≤ R,

and change C(h) in (
rp.5
15.2.6) so that P becomes a probability measure on

BRD(0, R). Then Theorem
res1
15.3.1 remains valid.

res3 Remark 15.3.4 The assumption (
upo.7
15.1.7) cannot be completely eliminated.

Indeed, let P = hDx+g(x) on T = R/(2πZ) where g is smooth and complex
valued. Then (cf Hager

Ha06a
[53] and Chapter

1dm
3) the spectrum of P is contained

in the line =z =
∫ 2π

0
=g(x)dx/(2π). This line will vary only very little under

small multiplicative perturbations of P so Theorem
res1
15.3.1 cannot hold in

this case.

In order to have a better understanding of the statement in Theorem
res1
15.3.1, we need to compare the Weyl term

W =
1

2π

∫
Γ

∆φ(z)L(dz) (15.3.6) res.2

and the main contribution to the remainder in (
res.1
15.3.3), given by

R =

∫
Ω

G(w,Γ)∆φ(w)L(dw). (15.3.7) res.3

As we shall see in Section
epr
17.6, if ∂Γ satisfies the regularity assumption

(
epr.25
17.6.25),

|∂Γ ∩D(w,R)| ≤ O(1)
√
h

(
R√
h

)1+κ

, R ≥
√
h,

where |γ| denotes the length of the curve γ and 0 ≤ κ ≤ 1, then we have
(
epr.26
17.6.26) as well as the improvement away from Γ in Remark

epr1
17.6.1:

G(w,Γ;h)

=

O(1)
(

1 + d(w,∂Γ)√
h

)κ−1

in general,

diam (Γ)√
h

(
1 + d(w,∂Γ)√

h

)κ−2

, when d(w, ∂Γ) ≥ diam (Γ).

(15.3.8) res.4
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Here d(w, ∂Γ) denotes the distance from w to ∂Γ. From this estimate we
expect – unless Γ is very small or if a considerable fraction of p∗(dxdξ) is
concentrated to a ∂Γ – that R� W and (

res.1
15.3.3) indeed give the asymptotic

behaviour of the number of eigenvalues in Γ for moderate values of δ̃ and τ0.
In the remainder of this section we shall dicuss three closely related ex-

amples when (
epr.25
17.6.25) holds with κ = 0 so that

G(w,Γ;h)

= O(1)


(

1 + d(w,∂Γ)√
h

)−1

in general,

diam (Γ)√
h

(
1 + d(w,∂Γ)√

h

)−2

, when d(w, ∂Γ) ≥ diam (Γ).

(15.3.9) res.5

res3.5 Example 15.3.5 Let Γ be a fixed Lipschitz domain as in Chapter
countz
12, inde-

pendent of h with scale 1 (in the sense of that chapter), so (
res.5
15.3.9) holds.

Assume that
vol p−1(∂Γ +D(0, t)) = O(t

1
N0 ), t→ 0, (15.3.10) res.5.1

for some N0 ≥ 1 and notice that this holds with N0 = 1 when

p(ρ) ∈ ∂Γ⇒ d<p(ρ), d=p(ρ) are linearly independent.

Then it is easy to check (as we shall do prior to Proposition
levsc2
18.4.2) that∫

Γ

G(w,Γ)∆φ(w)L(dw) = O
(
h1/(2N0)

)
,

where for notational simplicity, we have suppressed a factor ln(1/h) to the
right, when N0 = 1. Theorem

res1
15.3.1 now tells us that with probability

≥ 1−O(1)h−N6−n
(

ln
1

τ0

)(
ln

1

h

)2
1

2N0

e−
h−δ̃
O(1) , (15.3.11) res.5.2

we have ∣∣∣∣#(σ(Pδ) ∩ Γ)− 1

(2πh)n
vol (p−1(Γ))

∣∣∣∣ ≤
O(1)

hn
h−δ̃

(
ln

1

τ0

)(
ln

1

h

)2

h
1
N0 ,

(15.3.12) res.5.3

which is a significant estimate if ln 1/τ0 = O(h−β), where 0 < β < 1/(2N0)

and we choose δ̃ small enough so that β + δ̃ < 1/(2N0).
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res4 Example 15.3.6 Let Ω̃ b p(T ∗X)∩Ω be open and with closure containing
no critical value of p;

p(ρ) ∈ Ω̃⇒ d<p(ρ), d=p(ρ) are linearly independent.

Then ∆φL(dz) � L(dz) uniformly on Ω̃. Let Γ0 be a bounded closed Lip-
schitz domain as in Chapter

countz
12, independent of h and with scale 1 (in the

sense of that chapter). We fix some z0 ∈ Ω̃ and put Γ := z0 + αΓ0 ⊂ Ω̃,
where

√
h ≤ α � 1. Clearly ∂Γ satisfies (

epr.25
17.6.25) with κ = 0, so we have

(
res.5
15.3.9) uniformly with respect to α.

We see that
W � α2. (15.3.13) res.6

In order to estimate R, assume for simplicity that z0 = 0. Then

R =

∫
Ω

G(w,Γ)∆φ(w)L(dw) .
α√
h
h+

∫
Ω̃

G(w,Γ)∆φ(w)L(dw)

. α
√
h+

∫
Ω̃∩{d(w,α∂Γ0)≤α}

(
1 +

d(w, α∂Γ0√
h

)−1

L(dw)

+

∫
Ω̃∩{d(w,α∂Γ0)≥α}

α√
h

(
1 +

d(w, αΓ0)√
h

)−2

L(dw).

(15.3.14) res.6.5

Here “.” means “≤ O(1) times”. The first integral in the last member is
equal to

α2

∫
d(w̃,∂Γ0)≤1

(
1 +

αd(w̃, ∂Γ0)√
h

)−1

L(dw̃)

. α2

∫
{d(w̃,∂Γ0)≤

√
h
α
}
L(dw̃) + α

√
h

∫
{1≥d(w̃,∂Γ0)≥

√
h
α
}

1

d(w̃, ∂Γ0)
L(dw̃)

. α
√
h+ α

√
h ln

α√
h

= α
√
h

(
1 + ln

α√
h

)
.

The second integral in the last member of (
res.6.5
15.3.14) is equal to

α√
h
α2

∫
1
α

Ω∩{d(w̃,∂Γ0)≥1}

(
1 +

αd(w̃, ∂Γ0)√
h

)−2

L(dw̃)

.
α3

√
h

∫
1
α

Ω∩{d(w̃,∂Γ0)≥1}

h

α2d(w̃, ∂Γ0)2
L(dw̃)

. α
√
h ln

1

α
.
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Thus,

R ≤ O(1)α
√
h(1 + ln

α√
h

+ ln
1

α
) = O(1)α

√
h(1 + ln

1√
h

).

In conclusion, we have

R ≤ hδW when
α√
h
≥ h−δ(1 + ln

1

h
),

and the estimate (
res.1
15.3.3) gives spectral asymptotics, provided that δ̃ < δ

and τ0 is not too small so that ln 1/τ0 does not grow faster than h−δ̂ for some

δ̂ < δ − δ̃.

res5 Example 15.3.7 Let z0 ∈ ∂Σ and assume for simplicity that p−1(z0) con-
sists of just one point ρ0, where

{p, {p, p}} 6= 0. (15.3.15) res.7

d<p and d=p have to be colinear at the point ρ0 and in particular {p, p}(ρ0) =
0. Without loss of generality, we may assume that

dp(ρ0) = d<p(ρ0) 6= 0. (15.3.16) res.8

We may also assume for notational reasons that z0 = 0. Since 0 belongs
to ∂Σ, we see that one of the following holds:

1) =p(ρ) ≥ 0 for all ρ ∈ (<p)−1(0) ∩ neigh (ρ0).

2) =p(ρ) ≤ 0 for all ρ ∈ (<p)−1(0) ∩ neigh (ρ0).

We may assume, in order to fix the ideas, that we are in the first case. We
then make the following generic assumption (which follows from (

res.7
15.3.15

when n = 1).

=p|(<p)−1(0)∩neigh (ρ0)
has a nondegenerate minimum at ρ0. (15.3.17) res.9

Then for t ∈ neigh (0,R), =p|(<p)−1(t)∩neigh (ρ0)
has a nondegenerate minimum

at a point ρ(t) depending smoothly on t with ρ(0) = ρ0. We have

=p(ρ)−=p(ρ(<p(ρ))) � |ρ− ρ(<p(ρ))|2 (15.3.18) res.10

for ρ ∈ neigh (ρ0, T
∗X). If g(t) := =p(ρ(t)), then near z = 0, Σ is given by

=z ≥ g(<z) (and from (
res.8
15.3.16) we see that g′(0) = 0).
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Near ρ0 the hypersurfaces (<p)−1(t) carry a natural Liouville measure
and the direct image of this measure under the map

(<p)−1(<z) 3 ρ 7→ =p(ρ)

is of the form

f(z)(=z − g(<z))
n− 3

2
+ d=z, where f > 0 is continuous,

since the Liouville measure of the set =p(ρ)−=p(ρ(<z)) ≤ r in (<p)−1(<z)
is � rn−1/2. It follows that

p∗(dxdξ) = f(z)(=z − g(<z))
n− 3

2
+ L(dz) (15.3.19) res.11

near z = 0. Notice that when n = 1 the corresponding density tends to +∞
at the boundary of Σ while in the case n ≥ 2 it tends to 0.

We will compare R(Γ) and W (Γ) for small domains centered at points of
the boundary of Σ and we may assume that g ≡ 0. Let Γ = Γ(α) be the
domain

Γ(α) = {z ∈ C; |<z| < 2α, 0 ≤ =z < α}, for
√
h ≤ α� 1. (15.3.20) res.12

We have

W �
∫∫

−α<x<α
0≤y<α

yn−
3
2dxdy � αn+ 1

2 . (15.3.21) res.13

We next look at R. Since the direct image measure vanishes in the lower
half-plane (near 0) we may restrict the attention to w = x + iy with y ≥ 0.
Since our domains are symmetric around the imagainary axis it suffices to
consider the case x ≥ 0. In the quarterplane x, y ≥ 0 we have by (

res.5
15.3.9),

G(w,Γ) .

(
1 +

d(w, ∂Γ)√
h

)−1

, when |x| ≤ 2α, y ≤ 2α,

G(w,Γ) .
α√
h

(
1 +
|y − α|√

h

)−2

, when 2α ≤ y ≥ x,

G(w,Γ) .
α√
h

(
1 +
|x− α|√

h

)−2

, when 2α ≤ x ≥ y.

The contribution to R from the region inside Γ is bounded by a constant
times the contribution from the exterior region, so from now on we shall only
consider the contribution from the region x ≥ 0, y ≥ 0, max(x, y) ≥ α. Fur-
ther, when n ≥ 2, the contribution from the region y ≥ max(α, x) dominates
the one from x ≥ max(α, y), while for n = 1 the latter contribution is domi-
nant. When saying this, we tacitly restrict the attention to a neighborhood
Ω̃ of 0 and observe that the contribution from Ω \ Ω̃ is

O(1)α
√
h.
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Case 1: n = 1. In this case

R .
∫∫

2α≥x≥max(α,y)

(
1 +

x− α√
h

)−1

y−
1
2dxdy

+

∫∫
max(2α,y)≤x≤1

α√
h

(
1 +

x− α√
h

)−2

y−
1
2dxdy.

Here the first integral can be estimated by∫∫
0≤y≤2α
α≤x≤2α

(
1 +

x− α√
h

)−1

y−
1
2dxdy

.
√
α

∫ 2α

α

(
1 +

x− α√
h

)−1

dx =
√
αh ln(1 +

α√
h

).

The second integral is equal to∫∫
0≤y≤2α≤x≤1

α√
h

(
1 +

x− α√
h

)−2

y−
1
2dxdy

+

∫∫
2α≤y≤x≤1

α√
h

(
1 +

x− α√
h

)−2

y−
1
2dxdy

=
α√
h

C√αh[−(1 +
x− α√

h

)−1
]1

x=2α

+

∫ 1

2α

√
h

[
−
(

1 +
x− α√

h

)−1
]1

y

y−
1
2dy


. α

3
2

(
1 +

α√
h

)−1

+ α

∫ 1

2α

(
1 +

y − α√
h

)−1

y−
1
2dy

.
√
αh+ α

√
h

∫ 1

2α

y−
3
2dy .

√
αh.

Thus

R .
√
αh

(
1 + ln

(
1 +

α√
h

))
,

while W � α3/2.
We conclude in this case that R ≤ hδ(ln 1

h
)W if α ≥ h

1
2
−δ
√
h. The scaling

argument in Chapter
rest1d
6 could lead to improvements.

Case 2: n ≥ 2. In this case

R .
∫∫

2α≥y≥max(α,x)
x≥0

(
1 +

y − α√
h

)−1

yn−
3
2dxdy

+

∫∫
max(2α,x)≤y≤1

α√
h

(
1 +

y − α√
h

)−2

yn−
3
2dxdy.
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In the domain of integration of the first integral, we have y � α, x ≤ 2α, so
this integral is

. 2ααn−
3
2

∫ 2α

α

(
1 +

y − α√
h

)−1

dy . αn−
1
2

√
h

[
ln

(
1 +

y − α√
h

)]2α

α

. αn−
1
2

√
h ln

(
1 +

α√
h

)
. α
√
hα

1
2 ln

(
1 +

α√
h

)
,

where we used that n ≥ 2 in the last estimate.
In the domain of integration of the second integral, we have

1 +
y − α√

h
� y√

h
,

so this integral is

.
∫ 1

0

∫ 1

max(2α,x)

α√
h

h

y2
yn−

3
2dydx . α

√
h

∫ 1

0

∫ 1

max(2α,x)

yn−
5
2dydx . α

√
h,

since n− 5/2 > −1 in the case under consideration.
Thus,

R .

(
1 + α

1
2 ln

α√
h

)
α
√
h . αh

1
2 ln

1

h
,

and we compare this with (
res.13
15.3.21). It follows that if

h
1
2
−δ ln

1

h
. αn−1/2, 0 < δ � 1, (15.3.22) res.14

then
R . hδW,

so Theorem
res1
15.3.1 gives an asymptotic formula for the number of eigenvalues

in Γ when α� 1 fulfills (
res.14
15.3.22).

15.4 Comparison of Theorem
res1

15.3.1 and The-

orem 1.1 in
Sj08a

[131] and
Sj08b

[132]
add

In the two papers we treated respectively the case of h pseudodifferential
operators on Rn and of h differential operators on a smooth compact man-
ifold. The second work is a simple adaptation of the first so we refer to the
first one even though we shall compare with the result on manifolds. (The
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formulations are almost identical.) An extra assumption is those papers is
that ∫

D(z,r)

∆φ(z)L(dz) = O(r2κ), 0 ≤ r � 1, z ∈ Ω, (15.4.1) add.1

for some κ ∈]0, 1]. The class of random perturbations is the same there as
in this chapter, except for the fact that some parameter ranges are slightly
wider in

Sj08a, Sj08b
[131, 132] but depending on κ. In the following we restrict the

attention to random perturbations as in the present chapter.
The most interesting thing is probably to compare the right hand sides

of (1.14) in
Sj08a
[131] and (

res.1
15.3.3). To make things simple, let us notice that for

every δ1 > 0 there exists δ2 > 0 such that if δ ≥ e−h
−δ2 is as in Theorem

res1
15.3.1, then with probability ≥ 1−O(1)e−h

−δ2 , we have∣∣∣∣#(σ(Pδ) ∩ Γ)− 1

(2πh)n
vol (p−1(Γ))

∣∣∣∣ ≤
O(1)

hn

(
h−δ1

∫
Ω

G(w,Γ)∆φ(w)L(dw) + |∂Γ|h
1
2

)
.

(15.4.2) add.2

Similarly in Theorem 1.1 in
Sj08a
[131] (and where Γ is a fixed domain with smooth

boundary), ∀δ1 > 0, ∃δ2 > 0 such that if δ ≥ e−h
−δ2 is as in that theorem,

then with probability ≥ 1−O(e−h
−δ2 ), we have∣∣∣∣#(σ(Pδ) ∩ Γ)− 1

(2πh)n
vol (p−1(Γ))

∣∣∣∣ ≤
O(1)

hn

(
hκ−δ1

r
+ r + ln

(
1

r

)∫
∂Γ+D(0,r)

∆φ(w)L(dw)

)
, 0 < r � 1.

(15.4.3) add.3

We neglect the factors h−δ1 and the log factor in (
add.2
15.4.2), (

add.3
15.4.3). Then

we are reduced to comparing

A :=

∫
Ω

G(w,Γ)∆φL(dw) + h
1
2 (15.4.4) add.4

and

B := inf
0<r�1

(
hκ

r
+ r + F (r)

)
. (15.4.5) add.5

Since Γ is a fixed domain with smooth boundary, the regularity assump-
tion after (

res.3
15.3.7) holds with κ there equal to 0 (not to be confounded with

the κ in (
add.1
15.4.1), (

add.5
15.4.5)!), and by (

res.4
15.3.8)

G(w,Γ) = O(1)

(
1 +

d(w, ∂Γ)√
h

)−1

.
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Hence

A ≤ O(1)

(∫ r0

0

(
1 +

t√
h

)−1

dF (t) + h
1
2

)
. (15.4.6) add.6

Covering ∂Γ + D(0, r) with � 1/r discs of radius 2r and using (
add.1
15.4.1),

we get
F (r) = O(r2κ−1). (15.4.7) add.7

We end the section by a small calculation that indicates that A in gen-
eral is smaller than B (and hence that Theorem

res1
15.3.1 is sharper than the

corresponding results in
Sj08a, Sj08b
[131, 132]). For that we assume in addition that

F (r) � rα, (15.4.8) add.8

for some 0 < α ≥ 2κ− 1. Then

B �

{
h
κ
2 , if α ≥ 1,

h
ακ
α+1 , if α < 1.

(15.4.9) add.9

The integral in (
add.6
15.4.6) is equal to[(

1 +
t√
t

)−1

F (t)

]r0
0

+
1√
h

∫ r0

0

(
(1 +

t√
h

)−2

F (t)dt

≤ O(h
1
2 ) +

O(1)√
h

∫ r0

0

(
(1 +

t√
h

)−2

tαdt

= O(h
1
2 ) +O(h

α
2 )

∫ r0/
√
h

0

(1 + s)−2sαds

= O(1)

h
α
2 , α < 1

h
α
2

(
1√
h

)α−1

= h
1
2 , α ≥ 1,

neglecting a factor ln(1/h) when α = 1. Thus,

A .

{
h

1
2 , α ≥ 1,

h
α
2 , α < 1.

(15.4.10) add.10

Since κ ≤ 1, we have A . B when α ≥ 1. From the inequalities 2κ− 1 ≤
α > 0, we have

ακ

α + 1
≤ α

2
,

so A . B also when α < 1. (Recall that we have neglected a factor ln(1/h)
when α = 1.) This is a rather clear indication that Theorem

res1
15.3.1 gives a

better remainder estimate than the corresponding results in
Sj08a, Sj08b
[131, 132].
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Chapter 16

Proof I: upper bounds

Chub

16.1 Review of some calculus for h-pseudodifferential

operators
app

We recall some basic h-pseudodifferential calculus on compact manifolds,
including some fractional powers in the spirit of R. Seeley

Se67
[118]. Recall from

Ho8385
[83] that if X ⊂ Rn is open, 0 < ρ ≤ 1, m ∈ R, then Smρ (X × Rn) =
Smρ,1−ρ(X ×Rn) is defined to be the space of all a ∈ C∞(X ×Rn) such that
∀K b X, α, β ∈ Nn, there exists a constant C = C(K,α, β), such that

|∂αx∂
β
ξ a(x, ξ)| ≤ C〈ξ〉m−ρ|β|+(1−ρ)|α|, (x, ξ) ∈ K ×Rn. (16.1.1) app.1

When a(x, ξ) = a(x, ξ;h) depends on the additional parameter h ∈]0, h0] for
some h0 > 0, we say that a ∈ Smρ (X ×Rn), if (

app.1
16.1.1) holds uniformly with

respect to h. For h-dependent symbols, we introduce Sm,kρ = h−kSmρ . When
ρ = 1 it is customary to suppress the subscript ρ. We say that R = Rh :
E ′(X) → C∞(X) is negligible if ‖φ ◦ Rh ◦ ψ‖L(H−Nh ,HN

h ) ≤ CN,φ,ψh
N for all

φ, ψ ∈ C∞0 (X), N ∈ N. Rh is negligible iff the distribution kernel KR(x, y)
satisfies ∂αx∂

β
yKR(x, y) = O(hN) for all α, β,N uniformly on every compact

subset of X ×X.
Let now X be a compact n-dimensional manifold. We say that R = Rh :

D′(X) → C∞(X) is negligible, and write R ≡ 0, if the distribution-kernel
KR satisfies ∂αx∂

β
yKR(x, y) = O(h∞) for all α, β ∈ Nn (when expressed in

local coordinates).
We say that an operator P = Ph : C∞(X)→ D′(X) belongs to the space

Lm,k(X) if φ◦Ph ◦ψ is negligible for all φ, ψ ∈ C∞(X) with disjoint supports
and if for every choice of local coordinates x1, ..., xn, defined on the open
subset X̃ ⊂ X (that we view as a subset of Rn), we have on X̃ for every
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u ∈ C∞0 (X̃):

Pu(x) =
1

(2πh)n

∫∫
e
i
h

(x−y)·θa(x, θ;h)u(y)dydθ +Ku(x), (16.1.2) app.2

where a ∈ Sm,k(X̃ ×Rn) and K : E ′(X̃)→ C∞(X̃) is negligible.
The correspondence P 7→ a is not globally well-defined, but the various

local maps give rise to a bijection

Lm,k(X)/Lm−1,k−1(X)→ Sm,k(T ∗X)/Sm−1,k−1(T ∗X), (16.1.3) app.3

where we notice that Sm,k(T ∗X) is well-defined in the natural way. The
image σP (x, ξ) of P ∈ Lm,k(X) is called the principal symbol.

Pseudodifferential operators in the above classes map C∞ to C∞ and
extend to well-defined operators D′(X) → D′(X). They can therefore be
composed with each other: If Pj ∈ Lmj ,kj(X), for j = 1, 2, then P1 ◦ P2 ∈
Lm1+m2,k1+k2 . Moreover σP1◦P2(x, ξ) = σP1(x, ξ)σP2(x, ξ).

We can invert elliptic operators: If Ph ∈ Lm,k is elliptic in the sense that
|σP (x, ξ)| ≥ 1

C
h−k〈ξ〉m, then Ph is invertible (either as a map on C∞ or on

D′) for h > 0 small enough, and the inverse Q belongs to L−m,−k. (If we
assume invertibility in the full range 0 < h ≤ h0 then the conclusion holds
in that range.) Notice that σQ(x, ξ) = 1/σP (x, ξ) ∈ S−m,−k/S−m−1,−k−1.

The proof of these facts is a routine application of the method of station-
ary phase, following for instance the presentation in

GrSj94
[51]. See also Section

upc
16.3 where we will consider a degenerate calculus.

Let
h2R̃ =

∑
(hDxj)

∗rj,k(x)hDxk (16.1.4) al.5

be a non-negative elliptic operator with smooth h-independent coefficients
on X, where the star indicates that we take the adjoint with respect to some
fixed positive smooth density on X. Let r(x, ξ) be the principal symbol of R̃
in the classical sense, so that r(x, ξ) is a homogeneous polynomial in ξ with

r(x, ξ) � |ξ|2. Then P := h2R̃ belongs to L2,0(X) and σh2R̃ = r. It is a
self-adjoint operator: L2(X)→ L2(X) with domain H2(X) and by standard

functional calculus, we can define the self-adjoint operators (1+h2R̃)s, s ∈ R.

app1 Proposition 16.1.1 For every s ∈ R, we have (1 + h2R̃)s ∈ L2s,0 and the
principal symbol is given by (1 + r(x, ξ))s.

Proof. It suffices to show this for s sufficiently large negative. In that case
we have

(1 + h2R̃)s =
1

2πi

∫
γ

(1 + z)s(z − h2R̃)−1dz, (16.1.5) app.4
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where γ is the oriented boundary of the sector arg (z + 1
2
) < π/4. For z ∈ γ

and more generally for z in the complement of the sector, we write

(z − h2R̃) = |z|( z
|z|
− h̃2R̃), h̃ =

h

|z|1/2
,

and notice that z
|z| − h̃2R̃ ∈ L2,0 is elliptic when we regard h̃ as the new

semi-classical parameter. By self-adjointness and positivity we know that
this operator is invertible, so ( z

|z| − h̃
2R̃)−1 ∈ L−2,0, and for every system of

local coordinates the symbol (in the sense of h̃-pseudodifferential operators)
is

1
z
|z| − r(x, ξ)

+ a, a ∈ S−3,−1. (16.1.6) app.4.5

The symbol of (z − h2R̃)−1 as an h-pseudodifferential operator is therefore

1

|z|( z
|z| − r(x,

ξ
|z|1/2 ))

+
1

|z|
a

(
x,

ξ

|z|1/2
;

h

|z|1/2

)
. (16.1.7) app.5

Here the first term simplifies to (z− r(x, ξ))−1 and the corresponding contri-
bution to (

app.4
16.1.5) has the symbol (1 + r(x, ξ))s.

The contribution from the remainder in (
app.5
16.1.7) to the symbol in (

app.4
16.1.5)

is

b(x, ξ) :=
1

2πi

∫
γ

(1 + z)s

|z|
a

(
x,

ξ

|z|1/2
;

h

|z|1/2

)
dz,

where we will use the estimate

∂αx∂
β
ξ

1

|z|
a(x,

ξ

|z|1/2
;

h

|z|1/2
) = O

(
h

|z|(3+|β|)/2 〈
ξ

|z|1/2
〉−3−|β|

)
= O(h)(|z|+ |ξ|2)−

1
2

(3+|β|).

(16.1.8) app.5.5

Thus,

∂αx∂
β
ξ b = O(1)h

∫
γ

|z|s(|z|+ |ξ|2)−
1
2

(3+|β|)|dz|. (16.1.9) app.6

• In a region |ξ| = O(1), we get

∂αx∂
β
ξ b = O(h).

• In the region |ξ| � 1 shift the contour γ in (
app.4
16.1.5) to the oriented

boundary of the sector arg (z + 1
2
|ξ|2) < π

4
. Then we get (

app.6
16.1.9) for

the shifted contour and the integral can now be estimated by

O(h)

∫ ∞
|ξ|2/C

ts−
3
2
− |β|

2 dt = O(h|ξ|2s−1−|β|).
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• There is also the negligible part in (z − h2R̃)−1 which by the same
scaling arguments satisfies ∂αx∂

β
yK(x, y, z;h) = O((h/|z|1/2)∞) on the

level of distribution kernels. After integration of (1 + z)sK along γ,
this gives rise to a negligible operator.

The proposition follows. 2

16.2 Sobolev spaces and multiplication
al

We let Hs
h(R

n) ⊂ S ′(Rn), s ∈ R, denote the semiclassical Sobolev space of
order s equipped with the norm ‖〈hD〉su‖ where norms without subscripts
are the ones in L2, `2 or the corresponding operator norms if nothing else is
indicated. Here 〈hD〉 = (1 + (hD)2)1/2. Let û(ξ) =

∫
e−ix·ξu(x)dx denote

the Fourier transform of the tempered distribution u on Rn.

al1 Proposition 16.2.1 Let s > n/2. Then there exists a constant C = C(s)
such that for all u, v ∈ Hs

h(R
n), we have u ∈ L∞(Rn), uv ∈ Hs

h(R
n) and

‖u‖L∞ ≤ Ch−n/2‖u‖Hs
h
, (16.2.1) al.1

‖uv‖Hs
h
≤ Ch−n/2‖u‖Hs

h
‖v‖Hs

h
. (16.2.2) al.2

Proof. The fact that u ∈ L∞ and the estimate (
al.1
16.2.1) follow from Fourier’s

inversion formula and the Cauchy-Schwartz inequality:

|u(x)| ≤ 1

(2π)n

∫
〈hξ〉−s(〈hξ〉s|û(ξ)|)dξ ≤ 1

(2π)n/2
‖〈h·〉−s‖‖u‖Hs

h
.

It then suffices to use that ‖〈h·〉−s‖ = C(s)h−n/2.
In order to prove (

al.2
16.2.2) we pass to the Fourier transform side, and see

that it suffices to show that∫
〈hξ〉sw(ξ)(〈h·〉−sũ ∗ 〈h·〉−sṽ)(ξ)dξ ≤ C(s)h−

n
2 ‖ũ‖‖ṽ‖‖w‖, (16.2.3) al.3

for all non-negative ũ, ṽ, w ∈ L2, where ∗ denotes convolution. Here the left
hand side can be written∫∫

η+ζ=ξ

〈hξ〉s

〈hη〉s〈hζ〉s
w(ξ)ũ(η)ṽ(ζ)dξdζ ≤ I + II,
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where I, II denote the corresponding integrals over the sets {|η| ≥ |ξ|/2} and
{|ζ| ≥ |ξ|/2} respectively. Here

I ≤ C(s)

∫
(

∫
w(ξ)ũ(ξ − ζ)dξ)

ṽ(ζ)

〈hζ〉s
dζ

≤ C(s)‖w‖‖ũ‖‖ ṽ

〈h·〉s
‖L1 .

As in the proof of (
al.1
16.2.1) we see that ‖ ṽ

〈h·〉s‖L1 ≤ C(s)h−
n
2 ‖ṽ‖, so I is

bounded by a constant times h−
n
2 ‖ũ‖‖ṽ‖‖w‖. The same estimate holds for

II and (
al.3
16.2.3) follows. 2

Let X be a compact n-dimensional manifold. We cover X by finitely
many coordinate neighborhoods M1, ...,Mp and for each Mj, we let x1, ..., xn
denote the corresponding local coordinates on Mj. Let 0 ≤ χj ∈ C∞0 (Mj)
have the property that

∑p
1 χj > 0 on X. Define Hs

h(X) to be the space of
all u ∈ D′(X) such that

‖u‖2
Hs
h

:=

p∑
1

‖χj〈hD〉sχju‖2 <∞. (16.2.4) al.4

It is standard to show that this definition does not depend on the choice of the
coordinate neighborhoods or on χj. With different choices of these quantities
we get norms in (

al.4
16.2.4) which are uniformly equivalent when h→ 0. In fact,

this follows from the h-pseudodifferential calculus on manifolds with symbols
in the Hörmander space Sm1,0, given in Section

app
16.1. An equivalent definition

of Hs
h(X) is the following: We saw in Section

app
16.1 that (1 + h2R̃)s/2 is an

h-pseudodifferential operator with symbol in Ss1,0 and semiclassical principal

symbol given by (1 + r(x, ξ))s/2, where r(x, ξ) =
∑

j,k rj,k(x)ξjξk is the semi-

classical principal symbol of h2R̃. Proposition
app1
16.1.1 shows that for every

s ∈ R:

al2 Proposition 16.2.2 Hs
h(X) is the space of all u ∈ D′(X) such that (1 +

h2R̃)s/2u ∈ L2 and the norm ‖u‖Hs
h

is equivalent to ‖(1+h2R̃)s/2u‖, uniformly
when h→ 0.

Let (µ0
k)

2, k = 1, 2, ... with µ0
k > 0 be the eigenvalues of R̃ repeated ac-

cording to their multiplicity and let ε1, ε2, ... be a corresponding orthonormal
basis of eigenfunctions. It follows from the basic Weyl asymptotics for elliptic
self-adjoint operators on compact manifolds (see for instance

GrSj94
[51] and further

references given there) that

#{k; µ0
k ≤ λ} � λn,
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uniformly for 0 < h� 1, λ ≥ 1. If u ∈ D′(X), we have

u =
∑

αkεk, αk = (u|εk),

where the sequence of αk is of temperate growth and the series converges in
the sense of distributions. From Proposition

al2
16.2.2 we see that u ∈ Hs

h iff∑
〈µk〉2s is finite and

‖u‖2
Hs
h
�
∑
〈µk〉2s|αk|2,

uniformly with respect to h. Here µk := hµ0
k so that µ2

k are the eigenvalues

of h2R̃.

al3 Remark 16.2.3 From the first definition of Hs
h we see that Proposition

al1
16.2.1 remains valid if we replace Rn by a compact n-dimensional manifold
X.

Of course, Hs
h(X) coincides with the standard Sobolev space Hs(X) =

Hs
1(X) and the norms are equivalent for each fixed value of h. We have the

following variant of Proposition
al1
16.2.1:

al4 Proposition 16.2.4 Let s > n/2. Then there exists a constant C = Cs > 0
such that

‖uv‖Hs
h
≤ C‖u‖Hs‖v‖Hs

h
, ∀u ∈ Hs(Rn), v ∈ Hs

h(R
n). (16.2.5) al.6

The result remains valid if we replace Rn by X.

Proof. The adaptation to the case of a compact manifold is immediate by
working in local coordinates, so it is enough to prove (

al.6
16.2.5) in the Rn-case.

Let χ ∈ C∞0 (Rn) be equal to one in a neighborhood of 0. Write u = u1+u2

with u1 = χ(hD)u, u2 = (1 − χ(hD))u. Then, with hats indicating Fourier
transforms, we have

〈hξ〉sû1v(ξ) =
1

(2π)n

∫
〈hξ〉s

〈hη〉s
(χ(h(ξ − η))û(ξ − η))〈hη〉sv̂(η)dη.

Here 〈hξ〉/〈hη〉 = O(1) on the support of (ξ, η) 7→ χ(h(ξ − η)), so

‖u1v‖Hs
h
≤ O(1)‖û‖L1‖v‖Hs

h
≤ O(1)‖u‖Hs‖v‖Hs

h
,

where we also used that s > n/2 in the last estimate.
On the other hand, 〈hξ〉s ≤ Chs〈ξ〉s when 1 − χ(hξ) 6= 0, so ‖u2‖Hs

h
≤

Chs‖u‖Hs . By Proposition
al1
16.2.1, we get

‖u2v‖Hs
h
≤ Ch−

n
2 ‖u2‖Hs

h
‖v‖Hs

h
≤ C̃hs−

n
2 ‖u‖Hs‖v‖Hs

h
≤ C̃‖u‖Hs‖v‖Hs

h
,

when h ≤ 1. 2
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16.3 Bounds on small singular values and de-

terminants in the unperturbed case
upc

Let X be a compact manifold, let P be of the form (
upo.1
15.1.1) and let p in

(
upo.6
15.1.6) be the corresponding semi-classical symbol. Recall that the spectral

parameter z varies in the open simply connected set Ω b Cn with smooth
boundary and that Ω contains a point z0 which is not in the image of p. We
can (cf. the proof of Proposition

g1d3
5.1.3) construct a symbol p̃ ∈ Sm(T ∗X)

which is equal to p outside any fixed given neighborhood of p−1(Ω) such that
p̃(ρ) − z is non-vanishing for every z ∈ Ω. Indeed, there is a smooth map
κ : C \ {z0} → C \ {z0} such that κ(C \ {z0}) ∩ Ω = ∅ and κ(z) = z for |z|
large. It then suffices to put p̃ = κ ◦ p. Let P̃ = P + Oph(p̃ − p) where we
use the h-quantization in Section

app
16.1.

Using the h-pseudodifferential calculus, we see that for h > 0 small
enough,

P̃ − z : Hm
h (X)→ H0(X) (16.3.1) upc.1

is bijective for all z ∈ Ω with a uniformly bounded inverse. Put

Pz = (P̃ − z)−1(P − z) = 1− (P̃ − z)−1(P̃ − P ). (16.3.2) upc.2

Notice that P̃ − P = Oph(p̃ − p) is a smoothing operator of trace class
C1(L2, L2) with the corresponding trace class norm = O(h−n) (see

Ro87, DiSj99
[115, 40]).

In this section we shall estimate the number of small singular values of P − z
and Pz and obtain closely related upper bounds on ln | detPz|. We introduce
the operator

S = (P − z)∗(P − z). (16.3.3) upc.3

(Later on we shall use the same symbol for a closely related bounded opera-
tor.)

In order to do so, we shall develop a slightly degenerate pseudodifferential
calculus. Let h ≤ α� 1. A basic weight function in our calculus will be

Λ :=

(
α + s

1 + s

) 1
2

, where s(ρ) = |p(ρ)− z|2, (16.3.4) upc.5

and we see that
√
α/2 ≤ Λ ≤ 1.

Consider first symbol properties of 1 + s
α

and its powers.

upc1 Proposition 16.3.1 For every choice of local coordinates x on X, let (x, ξ)
denote the corresponding canonical coordinates on T ∗X. Then for all ` ∈ R,
α̃, β ∈ Nn, we have uniformly in ξ and locally uniformly in x:

∂α̃x∂
β
ξ (1 +

s

α
)` = O(1)(1 +

s

α
)`Λ−|α̃|−|β|〈ξ〉−|β|. (16.3.5) upc.6
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Proof. In the region |ξ| � 1 we see that (1 + s
α

)` is an elliptic element of
the Hörmander symbol class

α−`S2`m
1,0 =: α−`S(〈ξ〉2`m),

and Λ � 1 there, so (
upc.6
16.3.5) holds. In the region |ξ| = O(1), we start with

the case ` = 1. Since s ≥ 0, we have ∇s = O(s
1
2 ), so

|∇(1 +
s

α
)| = O(

s
1
2

α
) ≤ O(1)(1 +

s

α
)(α + s)−

1
2 = O(1)(1 +

s

α
)Λ−1.

For k ≥ 2, we have

|∇k(1 +
s

α
)| = O(

1

α
) = O(1)(1 +

s

α
)Λ−2 ≤ O(1)(1 +

s

α
)Λ−k,

and we get (
upc.6
16.3.5) when ` = 1.

If ` ∈ R, then ∂α̃x∂
β
ξ (1 + s

α
)` is a finite linear combination of terms

(1 +
s

α
)`−k(∂α̃1

x ∂
β1

ξ (1 +
s

α
)) · · · (∂α̃kx ∂βkξ (1 +

s

α
)),

with α̃ = α̃1 + ...+ α̃k, β = β1 + ...+ βk, and we get (
upc.6
16.3.5) in general. 2

We next notice that when w = O(1),

|=w|
C

(1 +
s

α
) ≤ |w − s

α
| ≤ C(1 +

s

α
). (16.3.6) upc.7

In fact, the second inequality is obvious, and so is the first one, when s
α
� 1.

When s
α
≤ O(1), it follows from the fact that

1 +
s

α
= O(1), |w − s

α
| ≥ |=w|.

From (
upc.6
16.3.5), (

upc.7
16.3.6), we get

|∂α̃x∂
β
ξ (w − s

α
)| ≤ O(1)(w − s

α
)Λ−|α̃|−|β|〈ξ〉−|β||=w|−1. (16.3.7) upc.8

When passing to (w − s
α

)` and applying the proof of Proposition
upc1
16.3.1, we

loose more powers of |=w| which can still be counted precisely, but we refrain
from doing so and simply state the following result:

upc2 Proposition 16.3.2 For all ` ∈ R, α̃, β ∈ Nn, there exists J ∈ N, such
that

∂α̃x∂
β
ξ (w − s

α
)` = O(1)(1 +

s

α
)`Λ−|α̃|−|β|〈ξ〉−|β||=w|−J , (16.3.8) upc.9

uniformly in ξ and locally uniformly in x.
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We next define some new symbol spaces.

upc3 Definition 16.3.3 Let m̃(x, ξ) be a weight function of the form m̃(x, ξ) =
〈ξ〉kΛ`. We say that the family a = aw ∈ C∞(T ∗X), w ∈ D(0, C), belongs to
SΛ(m̃) if for all α̃, β ∈ Nn there exists J ∈ N such that

∂α̃x∂
β
ξ a = O(1)m̃(x, ξ)Λ−|α̃|−|β|〈ξ〉−|β||=w|−J . (16.3.9) upc.10

Here, as in Proposition
upc2
16.3.2, it is understood that the estimate is ex-

pressed in canonical coordinates and is locally uniform in x and uniform in
ξ. Notice that the set of estimates (

upc.10
16.3.9) is invariant under changes of local

coordinates in X.
Let U ⊂ X be a coordinate neighborhood that we shall view as a subset

of Rn in the natural way. Let a ∈ SΛ(T ∗U, m̃) be a symbol as in Definition
upc3
16.3.3 so that (

upc.10
16.3.9) holds uniformly in ξ and locally uniformly in x. For

fixed values of α, w the symbol a belongs to Sk1,0(T ∗U), so the classical h-
quantization

Au = Oph(a)u(x) =
1

(2πh)n

∫∫
e
i
h

(x−y)·ηa(x, η;h)u(y)dydη (16.3.10) upc.11

is a well-defined operator C∞0 (U) → C∞(U), E ′(U) → D′(U). In order
to develop our rudimentary calculus on X we first establish a pseudolocal
property for the distribution kernel KA(x, y):

upc4 Proposition 16.3.4 For all α̃, β ∈ Nn, N ∈ N, there exists M ∈ N such
that

∂α̃x∂
β
yKA(x, y) = O(hN |=w|−M), (16.3.11) upc.12

locally uniformly on U × U \ diag(U × U).

Proof. If γ ∈ Nn, then (x − y)γKA(x, y) is the distribution kernel of

Oph((−hDξ)
γa) and (−hDξ)

γa ∈ SΛ

(
m̃
(

h
Λ〈ξ〉

)|γ|)
. By the observation af-

ter (
upc.5
16.3.4), h/Λ ≤ h/α

1
2 ≤
√

2h
1
2 . Thus for any N ∈ N, there exists M ∈ N

such that,

(x− y)γKA(x, y) = O(hN |=w|−M) if |γ| ≥ γ(N)

is large enough. From this we get (
upc.12
16.3.11) when α̃ = β = 0. Now, ∂α̃x∂

β
yKA

can be viewed as the distribution kernel of a new pseudodifferential operator
of the same kind, so we get (

upc.12
16.3.11) for all α̃, β. 2

This means that if φ, ψ ∈ C∞0 (U) have disjoint supports, then for every
N ∈ N, there exists M ∈ N such that φAψ : H−N(Rn) → HN(Rn) with
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norm O(hN |=w|−M), and this leads to a simple way of introducing pseudo-
differential operators on X: Let U1, ..., Us be coordinate neighborhoods that
cover X. Let χj ∈ C∞0 (Uj) form a partition of unity and let χ̃j ∈ C∞0 (Uj)
satisfy χj ≺ χ̃j in the sense that χ̃j is equal to 1 near supp (χj). Let a =
(a1, ..., as), where aj ∈ SΛ(m̃). Then we quantize a by the formula:

A =
s∑
1

χ̃j ◦Oph(aj) ◦ χj. (16.3.12) upc.13

This is not an invariant quantization procedure but it will suffice for our
purposes.

We next study the composition to the left with non-exotic pseudodiffer-
ential operators. Let U = Uj be one of the above coordinate neighborhoods,
viewed as an open set in Rn, and take A = Oph(a), a ∈ S1,0(m1), m1 = 〈ξ〉r,
B = Oph(b), b ∈ SΛ(m2) with m2 = 〈ξ〉kΛ` as in Definition

upc3
16.3.3. We will

assume that supp (b) ⊂ K×Rn, where K ⊂ U is compact. We are interested
in C = A ◦B.

The symbol c of this composition is given by

c(x, ξ;h) = e−
i
h
x·ξA(b(·, ξ)e

i
h

(·)·ξ)(x)

=
1

(2πh)n

∫∫
a(x, η)b(y, ξ)e

i
h

(x−y)·(η−ξ)dydη
(16.3.13) upc.14

In the region |η − ξ| ≥ 1
C
〈ξ〉 we can make repeated integrations by parts

in the y-variables and see that the contribution from this region is a symbol
d(x, ξ;h) satisfying

∀N ∈ N, α̃, β ∈ Nn,∃M ∈ N,∀K b U,∃C > 0;

|∂α̃x∂
β
ξ d(x, ξ;h)| ≤ C

hN〈ξ〉−N

|=w|M
, (x, ξ) ∈ K ×Rn.

(16.3.14) upc.15

Up to such a term d, we may assume that with χ ∈ C∞0 (B(0, 1
2
)) equal

to 1 near 0,

c(x, ξ;h) ≡ 1

(2πh)n

∫∫
a(x, η)b(y, ξ)χ

(
η − ξ
〈ξ〉

)
e
i
h

(x−y)·(η−ξ)dydη

=

(
〈ξ〉
2πh

)n ∫∫
a(x, 〈ξ〉(η +

ξ

〈ξ〉
))b(x+ y, ξ)χ(η)e

−i〈ξ〉
h

y·ηdydη.

(16.3.15) upc.16

We shall apply the method of stationary phase (see for instance
GrSj94, DiSj99
[51, 40])

and pause to recall some facts for the expansion of the integral

J(t, u) =
1

(2πt)n

∫∫
u(y, η)e−

i
t
y·ηdydη, u ∈ S(R2n).
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Here the exponent is of the form

i

2t
Q

(
y
η

)
·
(
y
η

)
,

where

Q =

(
0 −1
−1 0

)
.

Then (cf (2.3) and Proposition 2.3 in
GrSj94
[51]) we know that

J(t, u)→ u(0), t→ 0.

We also know that with F : L2(R2n)→ L2(R2n) denoting the Fourier trans-
form,

F
(

1

(2πt)n
e
i
t
y·η
)

(y∗, η∗) = e−ity
∗·η∗ ,

so we can apply Plancherel’s formula and write

J(t, u) =
1

(2π)2n

∫∫
(Fu)(y∗, η∗)eity

∗·η∗dy∗dη∗

= exp(tDy · ∂η)(u)(0, 0).

By Taylor’s formula with integral remainder, we have

J(t, u) =
N−1∑

0

tk

k!
(∂η ·Dy)

ku(0, 0) +RN

=
∑
|β|<N

t|β|

β!
∂βηD

β
yu(0, 0) +RN ,

where

RN = tN
1

(N − 1)!

∫ 1

0

(1− s)NJ((∂η ·Dy)
Nu)(st)ds.

Applying this to the last expression in (
upc.16
16.3.15) with t = h/〈ξ〉, we get

c(x, ξ;h) =
∑
|β|<N

h|β|

β!
∂βξ aD

β
xb+RN . (16.3.16) upc.17

Here,

RN =

(
h

〈ξ〉

)N
1

(N − 1)!

∫ 1

0

(1− t)N×

J

(
t
h

〈ξ〉
, (∂η ·Dy)

N(a(x, 〈ξ〉(η +
ξ

〈ξ〉
))b(x+ y, ξ)χ(η))

)
dt.

(16.3.17) upc.18
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By Plancherel’s formula we have

|J(s, u)| ≤ C
∑

|α̃|+|β|≤2n+1

‖∂α̃y ∂βη u‖L1 .

Indeed, |Fu(y∗η∗)| is bounded by O(1)〈y∗|η∗〉−(2n−1) times the sum in the
right hand side. Thus, we see that there exist exponents N2, N3 independent
of N , such that

|RN | ≤ C

(
h

〈ξ〉

)N
m1(ξ)〈ξ〉N2αN3−N2 |=w|−M(N).

Similar estimates hold for the derivatives and using that N can be chosen
arbitrarily large and that α ≥ h1/2, we conclude:

upc5 Proposition 16.3.5 Let A = Oph(a), a ∈ S1,0(m1), m1 = 〈ξ〉r, B =
Oph(b), b ∈ SΛ(m2), m2 = 〈ξ〉kΛ` and assume that b has uniformly com-
pact support in x. Then A ◦ B = Oph(c), where c belongs to SΛ(m1m2) and
has the asymptotic expansion

c ∼
∑ h|β|

β!
∂βξ a(x, ξ)Dβ

xb(x, ξ),

in the sense that for every N ∈ N,

c =
∑
|β|<N

h|β|

β!
∂βξ a(x, ξ)Dβ

xb(x, ξ) + rN(x, ξ;h),

where rN ∈ SΛ( m1m2

(Λ〈ξ〉)N h
N).

We next make a parametrix construction for w − 1
α
S, still with S as in

(
upc.3
16.3.3), and most of the work will take place in a coordinate neighborhood
U , viewed as an open set in Rn. The symbol of w − 1

α
S is of the form

F = F0 + F−1, F0 = w − 1

α
s, F−1 =

h

α
s−1 ∈ S(

h

α
〈ξ〉2m−1). (16.3.18) upc.19

Put

E0 =
1

w − 1
α
s
∈ SΛ(

α

Λ2〈ξ〉2m
). (16.3.19) upc.20

With Proposition
upc5
16.3.5 in mind, we first consider the formal composition

F]E0 ∼
∑ h|β|

β!
(∂βξ F )(Dβ

xE0)

∼ 1 +
∑
|β|≥1

h|β|

β!
(∂βξ F0)(Dβ

xE0) + F−1]E0.
(16.3.20) upc.21
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Here,

F−1]E0 ∈ SΛ(
h

α
〈ξ〉2m−1 α

Λ2〈ξ〉2m
) = SΛ(

h

Λ2〈ξ〉
).

Since F0 also belongs to SΛ( 1
α

Λ2〈ξ〉2m), we see that for |β| ≥ 1,

h|β|(∂βξ F0)(Dβ
xE0) ∈ SΛ(

h|β|

Λ2|β|〈ξ〉|β|
) ⊂ SΛ(

h

Λ2〈ξ〉
),

and this can be improved for |β| ≥ 2, using that F ∈ S1,0( 1
α
〈ξ〉2m). Hence,

F]E0 = 1 + r1, r1 ∈ SΛ(
h

Λ2〈ξ〉
).

Now put

E1 = E0 − r1/(w − s/α) ≡ E0 mod (SΛ(
hα

Λ4〈ξ〉2m+1
)). (16.3.21) upc.21.5

Then by the same estimates with an extra power of hΛ−2〈ξ〉−1, we get

F]E1 = 1 + r2, r2 ∈ SΛ((
h

Λ2〈ξ〉
)2),

and iterating the procedure we get

EN ≡
1

w − s
α

mod SΛ(
α

Λ2〈ξ〉2m
h

Λ2〈ξ〉
), (16.3.22) upc.22

such that

F]EN = 1 + rN , rN ∈ SΛ((
h

Λ2〈ξ〉
)N+1). (16.3.23) upc.23

Actually, in this construction we can work with finite sums instead of asymp-
totic ones and then

EN is a holomorphic function of w, for |ξ| ≥ C, (16.3.24) upc.24

where C is independent of N . In fact, in order to make this remark more
explicit we prefer to replace w by z = αw and write

(z − S)−1 =
1

α
(w − α−1S)−1.

Start with α−1E0 = (z − s)−1 on the level of symbols and consider

(z − S)]
1

α
E0 = 1− hs−1

z − s
−
∑
|β|≥1

h|β|

β!
∂βξ (s+ hs−1)Dβ

x(
1

z − s
). (16.3.25) upc24.1
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The right hand side can be written in the general form,∑
β

∑
k≥0
`≥0

∑
γ1+..+γk+

δ1+..+δ`=(β,β)

Cβ,δ,γh
|β| ∂

γ1

x,ξs

z − s
..
∂γkx,ξs

z − s︸ ︷︷ ︸
Γ

∂δ1x,ξhs−1

z − s
...
∂δ`x,ξhs−1

z − s︸ ︷︷ ︸
∆

, (16.3.26) upc24.2

where

1) If k = 0 or ` = 0, the corresponding factor Γ or ∆ is equal to 1 by
definition,

2) γj 6= 0 for 1 ≤ j ≤ k,

3) The term with β = 0, ` = 0 is = 1.

4) Only finitely many values of ` are present for each β (actually ` = 0, 1,
to start with).

Writing γj = (γj,x, γj,ξ) and similarly for δj we see that the general term
in (

upc24.2
16.3.26) belongs to the symbol class

SΛ

(
h|β|

Λ−|γ1|

〈ξ〉|γ1,ξ|
..

Λ−|γk|

〈ξ〉|γk,ξ|
h〈ξ〉−1−δ1,ξ

Λ2
..
h〈ξ〉−1−δ`,ξ

Λ2

)
= SΛ

(
h|β|(

h

Λ2
)`Λ−|γ1|−..−|γk|〈ξ〉−|γ1,ξ|−..−|γk,ξ|−|δ1,ξ|−..−|δ`,ξ|−`

)
⊂ SΛ

((
h

Λ2〈ξ〉

)|β|+`)
,

where we used that |γ1|+ ...+ |γk| ≤ 2|β|, γ1,ξ + ...+γk,ξ + δ1,ξ + ...+ δ`,ξ = β.
Now assume that for some N ∈ {1, 2, ..} we have found a finite sum

1

α
EN =

1

z − s
∑
β

∑
k≥0
`≥0

∑
γ1+..+γk+

δ1+..δ`=(β,β)

Cβ,γ,δh
|β| ∂

γ1

x,ξs

z − s
..
∂γkx,ξs

z − s
∂δ1x,ξhs−1

z − s
...
∂δ`x,ξhs−1

z − s
,

(16.3.27) upc.24.5

satisfying 1) – 4), such that

(w − 1

α
S)]EN = (z − S)]

1

α
EN = 1 +RN , (16.3.28) upc24.3

where RN is of the form (
upc24.2
16.3.26) with the additional restriction that |β|+` >

N . Let RN,N+1 be the sum of the terms in RN with |β|+ ` = N + 1 and put
1
α
EN+1 = 1

α
EN − 1

z−sRN,N+1. Then we get

(z − S)]
1

α
EN+1 = 1 +RN+1, (16.3.29) upc24.4

310



where RN+1 is of the form (
upc24.2
16.3.26) with |β|+ ` > N + 1. The symbol rN of

RN is therefore as in (
upc.23
16.3.23).

Without loss of generality, we may assume that EN in (
upc.23
16.3.23) coincides

with EN in (
upc24.3
16.3.28).

Now we return to the manifold situation and denote by E
(j)
N , r

(j)
N the

corresponding symbols on T ∗Uj, constructed above. Denote the operators
by the same symbols, and put on the operator level:

EN =
s∑
j=1

χ̃jE
(j)
N χj, (16.3.30) upc.25

with χj, χ̃j as in (
upc.13
16.3.12). Then

(w − 1

α
S)EN = 1−

s∑
j=1

1

α
[S, χ̃j]E

(j)
N−1χj +

s∑
j=1

χ̃jr
(j)
N χj

=: 1 +R
(1)
N +R

(2)
N

=: 1 +RN .

(16.3.31) upc.26

Proposition
upc4
16.3.4 implies that for every Ñ , there exists an M̃ such that the

trace class norm of R
(1)
N satisfies

‖R(1)
N ‖tr ≤ O(hÑ |=w|−M̃). (16.3.32) upc.27

As for the trace class norm of R
(2)
N , we review some facts about such

norms for pseudodifferential operators:
If A = a(x,D) is a pseudodifferential operator on Rn, either in the Weyl

or in the classical quantization, then A is of trace class and we have

‖A‖tr ≤ C

∫∫ ∑
|β|≤2n+1

|∂βx,ξa|dxdξ,

provided that the integral is finite. In that case we also know that

tr (A) =
1

(2π)n

∫∫
a(x, ξ)dxdξ.

See Robert
Ro87
[115], and also

DiSj99
[40] for a sharper statement. Now an h-pseudodifferential

operator A = a(x, hD) is unitarily equivalent to Ã = a(h
1
2 x̃, h

1
2Dx̃), so

‖A‖tr ≤ C

∫ ∑
|β|≤2n+1

∂β
x̃,ξ̃

(a(h
1
2 (x̃, ξ̃)))dx̃dξ̃

=
C

hn

∫∫ ∑
|β|≤2n+1

|(h
1
2∂x,ξ)

βa|dxdξ.
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Now, let a ∈ SΛ(m) be a symbol on T ∗U with uniformly compact support
in x. Then for |β| ≤ 2n+ 1, we have

h
|β|
2 ∂βx,ξa = O(1)m

(
h

α

) |β|
2

|=w|−M(β).

Thus there exists M ≥ 0 such that a(x, hDx) is of trace class and

‖a(x, hD)‖tr ≤ Ch−n
∫∫

U×Rn

m(x, ξ)dxdξ |=w|−M , (16.3.33) upc.28

provided that the integral converges.
From (

upc.26
16.3.31), (

upc.23
16.3.23), we now get

‖R(2)
N ‖tr ≤ Ch−n|=w|−M(N)

∫∫ (
h

Λ2〈ξ〉

)N
dxdξ,

and (
upc.27
16.3.32) then shows that we have the same estimate for RN :

‖RN‖tr ≤ Ch−n|=w|−M(N)

∫∫ (
h

Λ2〈ξ〉

)N
dxdξ. (16.3.34) upc.29

The contribution to this expression from the region where Λ ≥ 1/C is
O(hN−n)|=w|−M(N).

For 0 ≤ t� 1, we put

V (t) =

∫∫
s(x,ξ)≤t

dxdξ, 0 ≤ t� 1. (16.3.35) upc.30

This is an increasing function of t and we notice that since we have started
with a differential operator P ,

V (0) = 0. (16.3.36) upc.30.1

For N > 0, put

VN(α) =

∫ 1

0

(1 +
t

α
)−NdV (t) =

∫ 1/α

0

(1 + τ)−NdV (ατ) (16.3.37) upc.30.2

The contribution to the integral in (
upc.29
16.3.34) from the region 0 ≤ s ≤ 1 is

equal to

O(1)

∫ 1

0

(
h

α + t

)N
dV (t) =

(
h

α

)N
VN(α) (16.3.38) upc.30.2.5
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upc5.4 Remark 16.3.6 The choice of 1 as the upper bound of integration was some-
what arbitrary. If we replace it by a fixed constant θ ∈]0, 1[, then VN changes
by a quantity which is O(1)αN(V (1)− V (θ)).

The contribution to (
upc.29
16.3.34) from the region s(x, ξ) > 1 is O(hN2) times

some negative power of |=w| for every N2. In conclusion, we have

upc5.6 Proposition 16.3.7 We have for all N, Ñ > 0,

‖RN‖tr ≤ O(1)h−n

((
h

α

)N
VN(α) + hÑ

)
|=w|−M(N). (16.3.39) upc.31

From (
upc.26
16.3.31), we get

(w − 1

α
S)−1 = EN − (w − 1

α
S)−1RN .

Quantize and use the functional Cauchy-Riemann formula (sometimes car-
rying the names of Dynkin and/or Helffer–Sjöstrand, cf.

DiSj99
[40]):

χ(
1

α
S) = − 1

π

∫
∂χ̃

∂w
(w − 1

α
S)−1L(dw), (16.3.40) upc.31c

where χ ∈ C∞0 (R) and χ̃ ∈ C∞0 (C) is an almost holomorphic extension. We
get

χ(
1

α
S) = − 1

π

∫
∂χ̃

∂w
ENL(dw) +

1

π

∫
∂χ̃

∂w
(w − 1

α
S)−1RNL(dw) =: I + II.

(16.3.41) upc.32

From (
upc.31
16.3.39), (

upc.32
16.3.41) and the fact that ∂χ̃/∂w is in C∞0 and vanishes

to infinite order on the real axis, we get

‖II‖tr = O(1)h−n

((
h

α

)N
VN(α) + hÑ

)
.

It remains to study the term I and for that we return to the expression
(
upc.24.5
16.3.27) for (the symbol of) EN (in local coordinates). Here z = αw and we

get

EN =
1

w − s
α

∑
β

∑
k,`≥0

∑
γ1+..γk+

δ1+..+δ`=(β,β)

Cβ,γ,δh
|β|∂

γ1( s
α

)

w − s
α

..
∂γk( s

α
)

w − s
α

∂δ1( h
α
s−1)

w − s
α

..
∂δ`( h

α
s−1)

w − s
α
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The contribution from the general term to the symbol of I is

− Cβ,γ,δ
π

∫
∂χ̃(w)

∂w

1

(w − s
α

)1+k+`
L(dw)h|β|∂γ1(

s

α
)...∂γk(

s

α
)∂δ1(

h

α
s−1)...∂δ`(

h

α
s−1)

= C̃β,γ,δχ
(k+`)(

s

α
)h|β|∂γ1(

s

α
)...∂γk(

s

α
)∂δ1(

h

α
s−1)...∂δ`(

h

α
s−1).

(16.3.42) upc.33

When β = 0, ` = 0, we have Cβ,γ,δ = 1 and we get χ( s
α

). For every N ∈ N,
the general term belongs to the symbol class

SΛ

((
Λ2

α

)−N+k
h|β|

Λ|γ1|+..+|γk|

(
h

α

)`)
.

Here, we notice that |γ1| + ...|γk| ≤ 2|β| and since h ≤ α, Λ ≥ α1/2 we
conclude that the general term (

upc.33
16.3.42) belongs to(

h

α

)|β|+`
SΛ

((
Λ2

α

)−N+k
)
.

The trace class norm of the contribution from (
upc.33
16.3.42) to I is bounded

by

O(1)h−n
(
h

α

)|β|+` ∫ 1

0

(
1 +

t

α

)−(N−k)

dV (t)

≤ O(1)h−n
(
h

α

)|β|+`
VN/2(α),

where we used that N can be chosen ≥ 2k.
Summing up we have proved that for all N, Ñ > 0,

upc6 Proposition 16.3.8 Let χ ∈ C∞0 (R). For 0 < h ≤ α ≤ 1/2, we have

‖χ(
1

α
S)‖tr = O(1)h−n(VN(α) + hÑ), (16.3.43) upc.34

trχ(
1

α
S) =

1

(2πh)n

∫∫
χ(
s(x, ξ)

α
)dxdξ +O(h−n)

h

α
(VN(α) + hÑ). (16.3.44) upc.35

upc7 Remark 16.3.9 Using simple h-pseudodifferential calculus (for instance as
in the appendix of

Sj08b
[132], we see that if we redefine S as follows

S = P ∗z Pz, (16.3.45) upc.35.5
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then in each local coordinate chart, S = Oph(S), where S ≡ smodS1,0(h〈ξ〉−1)
and s is now redefined as

s(x, ξ) =

(
|p(x, ξ)− z|
|p̃(x, ξ)− z|

)2

. (16.3.46) upc.36

The discussion goes through without any changes (now with m = 0) and we
still have Proposition

upc6
16.3.8 with the new choice of S, s and the corresponding

redefinition of V (t), now restricted to 0 ≤ t ≤ 1/2. Notice here that if Vnew

denotes this new function, then for some C ≥ 1, we have

1

C
V (

t

C
) ≤ Vnew(t) ≤ CV (Ct), 0 ≤ t� 1.

In the remainder of this section, we choose S, s as in (
upc.35.5
16.3.45), (

upc.36
16.3.46).

In this case S is a trace class perturbation of the identity, whose symbol is
1 +O(h∞/〈ξ〉∞) and similarly for all its derivatives, in a region |ξ| ≥ Const.

Let 0 ≤ χ ∈ C∞0 ([0,∞[) with χ(0) > 0 and let α0 > 0 be small and fixed.
From standard pseudodifferential calculus in the spirit of

MeSj02
[103], we know that

ln det(S + α0χ(
1

α0

S)) =
1

(2πh)n
(

∫∫
ln(s+ α0χ(

1

α0

s))dxdξ +O(h)).

(16.3.47) upc.37

Extend χ to be an element of C∞0 (R; C) in such a way that t+ χ(t) 6= 0
for all t ∈ R. Then (cf

HaSj08
[55]), we use that

d

dt
ln(E + tχ(

E

t
)) =

1

t
ψ(
E

t
), (16.3.48) upc.39

where

ψ(E) =
χ(E)− Eχ′(E)

E + χ(E)
, (16.3.49) upc.39.5

so that ψ ∈ C∞0 (R). By standard functional calculus for self-adjoint opera-
tors and the classical identity

d

dt
ln(detAt) = trA−1

t

d

dt
At

for differentiable trace class perturbations of the identity1, we have

d

dt
ln det(S + tχ(

S

t
)) = tr

1

t
ψ(
S

t
). (16.3.50) upc.40

1 (
nonsa.20.5
8.4.7) extends to the case when A0 and A1 are trace class operators as in Section

trdet
8.4

and the identity is valid for finite rank perturbations of the identity. By Taylor expansion
and partitions of unity we can approximate a C1 family At of trace class perturbations

of the identity with a sequence of such perturbations A
(ν)
t such that A

(ν)
t → At uniformly

in C1 and similarly for the derivatives (on any given compact interval) and such that

N (A
(ν)
t )⊥∪R(A

(ν)
t ⊂ H(ν) where H(ν) is independent of t and of finite dimension. It then

suffices to pass to the limit.
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Using (
upc.35
16.3.44) (now with S as in that equation), we get for t ≥ α ≥ h > 0:

d

dt
ln det(S+tχ(

1

t
S)) =

1

(2πh)n

(∫∫
1

t
ψ(
s

t
)dxdξ +O(1)

h

t2
VN(t) +O(hÑ)

)
.

Integrating this from t = α0 to t = α and using (
upc.37
16.3.47), (

upc.39
16.3.48), we get

ln det(S + αχ(
1

α
S)) =

1

(2πh)n

(∫∫
ln(s+ αχ(

s

α
))dxdξ +O(h+

∫ α0

α

h

t2
V (t)dt)

)
.

(16.3.51) upc.41

In fact, this follows from an estimation of:∫ α0

α

h

t2
VN(t)dt =

∫ α0

α

h

t2

∫ 1

0

1

(1 + s
t
)N
dV (s)dt

=

∫ 1

0

J(s)dV (s),

(16.3.52) upc.41a

where

J(s) =

∫ α0

α

h

t2
tN

(t+ s)N
dt =

h

s

∫ α0/s

α/s

t̃N

(t̃+ 1)N
t̃−2dt̃.

Considering separately the three cases, α/s � 1, α/s � 1, α/s � 1, we see
that

J(s) � h

max(α, s)
.

Thus the term (
upc.41a
16.3.52) is

�
∫ 1

0

h

max(α, s)
dV (s) =

h

1
V (1) +

∫ 1

α

h

s2
V (s)ds

and (
upc.41
16.3.51) follows.

Write ∫∫
ln(s(x, ξ) + αχ(

s(x, ξ)

α
))dxdξ −

∫∫
ln s(x, ξ)dxdξ

=

∫ α

0

∫∫
1

t
ψ(
s

t
)dxdξdt =

∫ α

0

∫ 1

0

1

t
ψ(
σ

t
)dV (σ)dt

≤ O(1)

∫ α

0

∫ 1

0

(1 +
σ

t
)−NdV (σ)

dt

t
= O(1)

∫ α

0

1

t
VN(t)dt.

Here we may notice that for t ≤ 1/2:

VN(t) =

∫ 1

0

(1 +
σ

t
)−NdV (σ) ≥

∫ t

0

(1 +
σ

t
)−NdV (σ) ≥ 2−NV (t).

Combining the above computation with (
upc.41
16.3.51), we get
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upc8 Proposition 16.3.10 If 0 ≤ χ ∈ C∞0 ([0,∞[), χ(0) > 0, we have uniformly
for 0 < h ≤ α� 1

ln det(S + αχ(
1

α
S)) =

1

(2πh)n
(

∫∫
ln s(x, ξ)dxdξ +O(1)(h+

∫ α

0

VN(t)
dt

t
+

∫ α0

α

h

t
V (t)

dt

t
)).

(16.3.53) upc.42

16.4 Subharmonicity and symplectic volume
sh

Recall that Pz is defined by (
upc.2
16.3.2) and has the semi-classical principal

symbol
pz(ρ) = (p̃(ρ)− z)−1(p− z), z ∈ Ω.

In section
upc
16.3 we encountered the function

φ(z) =

∫∫
ln |pz(x, ξ)|dxdξ =

1

2

∫∫
ln sz(x, ξ)dxdξ. (16.4.1) sh.1

We also considered the function

V (t) = Vz(t) =

∫∫
|p(x,ξ)−z|2≤t

dxdξ, (16.4.2) sh.2

and the closely related one

Ṽz(t) =

∫∫
|pz(x,ξ)|2≤t

dxdξ, (16.4.3) sh.3

These two functions will be used only for small values of t and they are
equivalent in the sense that

1

C
Vz(

t

C
) ≤ Ṽz(t) ≤ CVz(Ct), 0 ≤ t ≤ 1/C, z ∈ Ω, (16.4.4) sh.4

for some C � 1.
For κ ∈]0, 1] consider the property that

Vz(t) = O(tκ), 0 ≤ t� 1. (16.4.5) sh.5

recall that 2m is the order of the elliptic differential operator P .

sh1 Proposition 16.4.1 (
sh.5
16.4.5) holds uniformly for z ∈ Ω when κ = 1

2m
.
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Proof. Because of the ellipticity , the set of points where |p(x, ξ)− z| ≤ 1 is
contained in a fixed compact set in T ∗X, independent of z, that we can cover
by finitely many sets of the form T ∗Uj, j = 1, 2, ..., N0, where Uj are local
coordinates charts that we can identify with open bounded subsets of Rn.
On each such T ∗Uj we know that ξn 7→ p(x, ξ)− z is a polynomial of degree
2m with leading term aj(x)ξ2m

n , aj(x) 6= 0. By the standard factorization of
this polynomial;

p(x, ξ)− z = aj(x)(ξn − λ1(x, ξ′, z))...(ξn − λ2m(x, ξ′, z)),

we see that
L({ξn ∈ R; |p(x, ξ)− z| ≤ t1/2}) = O(1)t

1
2m

uniformly for x ∈ Uj, ξ′ ∈ Rn−1, where now L denotes the Lebesgue measure
on the real line. The result then follows from Fubini’s theorem. 2

sh2 Proposition 16.4.2 The function φ(z), defined in (
sh.1
16.4.1) is continuous

and subharmonic on Ω. Moreover,

∆φ(z)

2π
L(dz) = p∗(dxdξ), (16.4.6) sh.6

where the right hand side is defined to be the direct image under the symbol
map: T ∗X 3 (x, ξ) 7→ p(x, ξ) ∈ C of the symplectic volume element dxdξ
(that we also denote dρ, ρ = (x, ξ)).

Proof. The property (
sh.5
16.4.5) for some κ > 0 (here with κ = 1/(2m))

implies that the integral (
sh.1
16.4.1) converges. Moreover, with 0 ≤ χ ∈ C∞0 (R),

χ(0) > 0,

φ(z) = lim
α→0

1

2

∫∫
ln(sz(x, ξ) + αχ(

sz(x, ξ)

α
))dxdξ,

where the convergence is locally uniform, so that φ(z) is the locally uniform
limit of continuous functions and hence continuous.

Next pz(ρ) = (p̃(ρ)− z)−1(p(ρ)− z), where the first factor is holomorphic
and non-vanishing for z ∈ Ω, so

∆z ln |pz(ρ)| = ∆z ln |p(ρ)− z| = 2πδ(z − p(ρ)).

If ψ ∈ C∞0 (Ω), we get∫
(∆zφ(z))ψ(z)L(dz) =

∫
φ(z)∆zψ(z)L(dz)

=

∫
T ∗X

∫
C

ln |pz(ρ)|∆zψ(z)L(dz)dρ =

∫
T ∗X

∫
C

∆z(ln |pz(ρ)|)ψ(z)L(dz)dρ

= 2π

∫
T ∗X

∫
C

δ(z − p(ρ))ψ(z)L(dz)dρ = 2π

∫
T ∗X

ψ(p(ρ))dρ,
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which shows (
sh.6
16.4.6). 2

16.5 Extension of the bounds to the perturbed

case
pc

For s > n/2, we consider the perturbed operator

Pδ = P + δ(h
n
2 q1 + q2) = P + δ(Q1 +Q2) = P + δQ, (16.5.1) pc.1

where qj ∈ Hs(X),

‖q1‖Hs
h
≤ 1, ‖q2‖Hs ≤ 1, 0 ≤ δ � 1. (16.5.2) pc.2

According to Propositions
al1
16.2.1,

al4
16.2.4, Q = O(1) : Hs

h → Hs
h and hence by

duality and interpolation,

Q = O(1) : Hσ
h → Hσ

h , −s ≤ σ ≤ s. (16.5.3) pc.3

Let P̃δ := Pδ + P̃ −P . Here (P̃ −z)−1 = O(1) : Hσ
h → Hσ

h for −s ≤ σ ≤ s
and using (

pc.1
16.5.1), (

pc.3
16.5.3) and the fact that 0 ≤ δ � 1, we get the same

conclusion for (P̃δ − z)−1. The spectrum of Pδ in Ω is discrete and from
Remark

dwe1.5
14.1.2 it follows that it coincides with the set of zeros of

det((P̃δ − z)−1(Pδ − z)) = det(1− (P̃δ − z)−1(P̃ − P )), (16.5.4) pc.4

Put

Pδ,z := (P̃δ − z)−1(Pδ − z) = 1− (P̃δ − z)−1(P̃ − P ) =: 1−Kδ,z, (16.5.5) pc.5

Sδ := (Pδ − z)∗(Pδ − z), (16.5.6) pc.6

Sδ,z := P ∗δ,zPδ,z = 1− (Kδ,z +K∗δ,z −K∗δ,zKδ,z) =: 1− Lδ,z. (16.5.7) pc.7

Then
Kδ,z, Lδ,z = O(1) : H−sh → Hs

h. (16.5.8) pc.8

Observe that

‖Kδ,z‖tr ≤ ‖(P̃δ − z)−1‖‖P̃ − P‖tr ≤ O(h−n), ‖Lδ,z‖tr ≤ O(h−n). (16.5.9) pc.9

We shall extend Proposition
upc6
16.3.8, Remark

upc7
16.3.9 and Proposition

upc8
16.3.10

to the perturbed case for δ ≥ 0 small enough.
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As in Proposition
upc6
16.3.8, let χ ∈ C∞0 ([0,+∞[) and let χ̃ ∈ C∞0 (C) be an

almost holomorphic extension of χ. Then, working in the parameter range
0 < h ≤ α� 1, we have

χ(α−1Sδ) = − 1

π

∫
(w − Sδ)−1 1

α
(∂zχ̃)(

w

α
)L(dw). (16.5.10) pc.10

This is not obviously of trace class for all values of s, n, m, so we make a
modification: We can find 0 ≤ ψ ∈ C∞0 (T ∗X) such that

|p(x, ξ)− z|2 + ψ(x, ξ) ≥ 1

C
〈ξ〉2m, on T ∗X

for all z ∈ Ω. Let ψ = ψ(x, hDx) denote also a corresponding self-adjoint
quantization. Then for h > 0 small enough,

(P − z)∗(P − z) + ψ ≥ 1

C
〈hD〉2m.

Now,
Sδ = S0 + δQ∗(P − z) + (P − z)∗δQ+ δ2Q∗Q, (16.5.11) pc.10.5

so for δ, h small enough, we get

Sδ + ψ ≥ 1

2C
〈hD〉2m.

In particular, (Sδ+ψ−w)−1 exists and is uniformly bounded for w in a small
neighborhood of 0 ∈ C. On the other hand,

(w − Sδ)−1 = (w − (Sδ + ψ))−1 − (w − Sδ)−1ψ(w − (Sδ + ψ))−1. (16.5.12) pc.11

When inserting this in (
pc.10
16.5.10) the first term gives the contribution zero

since it is holomorphic in a neighborhood of 0, and we get

χ(α−1Sδ) =
1

π

∫
(w − Sδ)−1ψ(w − (Sδ + ψ))−1 1

α
(∂zχ̃)(

w

α
)L(dw), (16.5.13) pc.12

which is of trace class, since ψ is.
Differentiating this relation with respect to δ, we get

∂

∂δ
χ(α−1Sδ) =

1

π

∫
(w − Sδ)−1Ṡδ(w − Sδ)−1ψ(w − (Sδ + ψ))−1 1

α
(∂zχ̃)(

w

α
)L(dw)

+
1

π

∫
(w − Sδ)−1ψ(w − (Sδ + ψ))−1Ṡδ(w − (Sδ + ψ))−1 1

α
(∂zχ̃)(

w

α
)L(dw),

(16.5.14) pc.13
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where

Ṡδ =
∂

∂δ
Sδ = Q∗(P − z) + (P − z)∗Q+ 2δQ∗Q = O(1) : Hσ+m

h → Hσ−m
h .

From (
pc.10.5
16.5.11) it follows that Sδ = S0 + R, where R = O(δ) : Hσ+m

h →
Hσ−m
h , −s ≤ σ ≤ s. If w0 belongs to some compact set in C that is disjoint

from R it follows that for δ small enough, w0 − Sδ : Hσ+m
h → Hσ−m

h is
bijective for −s ≤ σ ≤ s. In fact,

w0 − Sδ = w0 − S0 −R = (w0 − S0)(1− (w0 − S0)−1R),

and we see that (w0 − S0)−1 = O(1) : Hσ−m
h → Hσ+m

h , so (w0 − S0)−1R =
O(δ) : Hσ+m

h → Hσ+m
h and hence

(w0 − Sδ)−1 = (1− (w0 − S0)−1R)−1(w0 − S0)−1 = O(1) : Hσ−m
h → Hσ+m

h ,

as claimed.
Let w belong to a bounded set in C disjoint from R. Iterating the resol-

vent identity, we have

(w − Sδ)−1 =(w0 − Sδ)−1 + (w0 − w)(w0 − Sδ)−2 + ...

+ (w0 − w)2N−1(w0 − Sδ)−2N + (w0 − w)2N(w − Sδ)−1(w0 − Sδ)−2N .

The last term can also be written in a sandwiched form as

(w0 − w)2N(w0 − Sδ)−N(w − Sδ)−1(w0 − Sδ)−N .

For N large enough, we have

(w0 − Sδ)−N = O(1) :

{
Hσ−m
h → H0,

H0 → Hσ+m
h ,

and since (w − Sδ)−1 = O(|=w|−1) : H0 → H0, we conclude that

(w − Sδ)−1 = O(|=w|−1) : Hσ−m
h → Hσ+m

h . (16.5.15) pc.25

Similarly, with ψ as in (
pc.11
16.5.12), positive on a sufficiently large set de-

pending on the bounded set where we let w vary,

(w − (Sδ + ψ))−1 = O(1) : Hσ−m
h → Hσ+m

h . (16.5.16) pc.26

Using also that ‖ψ‖tr = O(h−n), (∂zχ̃)(w/α) = ON((|=w|/α)N) for all
N ≥ 0 and choosing σ = 0, we see that the trace norm of the first integral
in (

pc.13
16.5.14) is

O(1)

∫
|w|≤O(α)

|=w|−2h−n
1

α

(
|=w|
α

)N
L(dw),
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while the second integral satisfies the better bound with the exponent −2
replaced by −1. Choosing N = 2, we get

‖ ∂
∂δ
χ(α−1Sδ)‖tr = O(1)α−1h−n. (16.5.17) pc.14

Integrating this “from 0 to δ” and applying Proposition
upc6
16.3.8, we get

pc1 Proposition 16.5.1 Let χ ∈ C∞0 (R). For 0 < h ≤ α� 1, we have

‖χ(α−1Sδ)‖tr ≤ O(1)h−n(VN(α) + hÑ +
δ

α
), (16.5.18) pc.15

trχ(α−1Sδ) =
1

(2πh)n

∫∫
χ(
s(x, ξ)

α
)dxdξ +O(1)h−n(VN(α) + hÑ +

δ

α
),

(16.5.19) pc.16

where s(x, ξ) = |p(x, ξ)− z|2.

We next extend Remark
upc7
16.3.9 to the perturbed case. Recall the expres-

sions for Kδ,z and Lδ,z in (
pc.5
16.5.5), (

pc.7
16.5.7) and also (

pc.9
16.5.9). We have

K̇δ,z = −(z − P̃δ)−1Q(z − P̃δ)−1(P̃ − P ), (16.5.20) pc.17

so
‖K̇δ,z‖ ≤ O(1), ‖K̇δ,z‖tr ≤ O(h−n), (16.5.21) pc.18

since ‖Q‖ = O(1). Here the dot indicates derivation with respect to δ. It
follows that

‖Ṡδ,z‖tr ≤ O(h−n). (16.5.22) pc.19

With χ ∈ C∞0 (R), we get

∂

∂δ
χ(α−1Sδ,z) = − 1

π

∫
(w − Sδ,z)−1Ṡδ,z(w − Sδ,z)−1 1

α
(∂zχ̃)(

w

α
)L(dw),

(16.5.23) pc.20

which again leads to

‖ ∂
∂δ
χ(α−1Sδ,z)‖tr = O(1)α−1h−n (16.5.24) pc.21

and combining this with Remark
upc7
16.3.9, we get

pc2 Proposition 16.5.2 Proposition
pc1
16.5.1 remains valid if we replace (Sδ, s)

with (Sδ,z, sz) where

sz(x, ξ) =
|p(x, ξ)− z|2

|p̃(x, ξ)− z|2
.
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Finally, we shall extend Proposition
upc8
16.3.10 to the perturbed case. Let

0 ≤ χ ∈ C∞0 ([0,∞[), χ(0) > 0. Put

f(t) = t+ αχ(
t

α
) =: t+ g(t), g = gα ∈ C∞0 .

For 0 < h ≤ α� 1, we have

f(Sδ,z) = Sδ,z −
1

π

∫
(w − Sδ,z)−1∂g̃(w)L(dw).

From this we see that

∂

∂δ
f(Sδ,z) = Ṡδ,z −

1

π

∫
(w − Sδ,z)−1Ṡδ,z(w − Sδ,z)−1∂g̃(w)L(dw).

Now,

∂

∂δ
ln det f(Sδ,z) = tr f(Sδ,z)

−1 ∂

∂δ
f(Sδ,z) =

tr (f(Sδ)
−1Ṡδ)−

1

π

∫
tr (f(Sδ,z)

−1(w − Sδ,z)−1Ṡδ,z(w − Sδ,z)−1)∂g̃(w)L(dw).

Here f(Sδ,z)
−1 and (w−Sδ,z)−1 commute, so by the cyclicity of the trace and

an integration by parts, we see that the last term is equal to

tr (f(Sδ,z)
−1 (−1)

π

∫
(w − Sδ,z)−2∂wg̃(w)L(dw)Ṡδ,z)

= tr (f(Sδ,z)
−1 (−1)

π

∫
(w − Sδ,z)−1∂w∂wg̃(w)L(dw)Ṡδ,z)

= tr (f(Sδ,z)
−1g′(Sδ,z)Ṡδ,z),

leading to the general identity

∂

∂δ
ln det f(Sδ,z) = tr (f(Sδ,z)

−1f ′(Sδ,z)Ṡδ,z).

With the above choice of f we have f|[0,+∞[
≥ α/C, so ‖f(Sδ,z)

−1‖ ≤ C/α.

Moreover, f ′ = O(1), so ‖f ′(Sδ,z)‖ = O(1). Using also (
pc.19
16.5.22), we conclude

that
∂

∂δ
ln det f(Sδ,z) = O(α−1h−n).

Integrating from 0 to δ and using Proposition
upc8
16.3.10, we get
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pc3 Proposition 16.5.3 If 0 ≤ χ ∈ C∞0 ([0,+∞[), χ(0) > 0, we have uniformly
for 0 < h ≤ α� 1:

ln det(Sδ,z + αχ(α−1Sδ,z)) =

1

(2πh)n

(∫∫
ln sz(x, ξ)dxdξ +O(1)

(∫ α

0

VN(t)
dt

t
+

∫ α0

α

h

t
V (t)

dt

t
) +

δ

α
+ h

))
.

We end the section with some remarks about Hs-properties of eigenfunc-
tions for low lying eigenvalues of Sδ and Sδ,z, here under the only assumption
on δ that 0 ≤ δ � 1.

We start with Sδ. Let 0 ≤ t21 ≤ t22 ≤ ... denote the increasing sequence
of eigenvalues of Sδ, repeated according to their multiplicity and with tj ≥
0. Let e1, e2, ... be a corresponding orthonormal family of eigenfunctions.
Proposition

pc1
16.5.1 shows that

N0 := #{k; t2k ≤ 1/2} ≤ O(h−n) (16.5.25) pc.22

pc4 Proposition 16.5.4 Under the assumptions above we have

‖
N0∑
1

λjej‖Hs+m
h
≤ Os(1)‖

−→
λ ‖`2 , (16.5.26) pc.23

where
−→
λ =

(
λ1 λ2 ... λN0

)t
.

Proof. Using (
pc.25
16.5.15), (

pc.26
16.5.16) in (

pc.12
16.5.13) with α = 1, we see that for

every χ ∈ C∞0 (R),

χ(Sδ) = O(1) : H−s−mh → Hs+m
h . (16.5.27) pc.27

(We choose the set where ψ > 0 sufficiently large depending on the support of
χ and of its almost holomorphic extension and use that ψ = O(1) : H−s+mh →
Hs−m
h .)

Let χ ≥ 0 be equal to 1 on [0, 1/2], so that χ(Sδ)(
∑N0

1 λjej) =
∑N0

1 λjej.
Using only that χ(Sδ) = O(1) : H0 → Hs+m

h , we get (
pc.23
16.5.26). 2

Next consider Sδ,z in (
pc.7
16.5.7). From (

pc.17
16.5.20), the fact that P̃ − P =

O(1) : Hs1
h → Hs2

h , ∀s1, s2 and the observation after (
pc.4
16.5.4), we see that

K̇δ,z = O(1) : H−s−mh → Hs+m
h and by duality and the explicit formula for

Lδ,z, we get the same facts for K̇∗δ,z and L̇δ,z. Thus, Ṡδ,z = O(1) : H−s−mh →
Hs+m
h and since 0 ≤ δ � 1, we conclude that

Sδ,z = S0,z +Rδ,z, Rδ,z = O(1) : H−s−mh → Hs+m
h .
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We then apply the sandwiched resolvent identity,

(w − Sδ,z)−1 =(w − S0,z)
−1 + (w − S0,z)

−1Rδ,z(w − S0,z)
−1

+ (w − S0,z)
−1Rδ,z(w − Sδ,z)−1Rδ,z(w − S0,z)

−1,
(16.5.28) pc.24

to get for χ ∈ C∞0 ([0, 3/4[):

χ(Sδ,z) = χ(S0,z)−
1

π

∫
(w − S0,z)

−1Rδ,z(w − S0,z)
−1∂χ̃(w)L(dw)

= − 1

π

∫
(w − S0,z)

−1Rδ,z(w − Sδ,z)−1Rδ,z(w − S0,z)
−1∂χ̃(w)L(dw).

Here χ(S0,z) is an h-pseudodifferential operator of order 0 in h and of order
−∞ in ξ, so χ(S0,δ) = O(1) : H−s−mh → Hs+m

h . Each of the two integrals
define operators that are O(1) : H−s−mh → Hs+m

h . In fact, (w − S0,z)
−1 =

O(|=w|−1) : Hσ
h → Hσ

h for every real σ.
This is the analogue of (

pc.27
16.5.27) and completing the discussion as at the

end of the proof of Proposition
pc4
16.5.4, we get

pc5 Proposition 16.5.5 Proposition
pc4
16.5.4 remains valid if we let e1, ..., eN0

(still with N0 = O(h−n)) be an orthonormal family of eigenfunctions cor-
responding to the spectrum of Sδ,z in [0, 1/2].
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Chapter 17

Proof II: lower bounds

Chlb

17.1 Singular values and determinants of cer-

tain matrices associated to δ potentials
inv

As in Chapter
Chub
16, let X be a compact smooth manifold of dimension n,

equipped with a positive smooth density of integration dx. Let e1(x), ..., eN(x)
be continuous functions on X (and observe that the discussion will remain
valid if we replace X by a compact subset with non-empty interior and
smooth boundary). We would like to find a continuous function q : X → C
such that the matrix Mq = (Mq;j,k)1≤j,k≤N , given by

Mq;j,k =

∫
X

q(x)ej(x)ek(x)dx,

has nice lower bounds for its singular values. In the present section, we shall
achieve such a goal when q is replaced by a sum of Dirac masses of the form
δa =

∑N
1 δ(x − aj) for a suitable a = (a1, a2, ..., aN) ∈ XN . Notice that

Mδa = (Mj,k) where

Mj,k =
N∑
ν=1

ej(aν)ek(aν) (17.1.1) inv.0.7

and that
M = E ◦ Et, (17.1.2) inv.8

where
E = (ej(ak))1≤j,k≤N .
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If we introduce the column vectors

−→e (x) =


e1(x)
e2(x)
..
..

eN(x)

 ∈ CN ,

then E = (−→e (a1)−→e (a2) ...−→e (aN)).

inv4 Lemma 17.1.1 Let M ∈ [1, N ] be an integer and let L ⊂ CN be a linear
subspace of dimension M−1, for some 1 ≤M ≤ N . Then there exists x ∈ X
such that

dist (−→e (x), L)2 ≥ 1

vol (X)
tr ((1− πL)EX). (17.1.3) inv.3

Here EX = ((ej|ek)L2(X))1≤j,k≤N is the Gramian of (e1, ..., eN) and πL denotes
the orthogonal projection from CN onto L.

Proof. Let ν1, ..., νN be an orthonormal basis in CN such that L is spanned
by ν1, ..., νM−1 (and equal to 0 when M = 1). Let (·| · ·) denote the usual
scalar product on CN and let (·| · ·)X be the scalar product on L2(X). Write

ν` =


ν1,`

..

..
νN,`

 .

We have

dist (−→e (x), L)2 =
N∑

`=M

|(−→e (x)|ν`)|2

=
N∑

`=M

|
∑
j

ej(x)νj,`|2

=
N∑

`=M

∑
j,k

νj,`ej(x)ek(x)νk,`.

It follows that∫
X

dist (−→e (x), L)2dx =
N∑

`=M

(EXν`|ν`) = tr ((1− πL)EX).
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It then suffices to estimate the integral from above by

vol (X) max
x∈X

dist (−→e (x), L)2.

2

If we make the assumption that

e1, ..., eN is an orthonormal family in L2(X), (17.1.4) inv.1

then EX = 1 and (
inv.3
17.1.3) simplifies to

max
x∈X

dist (−→e (x), L)2 ≥ N −M + 1

vol (X)
. (17.1.5) inv.3.5

In the general case, let 0 ≤ ε1 ≤ ε2 ≤ ... ≤ εN denote the eigenvalues of
EX . Then we have

inf
dimL=M−1

tr ((1− πL)EX) = ε1 + ε2 + ...+ εN−M+1 =: EM . (17.1.6) inv.1.6

Indeed, the min-max principle shows that

εk = inf
dimL′=k

sup
ν∈L′
‖ν‖=1

(EXν|ν),

so for a general subspace L of dimension M − 1, the eigenvalues of (1 −
πL)EX(1− πL) are ε′1 ≤ ... ≤ ε′N−M+1, with ε′j ≥ εj.

Now, we can use the lemma to choose successively a1, ..., aN ∈ X such
that

‖−→e (a1)‖2 ≥ E1

vol (X)
,

dist (−→e (a2),C−→e (a1))2 ≥ E2

vol (X)
,

...

dist (−→e (aM),C−→e (a1)⊕ ...⊕C−→e (aM−1))2 ≥ EM
vol (X)

,

...

Let ν1, ν2, ..., νN be the Gram-Schmidt orthonormalization of the basis
−→e (a1),−→e (a2), ...,−→e (aN), so that

−→e (aM) ≡ cMνM mod (ν1, ..., νM−1), where |cM | ≥
(

EM
vol (X)

) 1
2

. (17.1.7) inv.4
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Recall that E is the N ×N matrix with the columns −→e (aj). Expressing
these vectors in the basis ν1, ..., νN will not change the absolute value of the
determinant and E now becomes an upper triangular matrix with diagonal
entries c1, ..., cN . Hence

| detE| = |c1 · ... · cN |, (17.1.8) inv.6

and (
inv.4
17.1.7) implies that

| detE| ≥ (E1E2...EN)1/2

(vol (X))N/2
. (17.1.9) inv.7

We now return to M in (
inv.0.7
17.1.1), (

inv.8
17.1.2). Then detM = (detE)2, so

| detM | ≥ E1E2...EN
vol (X)N

. (17.1.10) inv.10.5

Under the assumption (
inv.1
17.1.4), this simplifies to

| detM | ≥ N !

vol (X)N
. (17.1.11) inv.11

It will also be useful to estimate the singular values s1(M) ≥ s2(M) ≥
... ≥ sN(M) of the matrix M (by definition the decreasing sequence of eigen-

values of the matrix (M∗M)
1
2 ). Clearly,

sN1 ≥ sk−1
1 sN−k+1

k ≥
N∏
1

sj = | detM |, 1 ≤ k ≤ N, (17.1.12) inv.11.1

and we recall that
s1 = ‖M‖. (17.1.13) inv.11.2

Combining (
inv.10.5
17.1.10) and (

inv.11.1
17.1.12), we get

inv5 Proposition 17.1.2 Under the above assumptions,

s1 ≥
(E1...EN)

1
N

vol (X)
, (17.1.14) inv.11.2.5

sk ≥ s1

(
N∏
1

(
Ej

s1vol (X)

)) 1
N−k+1

. (17.1.15) inv.11.3
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17.2 Singular values of matrices associated to

suitable admissible potentials
cl

We shall now carry over the results of the preceding section to potentials
that are linear combinations of eigenfunctions of the auxiliary operator h2R̃.
Recall the definition of εk, µk, in Section

al
16.2; R̃εk = (µ0

k)
2εk, µk = hµ0

k. Also
recall that D#{k; µk ≤ L} = O(〈L〉n/2/hn) by Weyl asymptotics for elliptic
self-adjoint operators on a compact manifold.

spe01 Definition 17.2.1 An admissible potential is a potential of the form

q(x) =
∑

0<µk≤L

αkεk(x), α ∈ CD. (17.2.1) cl.1

Here we shall take another step in the construction of an admissible potential
q for which the singular values of P + δq satisfy nice lower bounds. More
precisely, we shall approximate δ-potentials in H−s with admissible ones
and then apply the results of the preceding section. Let us start with the
approximation. Recall that s > n/2 + ε, ε > 0 in (

rp.4
15.2.5).

spe02 Proposition 17.2.2 Let a ∈ X. Then ∃αk ∈ C, 1 ≤ k < ∞, such that for
L ≥ 1, there exists r ∈ H−s such that

δa(x) =
∑
µk≤L

αkεk + r(x), (17.2.2) cl.7

where
‖r‖H−sh ≤ Cs,εL

−(s−n
2
−ε)h−

n
2 , (17.2.3) cl.9

(
∑
|αk|2)

1
2 ≤ 〈L〉

n
2

+ε(
∑
µk≤L

〈µk〉−2(n
2

+ε)|αk|2)
1
2 ≤ CL

n
2

+εh−
n
2 . (17.2.4) cl.12

Proof. Observe first that

‖δa‖H−sh = O(1)‖〈hξ〉−s‖L2 = Os(1)h−
n
2 . (17.2.5) cl.6.5

In general, if u ∈ H−s1(X̃), then by Proposition
al2
16.2.2 and the subsequent

observation (where s was arbitrary) we have

u =
∞∑
1

αkεk,
∑
〈µk〉−2s1|αk|2 � ‖u‖2

H
−s1
h

.
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Thus, if s > s1 > n/2:

u =
∑
µk≤L

αkεk + r, (17.2.6) cl.6.7

where

‖r‖2
H−sh
�
∑
µk>L

〈µk〉−2s|αk|2 ≤ CL−2(s−s1)‖u‖2

H
−s1
h

, (17.2.7) cl.6.8

(
∑
µk≤L

|αk|2)
1
2 ≤ 〈L〉s1(

∑
µk≤L

〈µk〉−2s1|αk|2)
1
2 ≤ CLs1‖u‖2

H
−s1
h

. (17.2.8) cl.11

In particular, when u = δa get the proposition by taking s1 = ε+ n/2. 2

Let Pδ be as in (
pc.1
16.5.1), (

pc.2
16.5.2). Let 0 < h ≤ α ≤ 1/2, and let t21 ≤

t22 ≤ ... ≤ t2Nα be the eigenvalues of P ∗δ Pδ in [0, α[ with tj > 0. We call tj
the singular values of Pδ, arranged in increasing order. Let e1, ..., eNα be a
corresponding system of eigenfunctions. From (

pc.15
16.5.18), we know that

Nα ≤ O(1)h−n(VN(α) + hÑ +
δ

α
),

but for the moment we will only use that Nα ≤ N1 ≤ O(h−n) (when δ ≤ α).
Let a = (a1, ..., aNα) ∈ XNα and put

qa(x) =
Nα∑
1

δaj(x), (17.2.9) spe.01

Mqa;j,k =

∫
qa(x)ek(x)ej(x)dx, 1 ≤ j, k ≤ Nα. (17.2.10) spe.02

We lighten the notation by writing N instead of Nα, when possible. Then
using (

al.2
16.2.2), (

pc.23
16.5.26), and the fact that ‖qa‖H−sh = O(1)Nh−n/2, we get

for all λ, µ ∈ CN ,

〈Mqaλ|µ〉 =

∫
qa(x)(

∑
λkek)(

∑
µjej)dx = O(1)Nh−n‖λ‖‖µ‖

and hence
s1(Mqa) = ‖Mqa‖L(CN ,CN ) = O(1)Nh−n. (17.2.11) spe.03

We now choose a so that (
inv.11.2.5
17.1.14), (

inv.11.3
17.1.15) hold, where we recall that

s1 ≥ s2 ≥ ... ≥ sN are the singular values of Mqa and Ej is defined in
(
inv.1.6
17.1.6), where 0 ≤ ε1 ≤ ε2 ≤ ... ≤ εN are the eigenvalues of the Gramian
EX = ((ej|ek)L2(X))1≤j,k≤N .
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Since {ej} is an orthonormal system,

Ej = N − j + 1. (17.2.12) spe.04

Then (
inv.11.2.5
17.1.14) gives the lower bound

s1 ≥
(N !)

1
N

vol (X)
= (1 +O(

lnN

N
))

N

e vol (X)
, (17.2.13) spe.05

where the last identity follows from Stirling’s formula.
Rewriting (

inv.11.3
17.1.15) as

sk ≥ s
− k−1
N−k+1

1

(
N∏
1

Ej
vol (X)

) 1
N−k+1

,

and using (
spe.03
17.2.11), we get

sk ≥
1

C
k−1

N−k+1 (vol (X))
N

N−k+1

(
hn

N

) k−1
N−k+1

(N !)
1

N−k+1 . (17.2.14) spe.06

Summing up, we get

spe1 Proposition 17.2.3 There exist a1, ..., aN ∈ X, with N = Nα defined above,
such that if qa =

∑N
1 δ(x − aj) and Mqa;j,k =

∫
qa(x)ek(x)ej(x)dx, then the

singular values s1 ≥ s2 ≥ ... ≥ sN of Mqa, satisfy (
spe.03
17.2.11), (

spe.05
17.2.13) and

(
spe.06
17.2.14).

We shall next approximate qa with an admissible potential. Apply Propo-
sition

spe02
17.2.2 to each δ-function in qa, to see that

qa = q + r, q =
∑
µk≤L

αkεk, (17.2.15) spe.4

where
‖q‖H−sh ≤ Ch−

n
2N, (17.2.16) spe.4.5

‖r‖Hh−s ≤ CεL
−(s−n

2
−ε)h−

n
2N, (17.2.17) spe.5

(
∑
|αk|2)

1
2 ≤ CL

n
2

+εh−
n
2N. (17.2.18) spe.6

In order to estimate Mr, we write

〈Mrβ|γ〉 =

∫
r(x)(

∑
βkek)(

∑
γjej)dx,
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so that
|〈Mrβ|γ〉| ≤ C‖r‖H−sh h−

n
2 ‖
∑

βkek‖Hs
h
‖
∑

γjej‖Hs
h
.

Applying (
pc.23
16.5.26) to the last two factors, we get with a new constant C > 0:

|〈Mrβ|γ〉| ≤ C‖r‖H−sh h−
n
2 ‖β‖‖γ‖,

so
‖Mr‖ ≤ Ch−

n
2 ‖r‖H−sh . (17.2.19) spe.7

Using (
spe.5
17.2.17), we get for every ε > 0

‖Mr‖ ≤ CεL
−(s−n

2
−ε)h−nN. (17.2.20) spe.8

For the admissible potential q in (
spe.4
17.2.15), we thus obtain from (

spe.06
17.2.14),

(
spe.8
17.2.20) and the fact that sk(Mq) ≥ sk(Mδa)− ‖Mr‖:

sk(Mq) ≥
1

C
k−1

N−k+1 (vol (X))
N

N−k+1

(
hn

N

) k−1
N−k+1

(N !)
1

N−k+1 −CεL−(s−n
2
−ε)h−nN.

(17.2.21) spe.9

Similarly, from (
spe.03
17.2.11), (

spe.8
17.2.20) we get for L ≥ 1:

‖Mq‖ ≤ CNh−n. (17.2.22) spe.10

Using Proposition
al2
16.2.2 and the subsequent observations, we get for all

s1 > n/2,

‖q‖Hs
h
≤ O(1)(

∑
µk≤L

〈µk〉2s|αk|2)
1
2

≤ O(1)(
∑
µk≤L

〈µk〉−2s1|αk|2)
1
2Ls+s1

≤ O(1)h−
n
2NLs+s1 ,

where we used (
spe.4.5
17.2.16) with s replaced with s1 in the last step. Thus for

every ε > 0,
‖q‖Hs

h
≤ O(1)NLs+

n
2

+εh−
n
2 , ∀ε > 0. (17.2.23) spe.11

Summing up, we have obtained

spe2 Proposition 17.2.4 We can find an admissible potential q as in (
spe.4
17.2.15),

(
spe.6
17.2.18) such that the matrix Mq, defined by

Mq;j,k =

∫
qekejdx,

satisfies (
spe.9
17.2.21), (

spe.10
17.2.22). Moreover the Hs

h-norm of q satisfies (
spe.11
17.2.23).

Here N ≤ O(h−n) is the number of singular values of Pδ in [0, α1/2[ and we
assume that δ ≤ α.
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Notice also that if we choose R̃ with real coefficients, then we can choose
q real-valued.

17.3 Appendix: Grushin problems and sin-

gular values
grp

We mainly consider the case of an unbounded operator

P = P0 + V,

where P0 is an elliptic differential operator on X and V ∈ L∞(X). The
underlying Hilbert space is H = L2(X) = H0 and we will mainly view P as
an operator from Hm to H0. The dual of Hm is H−m and we shall keep in
mind the variational point of view with the triple

Hm ⊂ H0 ⊂ H−m.

Consider 2 = P ∗P : Hm → H−m. For u ∈ Hm, we have

(2u|u) = ‖Pu‖2 ≥ 0. (17.3.1) grp.1

grp1 Proposition 17.3.1 If w ∈]0,+∞[, then 2 + w : Hm → H−m is bijective
with bounded inverse.

Proof. The injectivity is clear since ((2+w)u|u) = w‖u‖2 +‖Pu‖2, u ∈ Hm

and combining this with the standard elliptic apriori estimate, ‖u‖Hm ≤
C(‖Pu‖+ ‖u‖), we get

‖u‖2
Hm ≤ C(w)((2 + w)u|u),

implying
‖u‖Hm ≤ C(w)‖(2 + w)u‖H−m .

From this estimate and the fact that 2∗ = 2, when we take the adjoint in
the sense of bounded operators Hm → H−m, it is standard to get the desired
conclusion. 2

Notice that when P is injective, then by ellipticity and compactness, we
have (2u|u) ≥ 1

C
‖u‖2 for some C > 0 and we get the conclusion of the

proposition also when w = 0.
The operator (2 + w)−1 : H−m → Hm induces a compact self-adjoint

operator H0 → H0. The range consists of all u ∈ Hm such that Pu ∈ Hm.
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The spectral theorem for compact self-adjoint operators tells us that there is
an orthonormal basis of eigenfunctions, e1, e2, ... in H0 such that

(2 + w)−1ej = µ2
j(w)ej, (17.3.2) grp.2

where 0 < µj ↘ 0 when j → +∞. Clearly ej ∈ Hm, Pej ∈ Hm, so we can
apply 2 + w to (

grp.2
17.3.2) and get

(2 + w)ej = µj(w)−2ej, (17.3.3) grp.3

which we write as
2ej = (µj(w)−2 − w)ej. (17.3.4) grp.4

Here µj(w)−2 − w = (2ej|ej) ≥ 0, so we have found an orthonormal basis
e1, e2, ... ∈ H0 with ej, P ej ∈ Hm such that

2ej = t2jej, 0 ≤ tj ↗ +∞. (17.3.5) grp.5

It is easy to check that t2j are independent of w, that ej can be chosen
independent of w, and we have

µj(w)2 =
1

t2j + w
.

From Proposition
grp
17.3 and its proof we know that 2 + w is self-adjoint

as a bounded operator: Hm → H−m. Consider 2 as a closed unbounded
operator 2sa : L2 → L2 with domain, D(2sa) = {u ∈ Hm; 2u ∈ L2}. Then
D(2sa) = (2 + w)−1L2, which is dense in (2 + w)−1H−m = Hm and hence
dense in L2. 2sa (or equivalently 2sa +w) is closed: If (2sa +w)uj = vj, uj →
u, vj → v in L2, then vj → v in H−m, uj → u in Hm, hence (2+w)u = v and
since v ∈ L2, we get u ∈ Dsa. Similar arguments show that 2sa is self-adjoint.
We also know that 2sa has a purely discrete spectrum and that {ej}∞j=1 is an
orthonormal basis of eigenfunctions.

We have the max-min principle

t2j = sup
codimL=j−1

inf
u∈L,
‖u‖=1

(2u|u), (17.3.6) grp.6

where L varies in the set of closed subspaces of H0 that are also contained
in Hm. Similarly from (

grp.3
17.3.3), we have the mini-max principle

µ2
j = inf

codimL=j−1
sup
v∈L
‖v‖=1

((2 + w)−1v|v), (17.3.7) grp.7
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where L varies in the set of closed subspaces of H0. When 0 6∈ σ(P ), so that
P : Hm → H0 is bijective, we can extend (

grp.7
17.3.7) to the case w = 0 and

then, as we have seen, µj(0)2 = t−2
j .

Now assume,

P : Hm → H0 is a Fredholm operator of index 0. (17.3.8) grp.8

The discussion above applies also to PP ∗ when P is viewed as an operator
H0 → H−m so that P ∗ : Hm → H0. Put

2̃ = PP ∗ : Hm → H−m.

Then as in (
grp.5
17.3.5) we have an orthonormal basis f1, f2, ... inH

0 with fj, P
∗fj ∈

Hm such that
2̃fj = t̃2jfj, 0 ≤ t̃j ↗ +∞. (17.3.9) grp.9

grp2 Proposition 17.3.2 We have t̃j = tj and we can choose fj so that

Pej = tjfj, P
∗fj = tjej. (17.3.10) grp.10

Proof. We have N (2) = N (P ), N (2̃) = N (P ∗) when P and P ∗ are viewed
as operators Hm → H0. Notice however that by elliptic regularity, the kernel
of P ∗ : H0 = H−m is the same as the one of P ∗ : Hm → H0. Since P is
Fredholm of index 0, the kernels of P and P ∗ have the same dimension, and
consequently

dimN (2) = dimN (2̃).

Let t20 = t2j0 be a non-vanishing eigenvalue of 2 of multiplicity k0, so that

tj0−1 < tj0 = ... = tj0+k0−1 < tj0+k0

for some j0, k0 ∈ N∗ and with the convention that the first inequality is
absent when j0 = 1. If 0 6= u ∈ N (2 − t20), we know that u, Pu ∈ Hm,
Pu 6= 0 and we notice that

2̃Pu = P2u = t2jPu in H−m.

Thus v := Pu ∈ Hm is non-zero and satisfies

2̃v = t2jv,

so P gives an injective map from N (2− t20) into N (2̃− t20).
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By the same argument P ∗ is injective from N (2̃ − t20) to N (2 − t20) so
the two spaces have the same dimension. It follows that t̃j = tj for all j.

Let ej, j0 ≤ j ≤ j0 + k0 − 1 be an orthonormal basis for N (2 − t20) and
put fj = t−1

0 Pej ∈ N (2̃− t20). Then

(fj|fk) = t−2
0 (Pej|Pek) = t−2

0 (2ej|ek) = δj,k,

so fj, j0 ≤ j ≤ j0 + k0 − 1 form an orthonormal basis for N (2̃ − t20). Also
notice that

P ∗fj = t−1
0 P ∗Pej = t0ej,

and we get (
grp.10
17.3.10) in the non-trivial case when tj 6= 0. 2

Write tj(P ) = tj so that tj(P
∗) = tj by the proposition. When P has

a bounded inverse let s1(P−1) ≥ s2(P−1) ≥ ... be the singular values of the
inverse (as a compact operator in L2). We have

sj(P
−1) =

1

tj(P )
. (17.3.11) grp.11

Let 1 ≤ N < ∞ and let R+ : Hm → CN , R− : CN → H0 be bounded
operators. Assume that

P =

(
P R−
R+ 0

)
: Hm ×CN → H0 ×CN (17.3.12) grp.12

is bijective with a bounded inverse

E =

(
E E+

E− E−+

)
(17.3.13) grp.13

Recall that P has a bounded inverse precisely when E−+ has, and when
this happens we have the relations,

P−1 = E − E+E
−1
−+E−, E−1

−+ = −R+P
−1R−. (17.3.14) grp.14

Recall (
GoKr69
[49] and Proposition

nonsa2
8.2.2) that if A,B : H1 → H2 and C : H2 → H3

are bounded operators where Hj are complex Hilbert spaces, then we have
the general estimates,

sn+k−1(A+B) ≤ sn(A) + sk(B), (17.3.15) grp.15

sn+k−1(CA) ≤ sn(C)sk(A), (17.3.16) grp.16

in particular for k = 1, we get

sn(CA) ≤ ‖C‖sn(A), sn(CA) ≤ sn(C)‖A‖, sn(A+B) ≤ sn(A) + ‖B‖.
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Applying this to the second part of (
grp.14
17.3.14), we get

sk(E
−1
−+) ≤ ‖R−‖‖R+‖sk(P−1), 1 ≤ k ≤ N

implying
tk(P ) ≤ ‖R−‖‖R+‖tk(E−+), 1 ≤ k ≤ N. (17.3.17) grp.17

By a perturbation argument, we see that this holds also in the case when P ,
E−+ are non-invertible.

Similarly from the first part of (
grp.14
17.3.14), we get

sk(P
−1) ≤ ‖E‖+ ‖E+‖‖E−‖sk(E−1

−+),

leading to

tk(P ) ≥ tk(E−+)

‖E‖tk(E−+) + ‖E+‖‖E−‖
. (17.3.18) grp.18

Again this can be extended to the non-necessarily invertible case by means
of small perturbations.

Generalizing Section
1dmgr
3.2 (as in

HaSj08
[55]), we get a natural construction of an

associated Grushin problem to a given operator. Let P = P 0 : Hm → H0

be a Fredholm operator of index 0 as above. Choose N so that tN+1(P 0) is
strictly positive. In the following we sometimes write tj instead of tj(P

0) for
short.

Recall that t2j are the first eigenvalues both for P 0∗P 0 and P 0P 0∗. Let
e1, ..., eN and f1, ..., fN be corresponding orthonormal systems of eigenvectors
of P 0∗P 0 and P 0P 0∗ respectively. They can be chosen so that

P 0ej = tjfj, P
0∗fj = tjej. (17.3.19) grp.19

Define R+ : L2 → CN and R− : CN → L2 by

R+u(j) = (u|ej), R−u− =
N∑
1

u−(j)fj. (17.3.20) grp.20

It is easy to see that the Grushin problem{
P 0u+R−u− = v,
R+u = v+,

(17.3.21) grp.21

has a unique solution (u, u−) ∈ L2 ×CN for every (v, v+) ∈ L2 ×CN , given
by {

u = E0v + E0
+v+,

u− = E0
−v + E0

−+v+,
(17.3.22) grp.22
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where {
E0

+v+ =
∑N

1 v+(j)ej, E0
−v(j) = (v|fj),

E0
−+ = −diag (tj), ‖E0‖ ≤ 1

tN+1
.

(17.3.23) grp.23

E0 can be viewed as the inverse of P 0 as an operator from the orthogonal
space (e1, e2, ..., eN)⊥ to (f1, f2, ..., fN)⊥.

We notice that in this case, the norms of R+ and R− are equal to 1, so
(
grp.17
17.3.17) tells us that tk(P

0) ≤ tk(E
0
−+) for 1 ≤ k ≤ N , but of course the

expression for E0
−+ in (

grp.23
17.3.23) implies equality.

Let Q ∈ L(H0, H0) and put P δ = P 0 − δQ (where we sometimes put a
minus sign in front of the perturbation for notational convenience). We are
particularly interested in the case when Q = Qωu = qu is the operator of
multiplication with a function q. Here δ > 0 is a small parameter. Choose
R± as in (

grp.20
17.3.20). Then if δ < tN+1 and ‖Q‖ ≤ 1, the perturbed Grushin

problem {
P δu+R−u− = v,
R+u = v+,

(17.3.24) grp.24

is well posed and has the solution{
u = Eδv + Eδ

+v+,
u− = Eδ

− + Eδ
−+v+,

(17.3.25) grp.25

where

Eδ =

(
Eδ Eδ

+

Eδ
− Eδ

−+

)
(17.3.26) grp.26

is obtained from E0 by

Eδ = E0

(
1− δ

(
QE0 QE0

+

0 0

))−1

. (17.3.27) grp.27

Using the Neumann series, we get

Eδ
−+ = E0

−+ + E0
−δQ(1− E0δQ)−1E0

+

= E0
−+ + δE0

−QE
0
+ + δ2E0

−QE
0QE0

+ + δ3E0
−Q(E0Q)2E0

+ + ...
(17.3.28) grp.28

We also get

Eδ = E0(1− δQE0)−1 = E0 +
∞∑
1

δkE0(QE0)k, (17.3.29) grp.29

Eδ
+ = (1− E0δQ)−1E0

+ = E0
+ +

∞∑
1

δk(E0Q)kE0
+, (17.3.30) grp.30
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Eδ
− = E0

−(1− δQE0)−1 = E0
− +

∞∑
1

δkE0
−(QE0)k. (17.3.31) grp.31

The leading perturbation in Eδ
−+ is δM , where M = E0

−QE
0
+ : CN → CN

has the matrix
M(ω)j,k = (Qek|fj), (17.3.32) grp.32

which in the multiplicative case reduces to

M(ω)j,k =

∫
q(x)ek(x)fj(x)dx. (17.3.33) grp.33

Put τ0 = tN+1(P 0) and recall the assumption

‖Q‖ ≤ 1. (17.3.34) grp.34

Then, if δ ≤ τ0/2, the new Grushin problem is well posed with an inverse Eδ
given in (

grp.26
17.3.26)–(

grp.31
17.3.31). We get

‖Eδ‖ ≤ 1

1− δ
τ0

‖E0‖ ≤ 2

τ0

, ‖Eδ
±‖ ≤

1

1− δ
τ0

≤ 2, (17.3.35) grp.35

‖Eδ
−+ − (E0

−+ + δE0
−QE

0
+)‖ ≤ δ2

τ0

1

1− δ
τ0

≤ 2
δ2

τ0

. (17.3.36) grp.36

Using this in (
grp.17
17.3.17), (

grp.18
17.3.18) together with the fact that tk(E

δ
−+) ≤ 2τ0

1,
we get

tk(E
δ
−+)

8
≤ tk(P

δ) ≤ tk(E
δ
−+). (17.3.37) grp.37

17.4 Lower bounds on the small singular val-

ues for suitable perturbations
sv

Let P, p be as in (
upo.1
15.1.1)–(

upo.8
15.1.8). Fix z ∈ Ω. Our unperturbed operator

will be as in (
pc.1
16.5.1)–(

pc.3
16.5.3), where we change the notations slightly:

P0 = P + δ0Q0, 0 ≤ δ0 � 1,

Q0 = O(1) : Hσ
h → Hσ

h uniformly for − s ≤ σ ≤ s.
(17.4.1) sv.1

1indeed,

tk(Eδ−+) ≤ tk(Eδ−+) + ‖Eδ−+ − E0
−+‖ ≤ tk(E0

−+) + δ + 2
δ2

τ0

≤ tk(E0
−+) + 2δ ≤ tk(E0

−+) + τ0 ≤ 2τ0,
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We also assume that Q0 is the operator of multiplication with a potential, so
that P0 also satisfies the symmetry assumption (

upo.7
15.1.7). Proposition

pc1
16.5.1

gives:

sv1 Proposition 17.4.1 For 0 < h ≤ α � 1, the number N0(α1/2) of eigenval-
ues of (P0 − z)∗(P0 − z) in [0, α] satisfies

N0(α1/2) = ON,Ñh
−n(VN(α) + hÑ +

δ0

α
). (17.4.2) sv.5

We can get a slightly different and more interesting bound when δ0/α is
not very small: Recall the max-min formula (cf (

grp.6
17.3.6))

tj(P0 − z) = sup
codimL=j−1

inf
u∈L
‖u‖=1

‖(P0 − z)u‖

and the similar one for tj(P − z). Now, ‖(P0 − z)u‖ ≥ ‖(P − z)u‖ − δ0‖Q0‖
when ‖u‖ = 1. Thus (which can also be viewed as a special case of the Ky
Fan inequalities),

tj(P0 − z) ≥ tj(P − z)− δ0‖Q0‖.

In particular, if tj(P0− z) ≤ α1/2, then tj(P − z) ≤ α1/2 + δ0‖Q0‖, leading to

N0(α1/2) ≤ N(α1/2 + δ0‖Q0‖),

where the right hand side denotes the number of singular values of P − z in
[0, α1/2+δ0‖Q0‖], or equivalently the number of eigenvalues of (P−z)∗(P−z)
in [0, (α1/2 + δ0‖Q0‖)2]. Combining this with Proposition

sv1
17.4.1 for δ0 there

equal to 0 and assuming that ‖Q‖ ≤ 1 for simplicity, we get

sv2 Proposition 17.4.2 For all M, Ñ > 0,

N0(α1/2) ≤ OM,Ñ(1)h−n(VM((α1/2 + δ0)2 + hÑ).

This is of interest when δ0 ≤ α1/2.
Assume from now on that

0 ≤ δ0 ≤ h
1
2 . (17.4.3) sv.6

Choose τ0 ∈]0, h1/2], α = h and let N = N0(τ0),

N ≤ O(1)(hM−n + h−nVM(4h)) =: M0 (17.4.4) sv.7

be the number of singular values of P0 − z in [0, τ0[, labeled in increasing
order so that 0 ≤ t1(P0 − z) ≤ ... ≤ tN(P0 − z) < τ0 ≤ tN+1(P0 − z) and
let e1, e2, ..., eN be an associated family of eigenfunctions of (P0− z)∗(P − z).
Fix θ ∈]0, 1/4[.
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sv3 Proposition 17.4.3 If q is an admissible potential as in (
cl.1
17.2.1) with L ≥

1, then
‖q‖∞ ≤ Ch−

n
2 ‖q‖Hs

h
≤ C̃h−

n
2Ls|α|. (17.4.5) sv.8

If N is sufficiently large, there exists an admissible potential q as in
(
cl.1
17.2.1) such that

a)

|α| ≤ L
n
2

+εh−
n
2N,

‖q‖Hs
h
≤ O(1)h−

n
2NLs+

n
2

+ε.
(17.4.6) sv.9

L �M
1

s−n2−ε
0 h

− 2n
s−n2−ε . (17.4.7) sv.10

b) The conclusion of Proposition
spe2
17.2.4 applies to q, so (

spe.9
17.2.21), (

spe.10
17.2.22)

hold.
Put Pδ = P0 + δq, 0 ≤ δ � 1 . Then

c)
tν(Pδ − z) ≥ tν(P0 − z)− Cδh−nL

n
2

+ε+sN, ν ≥ 1;

d) There exists N2 > 0 depending only on n, s, ε, that we can choose arbi-
trarily large, such that if δ = Cτ0h

N2−n, C � 1, then either for q above or
for q = 0, we have,

tν(Pδ) ≥ τ0h
N2 , 1 + [(1− θ)N ] ≤ ν ≤ N. (17.4.8) sv.10.5

Here [x] = sup(]−∞, x] ∩ Z) denotes the integer part of x ∈ R.
When N belongs to a bounded interval, a)–d) are still valid, if we restrict

ν in (
sv.10.5
17.4.8) to the value ν = N .

Since N ≤M0 . h−n, we get from (
sv.9
17.4.6), (

sv.10
17.4.7) that

L . h−Mmin , Mmin :=
3n

s− n
2
− ε

,

|α| ≤ R := h−
3n
2 h−(n

2
+ε)Mmin ,

corresponding to the minimal orders of magnitude in (
rp.4
15.2.5).

Proof. We choose q as in Proposition
spe2
17.2.4 so that (

sv.8
17.4.5), (

sv.9
17.4.6) follow

from (
spe.6
17.2.18) and the estimates leading to (

spe.11
17.2.23). Then we also have

(
spe.9
17.2.21) and we choose L large enough to guarantee that the first term to

the right is dominant for 1 ≤ k ≤ N/2: We have for such k:

sk(Mq) ≥
1

C

hn

N
(N !)

1
N − CεL−(s−n

2
−ε) N

hn
.
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By Stirling’s formula we have (N !)1/N ≥ N/Const, so we get with a new
constant C > 0:

sk(Mq) ≥
hn

C
− CεL−(s−n

2
−ε) N

hn
, 1 ≤ k ≤ N

2
. (17.4.9) sv.11

Thus,

sk(Mq) ≥
hn

2C
, (17.4.10) sv.12

provided that Ls−
n
2
−ε � Nh−2n. In view of (

sv.7
17.4.4), this is achieved with a

sufficiently large L satisfying (
sv.10
17.4.7).

We have then verified all the statements up to and including b). c) follows
from the max-min description of tν(Pδ) and the fact that

‖q‖∞ ≤ Ch−nL
n
2

+ε+sN. (17.4.11) sv.12.5

Let e1, ..., eN be an orthonormal family of eigenfunctions corresponding
to tν(P0 − z), so that

(P0 − z)∗(P0 − z)ej = (tj(P0 − z))2ej. (17.4.12) sv.13

Using the symmetry assumption (
upo.7
15.1.7) which extends to P0, we see that a

corresponding orthonormal family of eigenfunctions of (P0 − z)(P0 − z)∗ is
given by

f̃j = Γej. (17.4.13) sv.14

If the non-vanishing tj are not all distinct it is not immediately clear that

we can arrange so that f̃j = fj as in (
grp.10
17.3.10) (with P replaced by P0), but

we know that f̃1, ..., f̃N and f1, ..., fN are orthonormal families that span the
same space FN . Let EN be the span of e1, ..., eN . Then

(P0 − z) : EN → FN and (P0 − z)∗ : FN → EN (17.4.14) sv.15

have the same singular values 0 ≤ t1 ≤ t2 ≤ ... ≤ tN .
Define R+ : L2 → CN , R− : CN → L2 by

R+u(j) = (u|ej), R−u− =
N∑
1

u−(j)f̃j. (17.4.15) sv.16

Then

P =

(
P0 − z R−
R+ 0

)
: Hm

h ×CN → L2 ×CN (17.4.16) sv.17

has a bounded inverse

E =

(
E0 E0

+

E0
− E0

−+

)
.
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Since we do not necessarily have (
grp.10
17.3.10) we cannot say that E0

−+ = diag (tj),
only that E0

−+ is unitarily equivalent to diag (tj), but the singular values of
E0
−+ are given by tj(E

0
−+) = tj(P0 − z), 1 ≤ j ≤ N, or equivalently by

sj(E
0
−+) = tN+1−j(P0 − z), for 1 ≤ j ≤ N . We here follow the convention of

using the letter s for labelling the singular values in decreasing order and t
for the increasing order.

We will apply Section
grp
17.3, and recall that N is assumed to be sufficiently

large and that θ has been fixed in ]0, 1/4[. Since z is fixed it will also be
notationally convenient to assume that z = 0. We consider two cases.

Case 1. sj(E
0
−+) ≥ 8τ0h

N2 , for 1 ≤ j ≤ N − [(1− θ)N ]. Then from (
grp.37
17.3.37)

we get the conclusion in d) with q = 0, Pδ = P0.

Case 2.

sj(E
0
−+) < 8τ0h

N2 for some j such that 1 ≤ j ≤ N − [(1− θ)N ]. (17.4.17) sv.18

From (
spe.10
17.2.22) and the fact that N ≤M0 in (

sv.7
17.4.4) we get

s1(Mq) ≤ ‖Mq‖ ≤ CM0h
−n. (17.4.18) sv.19

Put

Pδ = P0 + δq = P0 + δ̃Q,

δ̃ = δCh−nL
n
2

+ε+sM0, Q = δq/δ̃, ‖Q‖ ≤ 1,
(17.4.19) sv.20

where the last estimate comes from (
sv.12.5
17.4.11). Then, if δ̃ ≤ τ0/2, we can

replace P0 by Pδ in (
sv.17
17.4.16) and we still have a well-posed problem with

inverse as in (
grp.25
17.3.25)–(

grp.31
17.3.31), satisfying (

grp.35
17.3.35)–(

grp.37
17.3.37) with Qω = Q

as above and with δ replaced by δ̃. Here E0
−QE

0
+ = Mq/(Ch

−nL
n
2

+ε+sM0)
and according to (

sv.12
17.4.10), we have with a new constant C

sk(δE
0
−qE

0
+) = sk(δ̃E

0
−QE

0
+) ≥ δhn

C
, 1 ≤ k ≤ N

2
. (17.4.20) sv.21

Playing with the general estimate (
grp.15
17.3.15), we get

sν(A+B) ≥ sν+k−1(A)− sk(B)

and for a sum of three operators

sν(A+B + C) ≥ sν+k+`−2(A)− sk(B)− s`(C).

We apply this to E δ̃
−+ in (

grp.36
17.3.36) and get

sν(E
δ̃
−+) ≥ sν+k−1(δ̃E0

−QE
0
+)− sk(E0

−+)− 2
δ̃2

τ0

. (17.4.21) sv.22
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Here we use (
sv.18
17.4.17), (

sv.21
17.4.20) with j = k = N − [(1 − θ)N ], to get for

ν ≤ N − [(1− θ)N ]

sν(E
δ̃
−+) ≥ δhn

C
− 8τ0h

N2 − 2
δ̃2

τ0

. (17.4.22) sv.23

Recall that θ < 1
4

and that δ̃ is given in (
sv.20
17.4.19). The first term to the right

dominates when

δhn � τ0h
N2 , δhn � δ̃2

τ0

, (17.4.23) sv.24

i.e. when

τ0h
N2−n � δ � τ0

h3n

Ln+2ε+2sM2
0

, (17.4.24) sv.25

where the last member is

� τ0
h

3n+2nn+2ε+2s
s−n2−ε

M
2+n+2ε+2s

s−n2−ε
0

by (
sv.10
17.4.7) and M0 ≤ O(h−n) by (

sv.7
17.4.4), so the last member of (

sv.25
17.4.24) is

≥ τ0h
N3/O(1) for some N3 = N3(n, s, ε) > 0 that can be explicitly computed.

It suffices to choose N2 > N3 + n and we have a non-empty range of δ
satisfying (

sv.25
17.4.24). In particular we can take δ = Cτ0h

N2−n for some large
enough C.

Then we get from (
sv.23
17.4.22)

sν(E
δ̃
−+) ≥ 8τ0h

N2 , 1 ≤ ν ≤ N − [(1− θ)N ].

Equivalently, for tν(E
δ̃
−+) = sN+1−ν(E

δ̃
−+) we get

tν(E
δ̃
−+) ≥ 8τ0h

N2 , 1 + [(1− θ)N ] ≤ ν ≤ N. (17.4.25) sv.26

From (
sv.26
17.4.25) and (

grp.37
17.3.37), we get (

sv.10.5
17.4.8).

When N = O(1), we still get (
sv.23
17.4.22) with ν = k = 1 and this gives the

last statement. 2

The conclusion of c) in the proposition (which of course is valid also when
we take q = 0 in d)) implies that with the choice of δ as in d), we have

tν(Pδ) ≥ tν(P0)− τ0h
N2−K ,

for some K which depends only on n, s, ε. Choosing N2 sufficiently large, we
get tν(Pδ) ≥ tν(P0) − τ0h

N1 , where N1 > 0 can be chosen arbitrily large (if
we choose N2 sufficiently large).
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The construction can now be iterated. assume that N � 1 and re-
place (P0, N, τ0) by (Pδ, [(1 − θ)N ], τ0h

N2) =: (P (1), N (1), τ
(1)
0 ) and keep on,

using the same values for the exponents N1, N2. Then we get a sequence
(P (k), N (k), τ

(k)
0 ), k = 0, 1, ..., k(N), where the last value k(N) is determined

by the fact that N (k(N)) is of the order of magnitude of a large constant.
Moreover,

tν(P
(k)) ≥ τ

(k)
0 , N (k) < ν ≤ N (k−1), (17.4.26) sv.27

tν(P
(k+1)) ≥ tν(P

(k))− τ (k)
0 hN1 , ν > N (k), (17.4.27) sv.28

τ
(k+1)
0 = τ

(k)
0 hN2 , (17.4.28) sv.29

N (k+1) = [(1− θ)N (k)], (17.4.29) sv.30

P (0) = P0, N
(0) = N, τ

(0)
0 = τ0.

Here,

P (k+1) = P (k) + δ(k+1)q(k+1), δ(k+1) = Cτ
(k)
0 hN2−n, ‖q(k+1)‖Hs

h
≤ Ch−K .

Notice that N (k) decays exponentially fast with k:

N (k) ≤ (1− θ)kN, (17.4.30) sv.31

so we get the condition on k that (1− θ)kN ≥ C � 1 which gives,

k ≤
ln N

C

ln 1
1−θ

. (17.4.31) sv.32

We also have
τ

(k)
0 = τ0

(
hN2
)k
. (17.4.32) sv.33

For ν > N , we iterate (
sv.28
17.4.27), to get

tν(P
(k)) ≥ tν(P )− τ0h

N1
(
1 + hN2 + h2N2 + ...

)
≥ tν(P )− 2τ0h

N1 .
(17.4.33) sv.34

For 1 � ν ≤ N , let ` = `(N) be the unique value for which N (`) < ν ≤
N (`−1), so that

tν(P
(`)) ≥ τ

(`)
0 , (17.4.34) sv.35

by (
sv.27
17.4.26). If k > `, we get

tν(P
(k)) ≥ tν(P

(`))− 2τ
(`)
0 hN1 . (17.4.35) sv.36
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The iteration above works until we reach a value k = k0 = O(
ln N

C

ln 1
1−θ

)

for which N (k0) = O(1). After that, we continue the iteration further by
decreasing N (k) by one unit at each step.

Let k1 = O
(
ln(N

C
)/ ln( 1

1−θ )
)

+ O(1), be the last k-value we get in this
way. Then, by construction,

P (k1+1) = P0 +
(
δ(1)q(1) + ...+ δ(k1+1)q(k1+1)

)
P0 + δ

(
q(1) + hN2q(2) + ...+ hk1N2q(k1+1)

)
,

where δ = Cτ
(0)
0 hN2−n and q(j) satisfy (

sv.9
17.4.6), (

sv.10
17.4.7) uniformly. In particu-

lar, ‖q(k+1)‖Hs
h
≤ Ch−K and this also holds for q(1)+hN2q(2)+...+hk1N2q(k1+1).

Summing up the discussion so far, we have obtained

sv4 Proposition 17.4.4 Let P0, z, s > ε + n/2, ε > 0 be as in Proposition
sv3
17.4.3. Choose τ0 ∈]0, h1/2], so that the number N of singular values of
P0−z in [0, τ0[ satisfies (

sv.7
17.4.4). Let N2 > 0 be large enough so that (

sv.10
17.4.7)

holds. Let 0 < θ < 1
4

and let N(θ) � 1 be sufficiently large. Define N (k),
1 ≤ k ≤ k1 iteratively in the following way. As long as N (k) ≥ N(θ), we put
N (k+1) = [(1 − θ)N (k)], N (0) = N . Let k0 ≥ 0 be the last k value we get in
this way. For k > k0 put N (k+1) = N (k) − 1, until we reach the value k1 for
which N (k1) = 1.

Put τ
(k)
0 = τ0h

kN2, 1 ≤ k ≤ k1 + 1. Then there exists an admissible
potential q = qh(x) as in (

cl.1
17.2.1), satisfying (

sv.8
17.4.5)–(

sv.10
17.4.7), satisfying

(
spe.6
17.2.18), (

spe.11
17.2.23), such that if Pδ = P0 + δq, δ = Cτ0h

N2−n, we have the
following estimates on the singular values of Pδ − z:

• If ν > N (0), we have tν(Pδ − z) ≥ (1− hN2−K

C
)tν(P0 − z).

• If N (k) < ν ≤ N (k−1), 1 ≤ k ≤ k1, then tν(Pδ−z) ≥ (1−O(hN2−K))τ
(k)
0 .

• Finally, for ν = N (k1) = 1, we have t1(Pδ−z) ≥ (1−O(hN2−K))τ
(k1+1)
0 .

Here K = K(n, s, ε) is independent of the other parameters.

We shall now obtain the corresponding estimates for the singular val-
ues of Pδ,z = (P̃δ − z)−1(Pδ − z). Let e1, ..., eN be an orthonormal family

corresponding to the singular values tj(Pδ) in [0,
√
h[, put f̃j = ej and let

(Pδ − z)u+R−u− = v, R+u = v+

be the corresponding Grushin problem so that the solution operators fulfill

‖E‖ ≤ 1√
h
, ‖E±‖ ≤ 1, tj(E−+) = tj(Pδ−z) ≤

√
h, 1 ≤ j ≤ N. (17.4.36) sv.37
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In order to shorten the notation, we shall assume that z = 0. Put R̃− =
P̃−1
δ R−. Then the problem

Pδ,zu+ R̃−u− = v, R+u = v+,

is wellposed with the solution

u = Ẽv + Ẽ+v+, u− = Ẽ−v + Ẽ−+v+,

where

Ẽ = EP̃δ , Ẽ+ = E+

Ẽ− = E−P̃δ , Ẽ−+ = E−+.

Adapting the estimate (
grp.18
17.3.18) to our situation, we get

tk(Pδ,z) ≥
tk(Pδ)

‖EP̃δ‖tk(Pδ) + ‖E+‖‖E−P̃δ‖
, 1 ≤ k ≤ N, (17.4.37) sv.38

where we also recall that tk(Pδ) ≤
√
h.

Write

EP̃δ = EPδ + E(P̃ − P )

E−P̃δ = E−Pδ + E−(P̃ − P )

and use that

EPδ = 1− E+R+ = O(1) in L(L2, L2)

E−Pδ = −E−+R+ = O(
√
h) in L(L2, `2)

together with (
sv.37
17.4.36) and the fact that ‖P̃ − P‖ = O(1). It follows that

‖EP̃δ‖ = O(
1√
h

), ‖E−P̃δ‖ = O(1).

Using this in (
sv.38
17.4.37), we get

tk(Pδ,z) ≥
tk(Pδ)

C tk(Pδ)√
h

+ C
≥ tk(Pδ)

2C
, (17.4.38) sv.39

where used that tk(Pδ) ≤
√
h when 1 ≤ k ≤ N . Now the choice of N2 gives

us some margin and we can get rid of the effect of 2C and get for τ0 ∈]0,
√
h]:
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sv5 Proposition 17.4.5 Proposition
sv4
17.4.4 remains valid if we replace Pδ − z

there with Pδ,z.

We recall that by Proposition
pc3
16.5.3,

ln det(Sδ,z + αχ(α−1Sδ,z)) =

1

(2πh)n

(∫∫
ln sz(x, ξ)dxdξ +O(1)

(∫ α

0

VN(t)
dt

t
+

∫ α0

α

h

t
V (t)

dt

t
+
δ

α
+ h

))
,

when Pδ = P + δ(h
n
2 q1 + q2) = P + δQ and ‖q1‖Hs

h
, ‖q2‖Hs

1
≤ 1, 0 < h ≤

α� 1. Here 0 ≤ χ ∈ C∞0 ([0,+∞[), χ(0) > 0 and Sδ,z = (P̃δ − z)−1(Pδ − z).
We apply this with P0 = P in (

sv.1
17.4.1) and Pδ as in Proposition

sv4
17.4.4

and with δ above replaced by δ̃ in (
sv.20
17.4.19) so that Pδ = P + δ̃Q, Q = O(1) :

Hσ
h → Hσ

h for −s ≤ σ ≤ s. Thus we get

ln det(Sδ,z + αχ(α−1Sδ,z)) =

1

(2πh)n

(∫∫
ln sz(x, ξ)dxdξ +O(1)

(∫ α

0

VN(t)
dt

t
+

∫ α0

α

h

t
V (t)

dt

t
+
δ̃ + δ0

α
+ h

))
,

(17.4.39) sv.40

where δ̃ = δCh−nL
n
2

+ε+sM0 and M0 is given in (
sv.7
17.4.4), L is given in (

sv.10
17.4.7)

and δ is given in d) in Proposition
sv3
17.4.3. Notice that

δ̃

α
= O(hN2−Kτ0), (17.4.40) sv.40.5

where K is independent of N2.
Now choose α = h and set out to estimate ln detSδ,z. First we have the

upper bound
ln detSδ,z ≤ ln det(Sδ,z + αχ(α−1Sδ,z)),

which can be bounded from above by the right hand side of (
sv.40
17.4.39).

As for the lower bound, we use that

ln detSδ,z = ln det(Sδ,z+αχ(α−1Sδ,z))−
∞∑
1

ln

(
t2k + αχ(t2k/α)

t2k

)
, (17.4.41) sv.41

where 0 < t1 ≤ t2 ≤ ... are the singular values of Pδ,z, treated in Proposition
sv5
17.4.5. The last sum in (

sv.41
17.4.41) has at most finitely many non-vanishing

terms and is equal to
∑∞

1 ln(1 + αχ(t2k/α)t−2
k ). Assuming that 0 ≤ χ ≤ 1, it

can be bounded from above by∑
t2k∈αsuppχ

ln(1 + αt−2
k ) ≤ (#{k; t2k ≤ α sup suppχ}) ln(1 + αt−2

1 ). (17.4.42) sv.42
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Combining (
sv.39
17.4.38) with Proposition

sv2
17.4.2 (cf. (

sv.7
17.4.4)), we have for every

N > 0,

#{k; t2k ≤ α sup suppχ} ≤ ON(1)(hN−n + hnVN(Ch)). (17.4.43) sv.43

From Proposition
sv5
17.4.5 and the fact that k1 = O(ln(1/h)) we see that

t1 ≥ τ0h
N2O(1) ln 1

h ≥ τ0h
O(1) ln 1

h ,

so

t−2
1 ≤ τ−2

0

(
1

h

)O(1) ln 1
h

and hence

ln(1 + αt−2
1 ) ≤ O(1)

(
ln

1

h

)2

ln
1

τ0

,

which with (
sv.43
17.4.43), (

sv.42
17.4.42) gives

∑
t2k≤α sup suppχ

ln(1 + αt−2
k ) ≤ O(1)

(
ln

1

τ0

)(
ln

1

h

)2

(hN−n + h−nVN(Ch)).

(17.4.44) sv.44

Finally, (
sv.41
17.4.41), (

sv.40
17.4.39), (

sv.40.5
17.4.40) provide the lower bound for every N >

0,

ln detSδ,z ≥(2πh)−n
(∫∫

ln sz(x, ξ)dxdξ+

O(1)

(∫ h

0

VN(t)
dt

t
+

∫ α0

h

h

t
V (t)

dt

t

)
+O(τ0h

N2−K +
δ0

h
+ h)

)
−O(1)

(
ln

1

τ0

)(
ln

1

h

)2

(hN−n + h−nVN(Ch)).

(17.4.45) sv.45

Here we have chosen α = h in (
sv.40
17.4.39), motivated by the fact that

α 7→
∫ α

0

V (t)
dt

t
+

∫ α0

α

h

t
V (t)

dt

t

is minimal at α = h.
In the following, we assume that δ0 ≤ O(h2) and that N2 is large enough

so that

τ0h
N2−K +

δ0

h
≤ O(h). (17.4.46) sv.46
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17.5 Estimating the probability that detPδ,z is

small
pr

In this section we keep the assumptions on (P, z) of the beginning of Section
sv
17.4 and choose P0 as in (

sv.1
17.4.1) with 0 ≤ δ0 ≤ h2 as in (

res.1.3
15.3.4). As in the

preceding section, we consider perturbations of P0 of the form

Pδ = P0 + δq, δ = Cτ0h
N2−n, C � 1, (17.5.1) pr.1

where N2 ≥ N2(n, s, ε) and q is an admissible potential of the form (
cl.1
17.2.1):

q =
∑

0<µk≤L

αkεk, α ∈ CD, (17.5.2) pr.2

where ε1, ε2, ... is an orthonormal basis of eigenfunctions of the auxiliary op-
erator R̃ > 0 which a semi-classical elliptic differential operator with smooth
coefficients and R̃εk = µ2

kεk, µk ↗ +∞. We will assume that L ≥ 1 and
recall that

D := ]{k; µk ≤ L} = O((L/h)n) = O(h−N3), N3 = (M + 1)n.

Here we impose the following bounds on the sum in (
pr.2
17.5.2):

Lmin ≤ L ≤ h−M , Lmin = M
1

s−n2−ε
0 h

− 2n
s−n2−ε , (17.5.3) pr.3

|α| ≤ R, Rmin ≤ R ≤ h−M̃ , Rmin := L
n
2

+ε

min M0h
−n

2 . (17.5.4) pr.4

Recall from (
sv.7
17.4.4) that

M0 = hM−n + h−nVM(4h) ≤ O(h−n), (17.5.5) pr.5

and that the number N of singular values of Pδ − z in [0, τ0[ fulfills (
sv.7
17.4.4):

N ≤ O(1)M0, (17.5.6) pr.6

for any M > 0.
The main conclusion of the preceding section is that there exists q as in

(
cl.1
17.2.1) with L = Lmin, |α| ≤ Rmin, such that (

sv.45
17.4.45) holds.

We next review the upper bounds of Chapter
Chub
16 culminating in Proposi-

tion
pc3
16.5.3 that we apply with α = h, recalling that “δ” there refers to

sup
−s≤σ≤s

‖Pδ − P‖L(Hσ
h ,H

σ
h ).
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With the notations of the present chapter, we get for general q as in (
pr.2
17.5.2)–

(
pr.4
17.5.4):

ln det(Sδ,z) ≤
1

(2πh)n

(∫∫
ln sz(x, ξ)dxdξ +O(1)

(∫ h

0

VN(t)
dt

t
+

∫ α0

h

h

t
V (t)

dt

t

)
+O(1)

(
h+

δ

h
h−

n
2 ‖q‖Hs

h

))
.

(17.5.7) pr.7

Recall that δ is given in (
pr.1
17.5.1) and that

‖q‖Hs
h
≤ O(1)RLs ≤ O(1)h−M̃−sM ,

so (
pr.7
17.5.7) gives

ln det(Sδ,z) ≤
1

(2πh)n

(∫∫
ln sz(x, ξ)dxdξ +O(1)

(∫ h

0

VN(t)
dt

t
+

∫ α0

h

h

t
V (t)

dt

t

)
+O(1)

(
h+ τ0h

N2−n−1−n
2
−M̃−sM

))
(17.5.8) pr.8

and this still holds if we allow α to vary in the larger ball

|α|CD ≤ 2R = O(h−M̃). (17.5.9) pr.9

(Our probability measure will be supported in BCD(0, R) but we will need
to work in a larger ball.)

We consider the holomorphic function

F (α) = (detPδ,z) exp(− 1

(2πh)n

∫∫
ln |pz|dxdξ), (17.5.10) pr.10

where we recall that detSδ,z = | detPδ,z|2, sz(x, ξ) = |pz(x, ξ)|2 Then by
(
pr.8
17.5.8), we have

ln |F (α)| ≤ ε0(h)h−n, |α| < 2R, (17.5.11) pr.11

and for one particular value α = α0 with |α0| ≤ 1
2
R, corresponding to the

special potential in (
sv.45
17.4.45):

ln |F (α0)| ≥ −ε0(h)h−n, (17.5.12) pr.12
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where we put with C > 0 sufficiently large,

ε0(h)/C =∫ h

0

VN(t)
dt

t
+

∫ α0

h

h

t
V (t)

dt

t
+ h+ ln

1

τ0

(ln
1

h
)2(hN−n + VN(Ch))

+ τ0h
N2−K , (17.5.13) pr.13

for an arbitrary fixed N > 0. Here K is independent of the choice of N2 � 1.
Let α1 ∈ CD with |α1| = R and consider the holomorphic function of one

complex variable
f(w) = F (α0 + wα1). (17.5.14) pr.14

We will mainly consider this function for w in the disc Dα0,α1 = D(w0, r0)
determined by the condition |α0 + wα1| < R:

Dα0,α1 :

∣∣∣∣w +

(
α0

R
|α

1

R

)∣∣∣∣2 < 1−
∣∣∣∣α0

R

∣∣∣∣2 +

∣∣∣∣(α0

R
|α

1

R

)∣∣∣∣2 =: r2
0, (17.5.15) pr.15’

with center w0 = −(α0/R|α1/R) and radius r0 ∈ [
√

3/2,
√

5/2].
From (

pr.11
17.5.11), (

pr.12
17.5.12) we get

ln |f(0)| ≥ −ε0(h)h−n, ln |f(w)| ≤ ε0(h)h−n. (17.5.16) pr.16’

By (
pr.11
17.5.11), we may assume that the last estimate holds in a larger disc,

say D(−(α
0

R
|α1

R
), 2r0). Let w1, ..., wM be the zeros of f in D(−(α

0

R
|α1

R
), 3r0/2).

Then it is standard to get the factorization

f(w) = eg(w)

M∏
1

(w − wj), w ∈ D(−(
α0

R
|α

1

R
), 4r0/3), (17.5.17) pr.17’

together with the bounds

|<g(w)| ≤ O(ε0(h)h−n), M = O(ε0(h)h−n). (17.5.18) pr.18’

See for instance Section 5 in
Sj01
[129] where further references are also given.

For 0 < ε� 1, put

Ω(ε) = {r ∈ [0, 2r0[; ∃w ∈ Dα0,α1 such that |w| = r and |f(w)| < ε}.
(17.5.19) pr.15

If r ∈ Ω(ε) and w is a corresponding point in Dα0,α1 , we have with rj = |wj|,

M∏
1

|r − rj| ≤
M∏
1

|w − wj| ≤ ε exp(O(ε0(h)h−n)). (17.5.20) pr.16
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Then at least one of the factors |r−rj| is bounded by (εeO(ε0(h)h−n))1/M . In
particular, the Lebesgue measure λ(Ω(ε)) of Ω(ε) is bounded by 2M(εeO(ε0(h)h−n))1/M .
Noticing that the last bound increases with M when the last member of
(
pr.16
17.5.20) is ≤ 1 and that {r ∈ [0,+∞[∩Dα0,α1 ; f(r) < ε} ⊂ Ω(ε), we get

pr1 Proposition 17.5.1 Let α1 ∈ CD with |α1| = R and assume that ε > 0 is
small enough so that the last member of (

pr.16
17.5.20) is ≤ 1. Then

λ({r ∈ [0,+∞[; |α0 + rα1| < R, |F (α0 + rα1)| < ε}) ≤
ε0(h)

hn
exp(O(1) +

hn

O(1)ε0(h)
ln ε).

(17.5.21) pr.17

Here and in the following, the symbol O(1) in a denominator indicates a
bounded positive quantity.

Typically, we can choose ε = exp− ε0(h)
hn+α for some small α > 0 and then

the upper bound in (
pr.17
17.5.21) becomes

ε0(h)

hn
exp(O(1)− 1

O(1)hα
).

Now we equip BCD(0, R) with a probability measure of the form

P(dα) = C(h)eΦ(α)L(dα), (17.5.22) pr.18

where L(dα) is the Lebesgue measure, Φ is a C1 function which depends on
h and satisfies

|∇Φ| = O(h−N4), (17.5.23) pr.19

and C(h) is the appropriate normalization constant.
Writing α = α0 +Rrα2, 0 ≤ r < r0(α2), α2 ∈ S2D−1, 1

2
≤ r0 ≤ 3

2
, we get

P(dα) = C̃(h)eφ(r)r2D−1drS(dα2), (17.5.24) pr.20

where φ(r) = φα0,α2(r) = Φ(α0 + rRα2) so that φ′(r) = O(h−N5), N5 =

N4 + M̃ . Here S(dα2) denotes the Lebesgue measure on S2D−1.
For a fixed α2, we consider the normalized measure

µ(dr) = Ĉ(h)eφ(r)r2D−1dr (17.5.25) pr.21

on [0, r0(α2)] and we want to show an estimate similar to (
pr.17
17.5.21) for µ

instead of λ. Write eφ(r)r2D−1 = exp(φ(r) + (2D − 1) ln r) and consider the
derivative of the exponent:

φ′(r) +
2D − 1

r
.
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This derivative is ≥ 0 for r ≤ 2r̃0, where r̃0 = C−1 min(1, DhN5) for some
large constant C, and we may assume that 2r̃0 ≤ 1/2. Introduce the measure
µ̃ ≥ µ by

µ̃(dr) = Ĉ(h)eφ(rmax)r2D−1
max dr, rmax := max(r, r̃0). (17.5.26) pr.22

Since µ̃([0, r̃0]) ≤ µ([r̃0, 2r̃0]), we get

µ̃([0, r(α2)]) ≤ O(1). (17.5.27) pr.23

We can write
µ̃(dr) = Ĉ(h)eψ(r)dr, (17.5.28) pr.24

where

ψ′(r) = O(max(D, h−N5)) = O(h−N6),

N6 = max(N3, N5),
(17.5.29) pr.24.5

where D = O(h−N3) by the estimate on D prior to (
pr.3
17.5.3).

Decompose [0, r0(α2)] into � h−N6 intervals of length � hN6 . If I is such
an interval, we see that

λ(dr)

Cλ(I)
≤ µ̃(dr)

µ̃(I)
≤ C

λ(dr)

λ(I)
on I. (17.5.30) pr.25

From (
pr.17
17.5.21), (

pr.25
17.5.30) we get when the right hand side of (

pr.16
17.5.20) is

≤ 1,

µ̃({r ∈ I; |F (α0 + rRα2)| < ε})/µ̃(I) ≤ O(1)

λ(I)

ε0(h)

hn
exp(

hn

O(1)ε0(h)
ln ε)

= O(1)h−N6
ε0(h)

hn
exp(

hn

O(1)ε0(h)
ln ε).

Use that µ̃([0, r0(α2)]) = O(1), multiply with µ̃(I) and sum the estimates
over I, to get

µ̃({r ∈ [0, r(α2)]; |F (α0+rRα1)| < ε}) ≤ O(1)h−N6
ε0(h)

hn
exp(

hn

O(1)ε0(h)
ln ε).

(17.5.31) pr.26

Since µ ≤ µ̃, we get the same estimate with µ̃ replaced by µ. Then from
(
pr.20
17.5.24) we get

pr2 Proposition 17.5.2 Let ε > 0 be small enough for the right hand side of
(
pr.16
17.5.20) to be ≤ 1. Then

P(|F (α)| < ε) ≤ O(1)h−N6
ε0(h)

hn
exp(

hn

O(1)ε0(h)
ln ε). (17.5.32) pr.27
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pr3 Remark 17.5.3 In the case when R̃ has real coefficients, we may assume
that the eigenfunctions εj are real, and from the observation after Proposition
spe2
17.2.4 we see that we can choose α0 above to be real. The discussion above
can then be restricted to the case of real α2 and hence to real α. We can
then introduce the probability measure P as in (

pr.18
17.5.22) on the real ball

BRD(0, R). The subsequent discussion goes through without any changes,
and we still have the conclusion of Proposition

pr2
17.5.2.

pr4 Remark 17.5.4 Choosing N2 sufficiently large in the definition of δ, we see
that ε0(h) in (

pr.13
17.5.13) satisfies

ε0(h) ≤ C

(∫ h

0

VM(t)
dt

t
+

∫ α0

h

h

t
V (t)

dt

t
+ ln

1

τ0

(
ln

1

h

)2

VM(Ch) + h

)
,

(17.5.33) pr.28

C = C(M), M > n.

pr5 Remark 17.5.5 Let us write ε = e−ε̃/h
n
. Proposition

pr2
17.5.2 shows that if

ε̃ ≥ Cε0(h) > 0 for C > 0 sufficiently large, then

P(|F (α)| < e−ε̃/h
n

) ≤ O(1)h−N6−nε0(h) exp

(
− ε̃

O(1)ε0(h)

)
. (17.5.34) pr.29

17.6 End of the proof
epr

We start by having a closer look at the two integrals appearing in the defi-
nition of ε0(h) in (

pr.13
17.5.13). We have by (

upc.30.2
16.3.37)∫ h

0

VN(t)
dt

t
=

∫ h

0

∫ 1

0

(1 +
σ2

t
)−NdV (σ2)

dt

t
. (17.6.1) epr.1

Recall from Proposition
sh2
16.4.2 (using also Proposition

sh1
16.4.1, see also

MeSj02, HaSj08
[103,

55]) that

φ(z) :=
1

2

∫∫
ln sz(x, ξ)dxdξ =

∫∫
ln |pz(x, ξ)|dxdξ

is continuous and subharmonic with

∆φ

2π
(w)L(dw) = p∗(dxdξ). (17.6.2) epr.2

Hence,

V (σ2) =

∫
|w−z|≤σ

∆φ

2π
(w)L(dw),
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so

VN(t) =

∫
|w−z|≤1

(1 +
|w − z|2

t
)−N

∆φ

2π
(w)L(dw). (17.6.3) epr.3

Inserting (
epr.3
17.6.3) in (

epr.1
17.6.1) leads to∫ h

0

VN(t)
dt

t
=

∫ h

0

∫
|w−z|≤1

(1 +
|w − z|2

t
)−N

∆φ

2π
(w)L(dw)

dt

t

=

∫
|w−z|≤1

fN(
|w − z|2

h
)
∆φ

2π
(w)L(dw),

(17.6.4) epr.4

where

fN(
|w − z|2

h
) =

∫ h

0

(1 +
|w − z|2

t
)−N

dt

t
=

∫ h
|w−z|2

0

(1 +
1

τ
)−N

dτ

τ
,

fN(λ) =

∫ 1/λ

0

(1 +
1

τ
)−N

dτ

τ

=

∫ 1/λ

0

(
τ

1 + τ

)N
dτ

τ
�

{
(1 + ln 1

λ
), 0 < λ ≤ 1,

λ−N , λ ≥ 1.

(17.6.5) epr.5

Next, we have a look at∫ 1

h

h

t
V (t)

dt

t
=

∫ 1

√
h

h

τ 2
V (τ 2)2

dτ

τ
=

∫ 1

√
h

∫
|w−z|≤τ

∆φ

2π
(w)L(dw)

2h

τ 2

dτ

τ

=

∫
|w−z|≤1

∫ 1

max(|w−z|,
√
h)

2h

τ 2

dτ

τ

∆φ

2π
(w)L(dw)

=

∫
|w−z|≤1

(min(
h

|w − z|2
, 1)− h)

∆φ

2π
(w)L(dw).

Thus, ∫ 1

h

h

t
V (t)

dt

t
=

∫
g0(
|w − z|2

h
)∆φ(w)L(dw), (17.6.6) epr.6

g0(λ) = (min(
1

λ
, 1)− h)+ =

{
1− h, λ ≤ 1,

( 1
λ
− h)+, λ > 1.

(17.6.7) epr.7

Combining (
epr.5
17.6.5), (

epr.3
17.6.3) and (

epr.7
17.6.7) we get (cf (

pr.13
17.5.13), (

pr.28
17.5.33)):

JN(z;h) : =

∫ h

0

VN(t)
dt

t
+

∫ α0

h

h

t
V (t)

dt

t
+ VN(Ch)

=

∫
|z−w|≤1

kN(
|z − w|2

h
)
∆φ

2π
(w)L(dw),

(17.6.8) epr.8
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kN(λ) . k(λ) :=
1

1 + λ
+ ln+

1

λ
�

{
(1 + ln 1

λ
), 0 < λ ≤ 1,

1
λ
, λ ≥ 1.

(17.6.9) epr.9

Applying (
pr.28
17.5.33),we get

ε0(h) . ln
1

τ0

(ln
1

h
)2

∫
|z−w|≤1

k(
|z − w|2

h
)
∆φ

2π
(w)L(dw) +O(h). (17.6.10) epr.10

Let Γ b Ω be a domain with Lipschitz boundary as in the beginning
of Chapter

countz
12 with constant scale r =

√
h. Let z0

1 , z
0
2 , ..., z

0
Ñ
∈ ∂Γ be dis-

tributed on the boundary as in that chapter, so that ∂Γ ⊂
⋃Ñ

1 D(z0
j ,
√
h),

dist (z0
j , z

0
j+1) �

√
h, with the cyclic convention that Ñ + 1 = 1. Let

J = JN(z;h) be defined in (
epr.8
17.6.8). We are interested in

Ñ∑
1

J(z0
j ;h) .

∫
G0(w)

∆φ

2π
(w)L(dw), (17.6.11) epr.11

where

G0(w) =
Ñ∑
1

k(
|z0
j − w|2

h
). (17.6.12) epr.12

In order to avoid the slightly unpleasant logarithmic singularity appear-
ing in the estimate (

epr.9
17.6.9), we make the same averaging observation as in

Chapter
countz
12, namely that there exist z̃j ∈ D(z0

j , ε
√
h) for any fixed ε > 0,

such that∫
D(z̃j ,(1−2ε)

√
h)

k(
|z̃j − w|2

h
)
∆φ

2π
(w)L(dw) = O(1)

∫
D(z̃j ,

√
h)

∆φ

2π
(w)L(dw).

(17.6.13) epr.13

In fact,

1

L(D(z0
j , ε
√
h))

∫
D(z0

j ,ε
√
h)

∫
D(z̃j ,(1−2ε)

√
h)

k

(
|z̃j − w|2

h

)
∆φ

2π
(w)L(dw)L(dz̃j)

≤
∫
D(z0

j ,(1−ε)
√
h)

1

L(D(z0
j , ε
√
h))

∫
D(z0

j ,ε
√
h)

k

(
|z̃j − w|2

h

)
L(dz̃j)︸ ︷︷ ︸

≤O(1)

∆φ

2π
(w)L(dw)

≤ O(1)

∫
D(z0

j ,(1−ε)
√
h)

∆φ

2π
L(dw).
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Hence, ∃z̃j ∈ D(z0
j , ε
√
h) such that∫

D(z̃j ,(1−2ε)
√
h)

k

(
|z̃j − w|2

h

)
∆φ

2π
(w)L(dw)

.
∫
D(z0

j ,(1−ε)
√
h)

∆φ

2π
(w)L(dw)

≤
∫
D(z̃j ,

√
h)

∆φ

2π
(w)L(dw).

We now replace the sum in (
epr.11
17.6.11) by

Ñ∑
1

J(z̃j;h) =

∫
G1(w)

∆φ

2π
(w)L(dw), (17.6.14) epr.14

where

G1(w) =
Ñ∑
1

k(
|z̃j − w|2

h
), (17.6.15) epr.15

so that by the preceding observation∫
G1(w)

∆φ

2π
(w)L(dw) ≤ O(1)

∫
G2(w)

∆φ

2π
(w)L(dw),

G2(w) =
Ñ∑
1

k̂(
|z̃j − w|2

h
), (17.6.16) epr.16

k̂(
|w − z|2

h
) =

h

h+ |w − z|2
. (17.6.17) epr.17

From the form of k̂, we see that the order of magnitude of the right hand
side in (

epr.14
17.6.14) will not change if we replace z̃j in (

epr.15
17.6.15) by z0

j . Thus,

Ñ∑
1

J(z̃j;h) ≤ O(1)

∫
G(w)

∆φ

2π
(w)L(dw), (17.6.18) epr.18

where

G(w) =
Ñ∑
1

k̂(
|z0
j − w|2

h
). (17.6.19) epr.19
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From the geometric assumptions on Γ, we see that the order of magnitude
of G and hence the validity of (

epr.18
17.6.18) will not change if we replace G in

(
epr.19
17.6.19) by

G(w) = G(w,Γ;h) =

∫
∂Γ

k̂(
|z − w|2

h
)
|dz|√
h
. (17.6.20) epr.20

By a change of variables,

G(w,Γ;h) = G(
w√
h
,

1√
h

Γ; 1) (17.6.21) epr.21

Here Γ̃ = h−1/2Γ is a Lipschitz domain as in Chapter
countz
12 with constant scale

r = 1, so the problem of studying G is reduced to that of studying

G(w̃, Γ̃; 1) =

∫
∂Γ̃

1

1 + |z − w̃|2
|dz|. (17.6.22) epr.22

Consider the following regularity property for ∂Γ̃: For some fixed κ ∈
[0, 1[, we have the following upper bound on the length of ∂Γ̃ ∩D(w̃, R̃),

|∂Γ̃ ∩D(w̃, R̃)| ≤ O(1)R̃1+κ, R̃ ≥ 1, (17.6.23) epr.23

uniformly with respect to w̃. Then by writing

G(w̃, Γ̃; 1) =

∫ +∞

d(w̃,∂Γ̃)

1

1 + R̃2
d|∂Γ̃ ∩D(w̃, R̃)|,

we see that
G(w̃, Γ̃, 1) = O(1)(1 + d(w̃, ∂Γ̃))κ−1. (17.6.24) epr.24

The most regular case is that with κ = 0.
Returning to Γ, we may assume that for some κ ∈ [0, 1[:

|∂Γ ∩D(w,R)| ≤ O(1)
√
h

(
R√
h

)1+κ

, R ≥
√
h. (17.6.25) epr.25

Then (
epr.21
17.6.21)–(

epr.24
17.6.24) lead to

G(w,Γ;h) = O(1)

(
1 +

d(x, ∂Γ)√
h

)κ−1

. (17.6.26) epr.26
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epr1 Remark 17.6.1 The estimate (
epr.26
17.6.26) can be improved when d(w,Γ) ≥

diam (Γ). Let us first observe that (
epr.25
17.6.25) with w ∈ ∂Γ and R = diam (Γ)

gives the estimate

|∂Γ| ≤ O(1)
√
h

(
diam (Γ)√

h

)1+κ

. (17.6.27) epr.26.1

When d(w, ∂Γ) ≥ diam (Γ) we get from (
epr.20
17.6.20)

G(w,Γ;h) � |∂Γ|√
h

1

1 + d(w,∂Γ)2

h

. (17.6.28) epr.26.2

From (
epr.26.1
17.6.27), we see that this estimate is sharper than (

epr.26
17.6.26) when

d(w,Γ) ≥ diam (Γ).

Let us sum up the results so far, in order to apply Theorem
intcz.2
12.1.2. We

choose z0
j as in that theorem with r there equal to

√
h. Apply Remark

pr5
17.5.5

with z there replaced by z̃j and with ε0(h) replaced by ε(z̃j;h), where

ε(z;h) = C ln
1

τ0

(
ln

1

h

)2 ∫
|z−w|≤1

k

(
|z − w|2

h

)
∆φ

2π
(w)L(dw) +O(h),

(17.6.29) epr.27

cf (
epr.10
17.6.10) and where k can be replaced with k̂, thanks to the choice of z̃j.

By Remark
pr5
17.5.5 we know that if ε̃j ≥ Cε(z̃j;h)� 0, then

P
(
| detPδ,z̃j | < e

1
(2πh)n

(φ(z̃j)−ε̃j)
)
≤ O(1)h−N6−nε(z̃j;h)e

−
ε̃j

O(1)ε(z̃j ;h) . (17.6.30) epr.28

On the other hand, by Proposition
pc3
16.5.3, we know that for every admis-

sible perturbation

| detPδ,z| ≤ e
1

(2πh)n
(φ(z)+ε(z;h)). (17.6.31) epr.29

In order to fix the ideas, we choose ε̃j = h−δε(z̃j;h) for some fixed small
δ > 0. We can then apply Theorem

intcz2
12.1.3 and Remark

intcz1.5
12.1.2 with the

following substitutions:

• “h” in the theorem should be replaced by (2πh)n,

• “φ” in Theorem
intcz2
12.1.3 should be replaced by the function φ(z)+ε(z;h),

• εj in the theorem should be replaced with ε̃j = h−δε(z̃j;h).
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We also recall the passage from Theorem
intcz1
12.1.1 to Theorem

intcz2
12.1.3 by an

averaging procedure, and that we have applied the same procedure to see
that z̃j can be chosen so that

ε(z̃j;h) = O(1) ln
1

τ0

(
ln

1

h

)2 ∫
|z̃j−w|≤1

k̂

(
|z̃j − w|2

h

)
∆φ

2π
(w)L(dw) +O(h).

(17.6.32) epr.30

(The averaging method allows us to have (
epr.30
17.6.32) simultaneously with the

conclusion in Theorem
intcz2
12.1.3.)

From Theorem
intcz2
12.1.3 and

epr.28
17.6.30 we now conclude that with probability

≥ 1−O(1)h−N6−n
(∑

ε(z̃j;h)
)
e−

h−δ
O(1) , (17.6.33) epr.31

we have ∣∣∣∣#(σ(Pδ) ∩ Γ)− 1

(2πh)n

∫
Γ

∆(φ+ ε(z;h))

2π
L(dz)

∣∣∣∣
≤ C2

hn

∫
γ̃r

(∆φ+ |∆ε|)L(dw) + h−δ
Ñ∑
1

ε(z̃j;h)

 ,

(17.6.34) epr.32

where (as defined in Theorem
intcz1
12.1.1)

γ̃r = ∪z∈γD(z, r(z)), γ = ∂Γ,

here with r =
√
h. It is also clear that the number of points z̃j satisfies

Ñ = O(h−1).
Let us next review the remainder terms in (

epr.32
17.6.34):

Combining (
epr.30
17.6.32) and (

epr.18
17.6.18), we see that∑

ε(z̃j;h) ≤ O(1) ln
1

τ0

(
ln

1

h

)2 ∫
G(w)

∆φ

2π
(w)L(dw)+O(Ñh), (17.6.35) epr.33

where G is given by (
epr.20
17.6.20). Here, Ñh = O(|∂Γ|h1/2).

Noticing that the O(h) term in (
epr.30
17.6.32) can be assumed to be constant,

we next look at∫
Γ

∆ε(z;h)L(dz)

= O(1) ln
1

τ0

(ln
1

h
)2

∫
z∈Γ

∫
w∈Ω

∆z

(
k

(
|z − w|2

h

))
∆φ(w)

2π
L(dw)L(dz)

= O(1) ln
1

τ0

(ln
1

h
)2

∫
Ω

H(w;h)
∆φ(w)

2π
L(dw),
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where

H(w;h) =

∫
z∈Γ

∆z

(
k

(
|z − w|2

h

))
L(dz),

and Ω is a fixed neighborhood of the closure of Γ.
By Green’s formula,

H(w;h) =

∫
∂Γ

∂

∂nz
k

(
|z − w|2

h

)
|dz|,

where nz is the exterior unit normal. An easy calculation shows that

∂

∂nz
k

(
|z − w|2

h

)
= O(1)

(
h

(h+ |z − w|2)3/2
+ 1{|z−w|≤

√
h}

1

|z − w|

)
,

so

H(w;h) = O(1)

∫
∂Γ

(
h

(h+ |z − w|2)3/2
+ 1{|z−w|≤

√
h}

1

|z − w|

)
|dz|.

Comparing with (
epr.20
17.6.20), (

epr.17
17.6.17);

G(w;h) =

∫
∂Γ

h

h+ |z − w|2
|dz|√
h
,

we see that

H ≤ O(1)G+ ln+

(
h

dist (w, ∂Γ)2

)
and conclude that∣∣∣∣∫

Γ

∆ε(z;h)L(dz)

∣∣∣∣ . ln
1

τ0

(ln
1

h
)2

(∫
Ω

G(w)∆φ(w)L(dw)

+

∫
Ω

ln+

(
h

dist (w, ∂Γ)2

)
∆φ(w)L(dw)

)
. (17.6.36) epr.34

The first term to the right is the same as in (
epr.33
17.6.35), while the second one

will require an averaging argument.
Finally, we look at ∫

γ̃r

|∆ε|L(dz),

still with r =
√
h and again with the O(h) term in (

epr.27
17.6.29) constant. This

time, we use (
epr.27
17.6.29) with k in (

epr.9
17.6.9) regularized near λ = 1. Apply ∆z

to get

∆zε = O(1) ln
1

τ0

(ln
1

h
)2

(∫
h

(h+ |z − w|2)2
∆φ(w)L(dw) + ∆φ(z)

)
.
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Consequently,∫
γ̃r

|∆ε|L(dz) = O(1) ln
1

τ0

(ln
1

h
)2

(∫
Ω

K(w)∆φ(w)L(dw) +

∫
γ̃r

∆φ(z)L(dz)

)
,

(17.6.37) epr.35

where

K(w) =

∫
γ̃r

h

(h+ |z − w|2)2
L(dz)

= O(1)

∫
∂Γ

h3/2

(h+ |z − w|2)2
|dz| ≤ O(1)G(w).

Since G & 1 on γ̃r we have∫
γ̃r

|∆ε(z)|L(dz) . ln
1

τ0

(
ln

1

h

)2 ∫
Ω

G(z)∆φ(z)L(dz). (17.6.38) epr.35.5

Combining (
epr.32
17.6.34)–(

epr.35.5
17.6.38), we get∣∣∣∣#(σ(Pδ) ∩ Γ)− 1

(2πh)n

∫
Γ

∆φ

2π
L(dz)

∣∣∣∣ ≤
O(1)

hn

(
h−δ ln

1

τ0

(
ln

1

h

)2 ∫
Ω

G(w,Γ)∆φ(w)L(dw) +O(|∂Γ|h
1
2 )

)

+
O(1)

hn

∫
Ω

ln+

(
h

dist (w, ∂Γ)2

)
∆φ(w)L(dw), (17.6.39) epr.36

valid with a probability as in (
epr.31
17.6.33).

For t ∈]−
√
h,
√
h[, let

Γt =

{
{z ∈ Γ; dist (z, ∂Γ) > |t|}, when t ≤ 0,

{z ∈ Ω; dist (z,Γ) < t}, when t > 0.

Then ∂Γt is a uniformly Lipschitz curve of scale
√
h. Locally after rotation

near any given point z0 ∈ ∂Γ, we have in D(z0, 2
√
h)

Γt = {z ∈ neigh (z0,C); =z < f(t,<z)}

where f(t, ·) is Lipschitz, uniformly with respect to to t and

f(t,<z)− f(s,<z) � t− s.
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Let γt = ∂Γt. By construction the curves γt are mutually disjoint and fill up
γ̃r (r =

√
h). Clearly,∣∣∣∣∫

Γt

∆φ

2π
L(dz)−

∫
Γ

∆φ

2π
L(dz)

∣∣∣∣ ≤ ∫
γ̃r

∆φ

2π
L(dz). (17.6.40) epr.37

Applying the proof of (
epr.36
17.6.39) with Γ replaced with γ̃r, we simply avoid

the troublesome last term there (coming from
∫
γ̃r
εL(dz) that we have esti-

mated already) and we conclude that with a probability as in (
epr.31
17.6.33)

|#(σ(Pδ) ∩ γ̃r| .

O(1)

hn

(
h−δ ln

1

τ0

(
ln

1

h

)2 ∫
Ω

G(w,Γ)∆φ(w)L(dw) +O(|∂Γ|h
1
2 )

)
. (17.6.41) epr.38

Consequently for each t ∈] −
√
h,
√
h[, after first replacing Γ with Γt in

(
epr.36
17.6.39), we have with a probability as in (

epr.31
17.6.33):∣∣∣∣#(σ(Pδ) ∩ Γ)− 1

(2πh)n

∫
Γ

∆φ

2π
L(dz)

∣∣∣∣ ≤
O(1)

hn

(
h−δ ln

1

τ0

(
ln

1

h

)2 ∫
Ω

G(w,Γ)∆φ(w)L(dw) +O(|∂Γ|h
1
2 )

)

+
O(1)

hn

∫
Ω

ln+

(
h

dist (w, γt)2

)
∆φ(w)L(dw). (17.6.42) epr.39

Now,

1

2
√
h

∫ √h
−
√
h

ln+

(
h

dist (w, γt)2

)
dt . 1γ̃2

√
h
,

so

1

2
√
h

∫ √h
−
√
h

dt

∫
Ω

ln+

(
h

dist (w, γt)2

)
∆φ(w)L(dw) .

∫
γ̃2
√
h

∆φ(w)L(dw),

so there exists t ∈]−
√
h,
√
h[ such that∫

Ω

ln+

(
h

dist (w, γt)2

)
∆φ(w)L(dw) .

∫
γ̃2
√
h

∆φ(w)L(dw).

As in (
epr.35.5
17.6.38), the last integral is

O(1)

∫
Ω

G(w,Γ)∆φ(w)L(dw),
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so choosing this value of t in (
epr.39
17.6.42), we can get rid of the last term there

and this completes the proof of Theorem
res1
15.3.1. 2

We finally explain the extensions in Remark
res1.5
15.3.2. The case when

(
res.1.3
15.3.4) holds is already included in the proof above. When we merely as-

sume (
res.1.6
15.3.5) for some ϑ ∈]0, 1/2[ we get the corresponding weakening of the

theorem after some modifications, basically just by multiplying some powers
of h in some remainders with h−ϑ:

• Before (
sv.46
17.4.46): Weaken the assumption to δ0 ≤ h2−ϑ.

• In (
sv.46
17.4.46), replace the last h with h1−ϑ.

• First sentence in Section
pr
17.5: 0 ≤ δ0 ≤ h2−ϑ.

• (
pr.7
17.5.7): Replace the first h with h1−ϑ in the last O(...).

• (
pr.8
17.5.8): Idem.

• (
pr.13
17.5.13): Replace the third term h to the right with h1−ϑ.

• (
pr.28
17.5.33): Replace the last term h to the right with h1−ϑ.

• (
epr.10
17.6.10): Replace the last term O(h) to the right with O(h1−ϑ).

• (
epr.27
17.6.29): Idem.

• (
epr.30
17.6.32): Idem.

• In (
epr.33
17.6.35) and on the following line: Read Ñh1−ϑ = O(|∂Γ|h 1

2
−ϑ).

• On the following line: “Noticing that the O(h1−ϑ) term ...”

• (
epr.36
17.6.39): Replace O(|∂Γ|h 1

2 ) with O(|∂Γ|h 1
2
−ϑ)

• (
epr.38
17.6.41): Idem.

• (
epr.39
17.6.42): Idem.
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Chapter 18

Distribution of large
eigenvalues for elliptic
operators

lev

18.1 Introduction
levint

In this chapter we consider elliptic differential operators on a compact man-
ifold and rather than taking the semi-classical limit (h→) we let h = 1 and
study the distribution of large eigenvalues. W. Bordeaux Montrieux

Bo08, Bo11
[15, 16]

studied elliptic systems of differential operators on S1 with random perturba-
tions of the coefficients, and under some additional assumptions, he showed
that the large eigenvalues obey the Weyl law almost surely. His analysis
was based on a reduction to the semi-classical case, where he could use and
extend the methods of Hager

Ha06b
[54].

In
BoSj09
[18] Bordeaux Montrieux and the author considered scalar elliptic oper-

ators on a general smooth compact manifold, using the semi-classical results
of

Sj08b
[132]. The present chapter follows closely,

BoSj09
[18], but we replace

Sj08b
[132] by the

results of Section
res
15.3 which leads to some modifications.

Let X be a smooth compact manifold of dimension n. Let P 0 be an
elliptic differential operator on X of order m ≥ 2 with smooth coefficients
and with classical principal symbol p(x, ξ). In local coordinates we have,

P 0 =
∑
|α|≤m

a0
α(x)Dα, p(x, ξ) =

∑
|α|=m

a0
α(x)ξα. (18.1.1) levint.1

The ellipticity of P 0 means that p(x, ξ) 6= 0 for real ξ 6= 0. We assume that

p(T ∗X) 6= C. (18.1.2) levint.2
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Let dx be a strictly positive smooth density of integration dx on X and use
it to define the L2 norm ‖ · ‖ and the inner product (·| · ·). Let Γ : L2(X)→
L2(X) be the antilinear operator of complex conjugation, given by Γu = u.
We need the symmetry assumption

(P 0)∗ = ΓP 0Γ, (18.1.3) levint.3

where (P 0)∗ is the formal complex adjoint of P 0. As in Section
upo
15.1 we

observe that the property (
levint.3
18.1.3) implies that

p(x,−ξ) = p(x, ξ), (18.1.4) levint.4

and conversely, if (
levint.4
18.1.4) holds, then the operator 1

2
(P 0 + Γ(P 0)∗Γ) has the

same principal symbol p and satisfies (
levint.3
18.1.3).

Let R̃ be an elliptic second order differential operator on X with smooth
coefficients, which is self-adjoint and strictly positive. Let ε0, ε1, ... be an
orthonormal basis of eigenfunctions of R̃ so that

R̃εj = (µ0
j)

2εj, 0 < µ0
0 < µ0

1 ≤ µ0
2 ≤ ... (18.1.5) levint.5

Our randomly perturbed operator is

P 0
ω = P 0 + q0

ω(x), (18.1.6) levint.6

where ω is the random parameter and

q0
ω(x) =

∞∑
0

α0
j (ω)εj. (18.1.7) levint.7

Here we assume that α0
j (ω) are independent complex Gaussian random vari-

ables of variance σ2
j and mean value 0:

α0
j ∼ NC(0, σ2

j ), (18.1.8) levint.8

where
1

O(1)
(µ0

j)
−ρe−(µ0

j )
β

M+1 ≤ σj ≤ O(1)(µ0
j)
−ρ, (18.1.9) levint.8.5

M =
3n− 1

2

s− n
2
− ε

, 0 ≤ β <
1

2
, ρ > n, (18.1.10) levint.9

where s, ρ, ε are fixed constants such that

n

2
< s < ρ− n

2
, 0 < ε < s− n

2
.
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We will see below that q0
ω ∈ Hs(X) almost surely since s < ρ− n

2
. Hence

q0
ω ∈ L∞ almost surely, and it follows that P 0

ω has purely discrete spectrum.
Consider the function F (w) = arg p(w) on the cosphere bundle S∗X. For

given θ0 ∈ S1 ' R/(2πZ), N0 ∈ Ṅ := N \ {0}, we introduce the property
P (θ0, N0):

N0∑
1

|∇kF (w)| 6= 0 on {w ∈ S∗X; F (w) = θ0}. (18.1.11) levint.10

Notice that if P (θ0, N0) holds, then P (θ,N0) holds for all θ in some neigh-
borhood of θ0. Also notice that if X is connected and X, p are analytic and
the analytic function F is non constant, then ∃N0 ∈ Ṅ such that P (θ0, N0)
holds for all θ0.

The main result of this chapter is basically the one of
BoSj09
[18].

levint1 Theorem 18.1.1 Assume that m ≥ 2. Let 0 ≤ θ1 ≤ θ2 ≤ 2π and assume
that P (θ1, N0) and P (θ2, N0) hold for some N0 ∈ Ṅ. Also assume that β ∈
[0, 1/(2N0)[. Let g ∈ C∞([θ1, θ2]; ]0,∞[) and put

Γgθ1,θ2;0,λ = {reiθ; θ1 ≤ θ ≤ θ2, 0 ≤ r ≤ λg(θ)}.

Then for every δ ∈]0, 1/(2N0)−β[ there exists C > 0 such that almost surely:
∃C(ω) <∞ such that for all λ ∈ [1,∞[:

|#(σ(P 0
ω) ∩ Γgθ1,θ2;0,λ)−

1

(2π)n
vol p−1(Γgθ1,θ2;0,λ)|

≤ C(ω) + Cλ
n
m
− 1
m

( 1
2N0
−β−δ)

.

(18.1.12) levint.11

Here σ(P 0
ω) denotes the spectrum and #(A) denotes the number of elements

in the set A. In (
levint.11
18.1.12) the eigenvalues are counted with their algebraic

multiplicity.

By the same proof we have an almost certain conclusion for a whole family
of θ1, θ2, g:

levint2 Theorem 18.1.2 Assume that m ≥ 2. Let Θ be a compact subset of [0, 2π].
Let N0 ∈ N and assume that P (θ,N0) holds uniformly for θ ∈ Θ. Also
assume that β ∈ [0, 1

2N0
[. Let G be a subset of {(g, θ1, θ2); θj ∈ Θ, θ1 ≤

θ2, g ∈ C∞([θ1, θ2]; ]0,∞[)} with the property that g and 1/g are uniformly
bounded in C∞([θ1, θ2]; ]0,∞[) when (g, θ1, θ2) varies in G. Then for every
δ ∈]0, 1

2N0
− β[ there exists C > 0 such that almost surely: ∃C(ω) <∞ such

that for all λ ∈ [1,∞[ and all (g, θ1, θ2) ∈ G, we have the estimate (
levint.11
18.1.12).

369



In (
levint.8.5
18.1.9) we can choose σj decaying faster than any negative power of

µ0
j . The discussion below, will imply that qω(x) is almost surely a smooth

function. Very roughly Theorem
levint2
18.1.2 then implies that for almost every

elliptic operator of order ≥ 2 with smooth coefficients on a compact man-
ifold which satisfies the conditions (

levint.2
18.1.2), (

levint.3
18.1.3), the large eigenvalues

distribute according to Weyl’s law in sectors with limiting directions that
satisfy a weak non-degeneracy condition.

18.2 Some examples
levex

Let f ∈ C∞(S1) be non-vanishing and take its values in a closed sector Γ ⊂ C
of angle < π. In other words, there exist θ0 ∈ R, α ∈ [0, π/2[ such that

arg f(S1) = [θ0 − α, θ0 + α]. (18.2.1) levex.1

Assume for simplicity that θ0 = 0. Then (see
Bo08, Bo11, Se86
[15, 16, 119]) the spectrum

of f(x)D can be computed directly and we see that it is constituted by the
simple eigenvalues

λk =
k

〈1/f〉
, k ∈ Z, (18.2.2) levex.2

where 〈1/f〉 denotes the mean-value of the function 1/f . Since 1/f is non-
vanishing with values in the sector Γ, the same holds for 〈1/f〉.

The antisymmetric operator f 1/2Df 1/2 = f−1/2(fD)f 1/2 has the same
spectrum and the elliptic symmetric operator

P 0 = (f 1/2Df 1/2)2 = Df 2D − 1

4
(f ′)2 − 1

2
ff ′′ (18.2.3) levex.3

therefore has the spectrum

{µ0, µ1, µ2, ...}, µk = λ2
k =

k2

〈1/f〉2
, (18.2.4) levex.4

where µ0 is a simple eigenvalue and µ1, µ2, ... are double. The principal
symbol of P 0 is given by

p(x, ξ) = f(x)2ξ2 (18.2.5) levex.5

and its range is the sector
[0,∞[ei[−2α,2α] (18.2.6) levex.6

(having chosen θ0 = 0) which does not intersect the open negative half axis.
The eigenvalues µk are situated on a half axis inside the range (

levex.6
18.2.6), and
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unless arg f = Const., we see that Weyl asymptotics does not hold for P 0.
On the other hand, if we add the non-degeneracy assumption,

N0∑
1

|( d
dx

)karg f(x)| 6= 0, x ∈ S1, for some N0 ∈ N \ {0}, (18.2.7) levex.7

then the property P (θ,N0) holds for all θ and we know from the Theorems
levint1
18.1.1,

levint2
18.1.2 that Weyl asymptotics holds almost surely for the random

perturbations P 0
ω = P 0 + q0

ω if q0
ω is given in (

levint.7
18.1.7)–(

levint.9
18.1.10).

Despite the fact that (in some sense and with the additional conditions
in our main theorems) almost all symmetric elliptic differential operators
obey Weyl asymptotics, it is probably a difficult task to find explicit opera-
tors with this property outside the class of normal operators and operators
with principal symbol having constant argument. To find such examples one
would probably like to assume the coefficients to be analytic but in that case
Weyl asymptotics is unlikely to hold. Indeed, in the analytic case there is
the possibility to make an analytic distorsion (for instance by replacing the
underlying compact analytic manifold by a small deformation) which will not
change the spectrum (by ellipticity and analyticity) but which will replace
the given real phase space by a deformation, likely to change the Weyl law.
In one and two dimensions analytic distorsions have been used to determine
the spectrum (by making the operator more normal) in the two-dimensional
semi-classical case this was done in

MeSj02, MeSj03, HiSj08, HiSj08b, HiSj15
[103, 104, 71, 72, 73] and in

Sj11
[136] it was

shown that the resulting law is in general different from the Weyl law (naively
because a complex Bohr-Sommerfeld law relies on going out in the complex
domain while the Weyl law only uses the real cotangent space).

To illustrate this, let us consider the second order differential operator on
S1,

P 0 = a(x)D2 + b(x)D + c(x), (18.2.8) levex.8

where the coefficients a, b, c are smooth (and 2π-periodic when considered
as functions on R). We assume that P 0 is elliptic, so that a(x) 6= 0 and
even that the range of arg a is the interval [−2α, 2α] for some α ∈ [0, π

2
[.

Then a(x) = f(x)2, where f is smooth, non-vanishing and the range of arg f
is [−α, α]. The Bohr-Sommerfeld quantization condition, which correctly
describes the large eigenvalues when P 0 is self-adjoint and more generally
when a > 0, would predict that the large eigenvalues µ2

k are determined by
the condition

I(µk) = 2πk +O(1), k ∈ Z, |k| � 1, (18.2.9) levex.9

where I(µ) is the action, defined by I(µ) =
∫ 2π

0
ξ(x, µ)dx, ξ(x, µ) = µ/f(x),

so that p(x, ξ(x, µ)) = µ2, where p(x, ξ) = f(x)2ξ2 is the principal symbol of
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P 0. Notice that this simplifies to

µk =
k

〈1/f〉
+O(1). (18.2.10) levex.10

We also recall that the remainder has a complete asymptotic expansion in
negative powers of k. As we have seen, this rule is correct in the special case
of the operator (

levex.3
18.2.3) and as we have noticed it becomes almost surely false

if we add a random smooth zero order term (at least in the symmetric case
in the sense of (

levint.3
18.1.3)).

However, the Bohr-Sommerfeld rule is correct under suitable analyticity
assumptions, as we shall now review (cf. Chapter

cwkb
7): Look for a complex

change of variables x = x(t) with 0 = x(0) so that f(x)Dx = κDt, for a
suitable κ ∈ C \ {0}. We get

dt

dx
=

κ

f(x)
,

so the inverse t(x) is given by

t = κ

∫ x

0

dy

f(y)
. (18.2.11) levex.11

if f is merely smooth we can still define a complex curve t(x) by (
levex.11
18.2.11)

for real x. We now determine κ by the condition that t(2π) = 2π, i.e.

κ =
1

〈1/f〉
. (18.2.12) levex.12

Now assume that f extends to a holomorphic non-vanishing function in a
2π-periodic simply connected neighborhood Ω of R in C. Then t(x) extends
to a holomorphic function on Ω, and we assume that the set {x ∈ Ω; t(x) ∈
R} contains (the image of) a smooth 2π-periodic curve γ : R→ Ω such that
γ(0) = 0, γ(2π) = 2π. Also assume that b, c extend to holomorphic functions
on Ω. Notice that if f0 > 0 is an analytic 2π-periodic function and if f is
a small perturbation of f0 in a fixed neighborhood of R, then f fulfills the
assumptions above. In a small neighborhood of γ we can replace the variable
x by t and we get the operator

P̃ = κ2D2
t + b̃(t)Dt + c̃(t), (18.2.13) levex.13

well-defined in a small neighborhood of Rt. For this operator it is quite easy
to justify the Bohr–Sommerfeld rule by some version of the complex WKB-
method (cf

Gr87
[43] and Chapter

cwkb
7). Now the Bohr-Sommerfeld rule is clearly
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invariant under the change of variables above. Moreover, eigenfunctions of P̃
defined near Rt are also eigenfunctions of P 0 with respect to the x-variables in
a neighborhood of γ and since P 0 is elliptic in Ω, they extend to holomorphic
functions in Ω and by restriction become eigenfunctions on Rx. The same
remark holds for generalized eigenfunctions. Hence the eigenvalues of P̃
are also eigenvalues of P 0. This argument works equally well in the other
direction so we can identify completely the spectra of P̃ and of P 0 and this
completes the (review of the) justification of the Bohr-Sommerfeld rule (and
hence of the non-validity of Weyl asymptotics when arg f is non-constant)
for the operator (

levex.8
18.2.8) in the analytic case.

18.3 Volume considerations
levvo

The remainder of the chapter is mainly devoted to the proof of Theorem
levint1
18.1.1. In the next section we shall perform a reduction to a semi-classical
situation and work with hmP 0 which has the semi-classical principal symbol
p in (

levint.1
18.1.1). An important quantity is

vol p−1(γ +D(0, t)), (18.3.1) levvo.3

where D(0, t) = {z ∈ C; |z| < t}, γ = ∂Γ and Γ b Ċ is assumed to have
piecewise smooth boundary.

levvo2 Proposition 18.3.1 Let γ be the curve {τeiθ ∈ C; τ = g(θ), θ ∈ S1}, where
0 < g ∈ C1(S1). Then

vol (p−1(γ +D(0, t))) = O(t), t→ 0.

Proof. This follows from the fact that the radial derivative of p is 6= 0. More
precisely, write T ∗X \ 0 3 ρ = rw, w ∈ S∗X, r > 0, so that p(ρ) = rmp(w),
p(w) 6= 0. If ρ ∈ p−1(γ+D(0, t)), for 0 ≤ t� 1, we have |p(rw)−g(θ)eiθ| < t
for some θ, so

||p(rw)| − g(θ)| ≤ O(t), |arg p(w)− θ| ≤ O(t),

which implies that |p(rw)| − g(arg p(w)| ≤ O(t). Hence, we have for some
C ≥ 1, independent of t,

g(arg p(w))− Ct ≤ rm|p(w)| ≤ g(arg p(w)) + Ct,(
g(arg p(w))− Ct

|p(w)|

) 1
m

≤ r ≤
(
g(arg p(w)) + Ct

|p(w)|

) 1
m

,
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when t is small. So for every w ∈ S∗X, r has to belong to an interval of
length O(t). 2

We next study the volume in (
levvo.3
18.3.1) when γ is a radial segment of the

form [r1, r2]eiθ0 , where 0 < r1 < r2 and θ0 ∈ S1.

levvo3 Proposition 18.3.2 Let θ0 ∈ S1, N0 ∈ Ṅ and assume that P (θ0, N0) holds.
Then if 0 < r1 < r2 and γ is the radial segment [r1, r2]eiθ0, we have

vol (p−1(γ +D(0, t))) = O(t1/N0), t→ 0.

Proof. We first observe that it suffices to show that

volS∗XF
−1([θ0 − t, θ0 + t]) = O(t1/N0).

This in turn follows for instance from the Malgrange preparation theorem (see
for instance

Ho8385
[83]): At every point w0 ∈ F−1(θ0) we can choose coordinates

w1, ..., w2n−1, centered at w0, such that for some k ∈ {1, ..., N0}, we have
∂jw1

(F − θ0)(w0) = 0 when 0 ≤ j ≤ k − 1 and 6= 0 when j = k. Then by
Malgrange’s preparation theorem, we have

F (w)− θ0 = G(w)(wk1 + a1(w2, ..., w2n−1)wk−1
1 + ...+ ak(w2, ..., w2n−1)),

where G, aj are real and smooth, G(w0) 6= 0, and it follows that

vol (F−1([θ0 − t, θ0 + t]) ∩ neigh (w0)) = O(t1/k).

It then suffices to use a simple compactness argument. 2

Now, let 0 ≤ θ1 < θ2 ≤ 2π, g ∈ C∞([θ1, θ2]; ]0,∞[) and put

Γgθ1,θ2;r1,r2
= {reiθ; θ1 ≤ θ ≤ θ2, r1g(θ) ≤ r ≤ r2g(θ)}, (18.3.2) levvo.4

for 0 ≤ r1 ≤ r2 < ∞. If 0 < r1 < r2 < +∞ and P (θj, N0) hold for j = 1, 2,
then the last two propositions imply that

vol p−1(∂Γgθ1,θ2;r1,r2
+D(0, t)) = O(t1/N0), t→ 0. (18.3.3) levvo.5

18.4 Semiclassical reduction
levsc

We are interested in the distribution of large eigenvalues ζ of P 0
ω , and write

ζ =
z

hm
, |z| � 1, h � |ζ|−1/m, 0 < h� 1. (18.4.1) levsc.1
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Then
hm(P 0

ω − ζ) = hmP 0
ω − z =: P + hmq0

ω − z, (18.4.2) levsc.2

where
P = hmP 0 =

∑
|α|≤m

aα(x;h)(hD)α. (18.4.3) levsc.3

Here

aα(x;h) = O(hm−|α|) in C∞,

aα(x;h) = a0
α(x) when |α| = m.

(18.4.4) levsc.4

P is a semi-classical differential operator with semi-classical principal symbol
p(x, ξ) in (

levint.1
18.1.1).

Our strategy will be to decompose the random perturbation

hmq0
ω = δqω + kω(x),

where the two terms are independent, and with probability very close to 1,
δqω will be a semi-classical random perturbation as in Section

rp
15.2 while

‖kω‖Hs ≤ h, (18.4.5) levsc.5

and
s ∈]

n

2
, ρ− n

2
[ (18.4.6) levsc.5.5

is fixed. Then hmP 0
ω will be viewed as a random perturbation of hmP 0 +

kω and we will apply Theorem
res1
15.3.1 with the extension indicated right

thereafter. To achieve this without extra assumptions on the order m, we
will also have to represent some of our random variables α0

j (ω) as sums of
two independent Gaussian random variables.

We start by examining when

‖hmq0
ω‖Hs ≤ h2−ϑ, (18.4.7) levsc.6

for a fixed ϑ ∈ [0, 1/2[.

levsc1 Proposition 18.4.1 There is a constant C > 0 such that (
levsc.6
18.4.7) holds

with probability

≥ 1− exp(C − 1

2Ch2(m−2+ϑ)
).

Proof. We have

hmq0
ω =

∞∑
0

αj(ω)εj, αj = hmα0
j ∼ NC(0, (hmσj)

2), (18.4.8) levsc.7
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and the αj are independent. Now, from Proposition
al2
16.2.2 with h fixed, we

see that

‖hmq0
ω‖2

Hs �
∞∑
0

|(µ0
j)
sαj(ω)|2, (18.4.9) levsc.8

where (µ0
j)
sαj ∼ NC(0, (σ̃j)

2) are independent random variables and σ̃j =
(µ0

j)
shmσj.

Now recall Proposition
1dm6
3.4.1, (Bordeaux Montrieux

Bo11
[16]): Let d0, d1, ... be

a finite or infinite family of independent complex Gaussian random variables,
dj ∼ NC(0, (σ̂j)

2), 0 < σ̂j <∞, and assume that
∑
σ̂2
j <∞. Then for every

t > 0,

P(
∑
|dj|2 ≥ t) ≤ exp

(
1

2 max σ̂2
j

(
C0

∑
σ̂2
j − t

))
. (18.4.10) levsc.9

Here P(A) denotes the probability of the event A and C0 > 0 is a universal
constant. The estimate is interesting only when t > C0

∑
σ̂2
j and for such

values of t it improves if we replace {d0, d1, ...} by a subfamily. Indeed,
∑
σ̂2
j

will then decrease and so will max σ̂2
j .

Apply this to (
levsc.8
18.4.9) with dj = (µ0

j)
sαj, t = h4−2ϑ. Here, we recall that

σ̃j = (µ0
j)
shmσj, and get from (

levint.8.5
18.1.9), (

levsc.5.5
18.4.6) that

max σ̃2
j � h2m, (18.4.11) levsc.10

while
∞∑
0

σ̃2
j . h2m

∞∑
0

(µ0
j)

2(s−ρ). (18.4.12) levsc.11

Let N(µ) = #
(
σ
(√

R̃
)
∩]0, µ]

)
be the number of eigenvalues of

√
R̃ in

]0, µ], so that N(µ) � µn, µ → ∞, by the standard Weyl asymptotics for
positive elliptic operators on compact manifolds. The last sum in (

levsc.11
18.4.12)

is equal to ∫ ∞
0

µ2(s−ρ)dN(µ) =

∫ ∞
0

2(ρ− s)µ2(s−ρ)−1N(µ)dµ,

which is finite since 2(s− ρ) + n < 0 by (
levsc.5.5
18.4.6). Thus

∞∑
0

σ̃2
j . h2m, (18.4.13) levsc.12

and the proposition follows from applying (
levsc.8
18.4.9), (

levsc.10
18.4.11), (

levsc.12
18.4.13) to

(
levsc.9
18.4.10) with t = h4−2ϑ. 2
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We next review the choice of parameters for the random perturbation in
Theorem

res1
15.3.1. This perturbation is of the form δqω,

δ = τ0h
N2−n, 0 < τ0 ≤ h2, (18.4.14) levsc.13

where N2 � 1 is constant,

qω(x) =
∑

0<hµ0
k≤L

αk(ω)εk(x), |α|CD ≤ R, (18.4.15) levsc.14

and a possible choice of L,R is

L = C
1
2h−M , R = h−M̃ , (18.4.16) levsc.15

with C � 1 as in (
rp.4
15.2.5) and

M =
3n

s− n
2
− ε

, M̃ =
3n

2
+ (

n

2
+ ε)M. (18.4.17) levsc.16

Here ε > 0 is any fixed parameter in ]0, s− n
2
[ and qω should be subject to a

probability density on BCD(0, R) of the form C(h)eΦ(α;h)L(dα), where

|∇αΦ| = O(h−N4), (18.4.18) levsc.18

for some constant N4 ≥ 0.
Write

q0
ω = q1

ω + q2
ω, (18.4.19) levsc.19

q1
ω =

∑
0<hµ0

j≤L

α0
j (ω)εj, q

2
ω =

∑
hµ0

j>L

α0
j (ω)εj. (18.4.20) levsc.20

From Proposition
levsc1
18.4.1 and its proof, especially the observation after (

levsc.9
18.4.10),

we know that

‖hmq2
ω‖Hs ≤ h2−ϑ with probability ≥ 1− exp

(
C0 −

1

2Ch2(m−2+ϑ)

)
.

(18.4.21) levsc.21

When m = 2 we will take ϑ ∈]0, 1/2[ and for m > 2 (i.e. m ≥ 4), we will
take ϑ = 0. Write

P + hmq0
ω = (P + hmq2

ω) + hmq1
ω

and recall Theorem
res1
15.3.1 and Remark

res1.5
15.3.2.
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The next question is then wether hmq1
ω can be written as τ0h

N2−nqω where
qω =

∑
0<hµ0

j≤L
αjεj and |α|CD ≤ R with probability close to 1. We get

αj =
1

τ0

hm−N2+nα0
j (ω) ∼ N (0, σ̂2

j ),

1

τ0

hm−N2+n(µ0
j)
−ρe−(µ0

j )
β

M+1
. σ̂j .

1

τ0

hm−N2+n(µ0
j)
−ρ.

Applying (
levsc.9
18.4.10), we get

P(|α|2CD ≥ R2) ≤ exp(C − R2τ 2
0

Ch2(m−2N2−n)
), (18.4.22) levsc.22

which is O(1) exp(−h−δ) provided that

− 2M̃ + 2
ln(1/τ0)

ln(1/h)
+ 2(N2 − n−m) < −δ. (18.4.23) levsc.23

Here τ0 ≤ h2 and if we choose τ0 = h2 or more generally bounded from below
by some power of h, we see that (

levsc.23
18.4.23) holds for any fixed δ, provided that

m is sufficiently large.
In order to avoid such an extra assumption, we represent α0

j for hµ0
j ≤ L

as the sum of two independent Gaussian random variables. Let j0 = j0(h)
be the largest j for which hµ0

j ≤ L. Put

σ′ =
1

C
hKe−Ch

−β
, where K ≥ ρ(M + 1), C � 1 (18.4.24) levsc.24

so that σ′ ≤ 1
2
σj for 1 ≤ j ≤ j0(h). The factor hK is needed only when

β = 0.
For j ≤ j0, we may assume that α0

j (ω) = α′j(ω) + α′′j (ω), where α′j ∼
N (0, (σ′)2), α′′j ∼ NC(0, (σ′′j )2) are independent random variables and

σ2
j = (σ′)2 + (σ′′j )2,

so that

σ′′j =
√
σ2
j − (σ′)2 � σj.

Put q1
ω = q′ω + q′′ω, where

q′ω =
∑
hµ0

j≤L

α′j(ω)εj, q
′′
ω =

∑
hµ0

j≤L

α′′j (ω)εj.
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Now (cf (
levsc.19
18.4.19)) we write

P + hmq0
ω = (P + hm(q′′ω + q2

ω)) + hmq′ω.

Theorem
res1
15.3.1 is valid for random perturbations of

P0 := P + hm(q′′ω + q2
ω),

provided that ‖hm(q′′ω + q2
ω)‖Hs ≤ h2, which again holds with a probability

as in (
levsc.21
18.4.21) and when ‖hm(q′′ω + q2

ω)‖Hs ≤ h2−ϑ, we have the weakened
variant in Remark

res1.5
15.3.2. The new random perturbation is hmq′ω which we

write as τ0h
N2−nq̃ω, where q̃ω takes the form

q̃ω(x) =
∑

0<hµ0
j≤L

ϑj(ω)εj, (18.4.25) levsc.25

with new independent random variables

ϑj =
1

τ0

hm−N2+nα′j(ω) ∼ N

(
0,

(
1

τ0

hm−N2+nσ′(h)

)2
)
. (18.4.26) levsc.26

Now, by (
levsc.9
18.4.10),

P(|ϑ|2CD > R2) ≤ exp(O(1)D − R2τ 2
0

O(1)(hm−N2+nσ′(h))2
).

Here by Weyl’s law for the distribution of eigenvalues of elliptic self-adjoint
differential operators, we have D � (L/h)n. Moreover, L,R behave like
certain powers of h.

• In the case when β = 0, we choose τ0 = h2. Then for any a > 0 we get

P(|ϑ|CD > R) ≤ C exp(− 1

Cha
)

for any given fixed a, provided we choose K large enough in (
levsc.24
18.4.24).

• In the case β > 0 we get the same conclusion with τ0 = h−K̃σ′ if K̃ is
large enough.

In both cases, we see that the independent random variables ϑj in (
levsc.25
18.4.25),

(
levsc.26
18.4.26) have a joint probability density C(h)eΦ(α;h)L(dα), satisfying (

levsc.18
18.4.18)

for some N4 depending on K.
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Recall the choice of τ0 above, depending on whether β = 0 or β > 0.
Also recall that σ′ = 1

C
hKe−Ch

−β
, K ≥ ρ(M + 1). Let Γ b Ċ have piecewise

smooth boundary, so that G satisfies (
res.4
15.3.8) with κ = 0:

G = O(1)

(
1 +

d(w, ∂Γ)√
h

)−1

.

When ‖hm(q′′ω + q2
ω)‖Hs ≤ h2, which holds with a probability as in (

levsc.21
18.4.21)

with ϑ = 2, we can apply Theorem
res1
15.3.1 to see that with probability

≥ 1−O(1)e−
h−δ̃
O(1)

hN6+n

((
h−β + ln

1

h

)(
ln

1

h

)2 ∫
Ω

G(w,Γ)∆φ(w)L(dw) + |∂Γ|h
1
2

)
,

(18.4.27) levsc.27

we have∣∣∣∣#(σ(Pδ) ∩ Γ)− 1

(2πh)n
vol (p−1(Γ)

∣∣∣∣ ≤
O(1)

hn

((
h−β + ln

1

h

)
h−δ̃

(
ln

1

h

)2 ∫
Ω

G(w,Γ)∆φ(w)L(dw) + |∂Γ|h
1
2

)
.

(18.4.28) levsc.28

Here 0 < δ̃ � 1 is a free parameter and q′′ω, q2
ω are fixed with ‖hm(q′′ω+q2

ω‖Hs ≤
h which holds with a probability as in (

levsc.27
18.4.27).

When m = 2, we settle for ‖hm(q′′ω + q2
ω)‖Hs ≤ h2−ϑ and get the weaker

statement with |∂Γ|h 1
2 replaced with |∂Γ|h 1

2
−ϑ in (

levsc.27
18.4.27), (

levsc.28
18.4.28).

Now let Γ = Γgθ1,θ2;r1,r2
be as in (

levvo.4
18.3.2) and assume P (θj, N0) for j = 1, 2

so that (
levvo.5
18.3.3) holds. Then, using also (

res.4
15.3.8) with κ = 0;

G(w,Γ) = O(1)

(
1 +

d(w, ∂Γ)√
h

)−1

,

we see that ∫
Γ

G(w,Γ)∆φ(w)L(dw) = O
(
h

1
2N0

)
.

In conclusion,

levsc2 Proposition 18.4.2 Let Γ = Γθ1,θ2;r1,r2 be as in (
levvo.4
18.3.2) and assume P (θj, N0)

for j = 1, 2. Choose δ = τ0h
N2−n with τ0 as above. Let q′′ω, q

2
ω satisfy

‖hm(q′′ω + q2
ω)‖Hs ≤ h2−ϑ, which is fulfilled with a probability as in (

levsc.21
18.4.21).

Here ϑ ∈ [0, 1/2[ and we take ϑ = 0 when m ≥ 4 and ϑ > 0 when m = 2.
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Then with a probability for q1
ω that is

≥ 1−O(1)e−h
−δ̃/O(1) (18.4.29) levsc.29

we have when m ≥ 4,∣∣∣∣(#σ(Pδ) ∩ Γ− 1

(2πh)n
vol (p−1(Γ))

)∣∣∣∣ ≤
O(1)

hn

((
h−β + ln

1

h

)
h−δ̃

(
ln

1

h

)2

h
1

2N0 + h
1
2

)
.

(18.4.30) levsc.30

When m = 2, we have the same conclusion, provided that h
1
2 is replaced with

h( 1
2
−ϑ).

The estimate (
levsc.30
18.4.30) is of interest when β + δ̃ < 1/(2N0)

As noticed after Theorem
res1
15.3.1, with probability as in (

levsc.29
18.4.29) and with

N6 there replaced by N6 +1/2, the conclusion (
levsc.30
18.4.30) holds simultaneously

for all Γ = Γθ1,θ2;r1,r2 with θ1, θ2 fixed as in the proposition and with r1 < r2

varying in any fixed compact interval in ]0,+∞[.

18.5 End of the proof
leven

Let θ1, θ2, N0 be as in Theorem
levint1
18.1.1, so that P (θ1, N0) and P (θ2, N0) hold.

Then, choosing ϑ = 0 for m ≥ 4, ϑ = δ̃/2 for m = 2, we get from Proposition
levsc2
18.4.2,

|#(σ(hmPω) ∩ Γgθ1,θ2;1,λ)−
1

(2πh)n
vol (p−1(Γgθ1,θ2;1,λ))|

≤ O(1)

hn+β+δ̃
h

1
2N0

(
ln

1

h

)3

,

(18.5.1) leven.4

simultaneously for 1 ≤ λ ≤ 2 and all (θ1, θ2) in a set where P (θ1, N0),
P (θ2, N0) hold uniformly, with probability as in (

levsc.29
18.4.29).

Assuming P (θ1, N0), P (θ2, N0), we want to count the number of eigenval-
ues of P 0

ω in
Γ1,λ = Γgθ1,θ2;1,λ

when λ → ∞. Let k(λ) be the largest integer k for which 2k ≤ λ and
decompose

Γ1,λ = (

k(λ)−1⋃
0

Γ2k,2k+1) ∪ Γ2k(λ),λ.
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In order to count the eigenvalues of P 0
ω in Γ2k,2k+1 we define h by hm2k = 1,

h = 2−k/m, so that

#(σ(P 0
ω) ∩ Γ2k,2k+1) = #(σ(hmP 0

ω) ∩ Γ1,2),

1

(2π)n
vol (p−1(Γ2k,2k+1)) =

1

(2πh)n
vol (p−1(Γ1,2)).

Thus, with probability ≥ 1− Ce−2
kδ̃
m /C we have

|#(σ(P 0
ω) ∩ Γ2k,2k+1)− 1

(2π)n
vol p−1(Γ2k,2k+1)|

≤ Cδ2
(n+β+δ̃) k

m2
− k

2N0m

(
k

m

)3

.

(18.5.2) leven.6

Similarly, with probability ≥ 1− Ce−2k(λ)δ̃/m/C , we have

|#(σ(P 0
ω) ∩ Γ2k(λ),λ̃)−

1

(2π)n
vol p−1(Γ2k(λ),λ̃)|

≤ Cδλ
n
mλ

β+δ̃
m λ

− 1
2N0 (lnλ)3 ,

(18.5.3) leven.7

simultaneously for all λ̃ ∈ [λ, 2λ[.
Now, we proceed as in

Bo11
[16], using essentially the Borel–Cantelli lemma.

Use that

∞∑
`

e−2kδ̃/m/C = O(1)e−2`δ̃/m/C ,

∑
2k≤λ

2(n+β+δ̃) k
m2
− 1

2N0

k
m

(
k

m

)3

= O(1)λ
1
m

(n+β+δ̃)λ
− 1

2N0

1
m (lnλ)3 ,

to conclude that with probability ≥ 1− Ce−2δ̃
`
m /C , we have

|#(σ(P 0
ω) ∩ Γ2`,λ)| ≤ Cλ

n
mλ
− 1
m

( 1
2N0
−β−δ̃)

(lnλ)3 + C(ω)

for all λ ≥ 2`. This statement implies Theorem
levint1
18.1.1. 2

Proof of Theorem
levint2
18.1.2. This is just a minor modification of the proof

of Theorem
levint1
18.1.1. Indeed, we already used the second part of Proposition

levsc2
18.4.2, to get (

leven.7
18.5.3) with the probability indicated there. In that estimate

we are free to vary (g, θ1, θ2) in G and the same holds for the estimate (
leven.6
18.5.2).

With these modifications, the same proof gives Theorem
levint2
18.1.2. 2
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Chapter 19

Spectral asymptotics for PT
symmetric operators

sapt

19.1 Introduction
ptin

PT -symmetry has been proposed as an alternative for self-adjointness in
quantum physics

BeBoMe99, BeMa10
[10, 11]. Thus for instance, if we consider a Schrödinger

operator on Rn,
P = −h2∆ + V (x), (19.1.1) ptin.1

the usual assumption of self-adjointness (implying that the potential V is
real valued) can be replaced by that of PT -symmetry:

V ◦ ι = V , (19.1.2) ptin.2

where ι : Rn → Rn is an isometry with ι2 = 1 6= ι. If we introduce the
parity operator Pιu(x) = u(ι(x)) and the time reversal operator T u = u,
then this can be written

[P,PιT ] = 0. (19.1.3) ptin.3

Under very weak assumptions it is easy to see that the spectrum of a
PT -symmetric operator is invariant under reflexion in the real axis. (We
only need P to be closed and to commute with PT in the natural sense,
including that the domain of P is invariant under PT .) From the point of
view of physics it seems important that the spectrum is real, and a natural
mathematical question is then to determine when so is the case. Results on
reality and non-reality of the spectrum of PT -symmetric operators can be
found in

Sh02, CaGrSj05, CaGrSj07, BeMa10
[122, 24, 25, 11].

In Sections
ptscl
19.2,

ptla
19.3 we consider operators with random perturbations

and show, by adapting the results of Chapters
weyloutline
15 and

lev
18 that most such
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operators have non-real eigenvalues, in the semi-classical case and in the case
of large eigenvalues. These two sections are an adaptation of the note

Sj12
[137].

In Section
ptwell
19.4 we describe without proofs some recent results for the semi-

classical Schrödinger operator with one or two potential wells: In the case of
one well the spectrum is real provided that the potential is analytic1, while
in the double well case, we get non-real spectrum when the coupling constant
is larger than some exponentially small quantity. A very interesting question
is to give criteria for PT symmetric operators with analytic coefficients in
any dimension to have real spectrum or not.

19.2 The semi-classical case with random per-

turbations
ptscl

Let X be a compact smooth manifold of dimension n. Let ι : X → X be a
smooth involution; ι2 = id, with ι 6= id. Fix a smooth positive density dx
on X which is invariant under ι and let us take L2 norms with respect to
dx. Let P be a a differential operator on X of order m ≥ 2 with smooth
coefficients as in (

upo.1
15.1.1)–(

upo.8
15.1.8). The operator Γ in (

upo.7
15.1.7) is now denoted

T , to stick to the PT -terminology. Also assume that

PP = PP ∗, where Pu(x) = Pιu(x) := u(ι(x)). (19.2.1) ptscl.5

It follows from (
upo.7
15.1.7), (

ptscl.5
19.2.1) that P is PT symmetric:

[PT , P ] = 0. (19.2.2) ptscl.6

Example 19.2.1 P = −h2∆ + V (x) on Tn where <V is even and =V is
odd, V (−x) = V (x). Then P is symmetric in the sense of (

upo.7
15.1.7)and PT -

symmetric with ι(x) = −x.

Let R̃ be an auxiliary h-independent positive elliptic second order differ-
ential operator on X which commutes with P . We also assume that R̃ is
real, or equivalently that

[T , R̃] = 0. (19.2.3) ptscl.7

Then R̃ has an orthonormal basis of real eigenfunctions ej such that Pej =
(−1)k(j)ej where k(j) = 1 or k(j) = −1. We say that ej is even in the first
case and odd in second case. Put εj = ej when ej is even and εj = iej when

1This is not in contradiction with the result in Sections
ptscl
19.2,

ptla
19.3, since the random

perturbation typically destroys uniform analyticity
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ej is odd. Then {εj} is also an orthonormal basis and a linear combination
V =

∑
αjεj is PT symmetric iff the coefficients αj are real: P(V ) = V .

Let Ω b C be a fixed open, simply connected set and define φ up to a
linear function as in (

res.0.5
15.3.1).

By BRd(0, r) we denote the open ball in Rd with center 0 and radius r.
Let qω be a random potential of the form,

qω(x) =
∑

0<µk≤L

αk(ω)εk(x), α(ω) = (αk(ω))0<µk≤L ∈ BRD(0, R), (19.2.4) ptscl.8

where µk > 0 are the square roots of the eigenvalues of h2R̃. We choose
L = L(h), R = R(h) in the interval (

rp.4
15.2.5) for some ε ∈]0, s − n

2
[, s > n

2
,

and recall that the dimension D in (
rp.3
15.2.4) is of the order of magnitude

(L/h)n. We introduce the small parameter δ = τ0h
N2−n, 0 < τ0 ≤ h2, where

N2 ≥ N2(n, s, ε) is sufficiently large.
The randomly perturbed PT symmetric operator is

Pδ = P + δqω. (19.2.5) ptscl.9

N2 is chosen large enough so that:

‖hN2−nqω‖L∞ ≤ O(1)h−n/2‖hN2−nqω‖Hs
h
≤ O(1).

The random variables αj(ω) will have a joint probability distribution

P(dα) = C(h)eΦ(α;h)L(dα), (19.2.6) ptscl.10

where for some N4 > 0,
|∇αΦ| = O(h−N4), (19.2.7) ptscl.11

and L(dα) is the Lebesgue measure. (C(h) is the normalizing constant,
assuring that the probability of BRD(0, R) is equal to 1.)

Let Γ b Ω be a Lipschitz domain of constant scale
√
h and define G as

in (
res.7
15.3.15). With these modifications, the main result of this section reads

as Theorem
res1
15.3.1. We repeat the formulation for convenience.

ptscl1 Theorem 19.2.2 Let δ̃ > 0. Then with probability

≥ 1−O(1)h−N6−n

(
ln

1

τ0

(
ln

1

h

)2 ∫
Ω

G(w,Γ)∆φ(w)L(dw) + |∂Γ|h
1
2

)
e−

h−δ̃
O(1) ,

the number of eigenvalues of Pδ in Γ (counted with their algebraic multiplic-
ity) satisfies∣∣∣∣#(σ(Pδ) ∩ Γ)− 1

(2πh)n
vol (p−1(Γ))

∣∣∣∣ ≤
O(1)

hn

(
h−δ̃ ln

1

τ0

(
ln

1

h

)2 ∫
Ω

G(w,Γ)∆φ(w)L(dw) + |∂Γ|h
1
2

)
.

(19.2.8) ptscl.12

385



Remark
res1.5
15.3.2 remains valid also and we do not repeat it.

From Example
res3.5
15.3.5 we see that it is easy to find PT -symmetric opera-

tors in any given dimension which have plenty of non-real eigenvalues.
Proof of Theorem

ptscl1
19.2.2. We just have to make some small modifications in

the proof of Theorem
res1
15.3.1 and only mention the points where a difference

appears. The proof uses three ingredients:

1) The construction of a special perturbation of the form δqω with qω as
in (

ptscl.8
19.2.4) but with α in the complex ball BCD(0, R) for which we have

nice lower bounds on the small singular values of Pδ in (
ptscl.9
19.2.5), see

Proposition
sv4
17.4.4.

2) A complex variable argument in the α variables using the existence
of the special perturbation in step 1), which permits to conclude that
we have nice lower bounds on a relative determinant for Pδ − z, with
probability close to 1.

3) Application of Theorem
intcz2
12.1.3 about the number of zeros of holomor-

phic functions with exponential growth.

In the present situation we want our special perturbation δqω(x) to be
PT -symmetric, that is we want the coefficients α in (

ptscl.8
19.2.4) to be real. All

the parts of the proofs in step 1 immediately carry over to the case of real
α except the following result which is the basic ingredient in the iterative
process leading to the propositions mentioned above:

Let e1, ..., eN be an ON family in L2(X) such that

‖
N∑
1

λjej‖Hs
h
≤ O(1)‖λ‖CN

where the constant O(1) is independent of the family and especially of N .
Then there exists

q =
∑

0<µj≤L

αjεj, αj ∈ C, (19.2.9) ptscl.13

with ‖α‖CD ≤ R with the parameters as in (
rp.4
15.2.5), such that (

spe.11
17.2.23)

holds,
‖q‖Hs

h
≤ O(1)h−

n
2NLs+

n
2

+ε

and such that the matrix

Mq = (

∫
q(x)ej(x)ek(x))dx)1≤j,k≤N

386



and its singular values

‖Mq‖ = s1(Mq) ≥ ... ≥ sN(Mq)

satisfy (
spe.10
17.2.22), (

sv.12
17.4.10)

‖Mq‖ ≤ O(1)Nh−n,

sk(Mq) ≥ hn/O(1), for 1 ≤ k ≤ N/2. (19.2.10) ptscl.14

Write q = q1 + iq2 where q1 =
∑

(<αj)εj, q2 =
∑

(=αj)εj, so that q1 and
q2 are PT -symmetric. The upper bounds on ‖q‖Hs

h
and on ‖Mq‖ follow from

the bound ‖α‖ ≤ R and therefore carry over to qj. Since Mq = Mq1 + iMq2

we can apply the Ky Fan inequalities (Corollary
nonsa2
8.2.2

GoKr69
[49]) and get

hn

O(1)
≤ s2k−1(Mq) ≤ sk(Mq1) + sk(Mq2), 1 ≤ k ≤ N

4
.

Since the singular values are enumerated in decreasing order, it follows that
for j equal to 1 or 2, we have

sk(Mqj) ≥
hn

2O(1)
, 1 ≤ k ≤ N

4
. (19.2.11) ptscl.15

This means that step 1 can be carried out and we get a PT symmetric
operator Pδ as in Proposition

sv4
17.4.4, the only slight difference is that rather

than taking θ in ]0, 1/4[ we have to confine this parameter to the smaller
interval ]0, 1/8[.

Step 2 now works because of Remark
res2
15.3.3 and its proof, where the main

point is the reality of the coefficients αj while the assumption of reality of the
basis elements is not necessary, and was made there only because we mainly
have in mind a real perturbation for resonance theory (not treated in this
book).

Step 3 can be carried out without any modifications. 2

19.3 Weyl asymptotics for large eigenvalues
ptla

Let P 0 be an elliptic differential operator on X of order m ≥ 2 with smooth
coefficients and with principal symbol pm(x, ξ). In local coordinates we get,
using standard multi-index notation,

P 0 =
∑
|α|≤m

a0
α(x)Dα, pm(x, ξ) =

∑
|α|=m

a0
α(x)ξα. (19.3.1) ptla.1
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Recall that the ellipticity of P 0 means that pm(x, ξ) 6= 0 for ξ 6= 0. We
assume that

pm(T ∗X) 6= C. (19.3.2) ptla.2

As before we assume symmetry,

(P 0)∗ = T P 0T , (19.3.3) ptla.3

and that
P 0P = P(P 0)∗, (19.3.4) ptla.4

with P = Pι as in Section
ptscl
19.2. Then P 0 is PT symmetric.

Let R̃ be a reference operator as in and around (
ptscl.7
19.2.3) and define εj as

there. Write
R̃εj = (µ0

j)
2εj, 0 < µ0

0 < µ0
1 ≤ µ0

2 ≤ ... (19.3.5) ptla.5

so that µk = hµ0
k where µk are given after (

ptscl.8
19.2.4). Our randomly perturbed

operator is
P 0
ω = P 0 + q0

ω(x), (19.3.6) ptla.6

where ω is the random parameter and

q0
ω(x) =

∞∑
0

α0
j (ω)εj. (19.3.7) ptla.7

Here we assume that α0
j (ω) are independent real Gaussian random variables

of variance σ2
j and mean value 0:

α0
j ∼ N (0, σ2

j ), (19.3.8) ptla.8

where (as in (
levint.8.5
18.1.9), (

levint.9
18.1.10),

1

O(1)
(µ0

j)
−ρe−(µ0

j )
β

M+1 ≤ σj ≤ O(1)(µ0
j)
−ρ, (19.3.9) ptla.8.5

M =
3n− 1

2

s− n
2
− ε

, 0 ≤ β <
1

2
, ρ > n, (19.3.10) ptla.9

where s, ρ, ε are fixed constants such that

n

2
< s < ρ− n

2
, 0 < ε < s− n

2
.

Let Hs(X) be the standard Sobolev space of order s. As we saw in Section
levint
18.1 (where the random variables α0

j were complex valued), q0
ω ∈ Hs(X)
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almost surely since s < ρ − n
2
. Hence q0

ω ∈ L∞ almost surely, implying that
P 0
ω has purely discrete spectrum.

Consider the function F (w) = arg pm(w) on S∗X. For given θ0 ∈ S1 '
R/(2πZ), N0 ∈ Ṅ := N \ {0}, we recall the property P (θ0, N0):

N0∑
1

|∇kF (w)| 6= 0 on {w ∈ S∗X; F (w) = θ0}. (19.3.11) ptla.10

We can now state the main result of this section, which is an adaptation
of Theorem

levint1
18.1.1 (cf.

BoSj09
[18]).

ptla1 Theorem 19.3.1 Assume that m ≥ 2. Let 0 ≤ θ1 ≤ θ2 ≤ 2π and assume
that P (θ1, N0) and P (θ2, N0) hold for some N0 ∈ Ṅ. Also assume that β ∈
[0,min(1

2
, 1
N0

)[. Let g ∈ C∞([θ1, θ2]; ]0,∞[) and put

Γgθ1,θ2;0,λ = {reiθ; θ1 ≤ θ ≤ θ2, 0 ≤ r ≤ λg(θ)}.

Then for every δ ∈]0, 1
2N0
− β[ there exists C > 0 such that almost surely:

∃C(ω) <∞ such that for all λ ∈ [1,∞[:

|#(σ(P 0
ω) ∩ Γgθ1,θ2;0,λ)−

1

(2π)n
vol p−1

m (Γgθ1,θ2;0,λ)|

≤ C(ω) + Cλ
n
m
− 1
m

( 1
2N0
−β−δ)

.

(19.3.12) ptla.11

We also have an extension to families Γgθ1,θ2;0,λ that satisfy the asumptions
uniformly. Cf. Theorem

levint2
18.1.2.

ptla2 Theorem 19.3.2 Assume that m ≥ 2. Let Θ be a compact subset of [0, 2π].
Let N0 ∈ N and assume that P (θ,N0) holds uniformly for θ ∈ Θ. Let G be
a subset of {(g, θ1, θ2); θj ∈ Θ, θ1 ≤ θ2, g ∈ C∞([θ1, θ2]; ]0,∞[)} with the
property that g and 1/g are uniformly bounded in C∞([θ1, θ2]; ]0,∞[) when
(g, θ1, θ2) varies in G. Then for every δ ∈]0, 1

2N0
− β[ there exists C > 0

such that almost surely: ∃C(ω) < ∞ such that for all λ ∈ [1,∞[ and all
(g, θ1, θ2) ∈ G, we have the estimate (

ptla.11
19.3.12).

The condition (
ptla.8.5
19.3.9) allows us to choose σj decaying faster than any

negative power of µ0
j . Then as in Chapter

lev
18 it follows that qω(x) is almost

surely a smooth function. Theorem
ptla2
19.3.2 says roughtly that for almost ev-

ery PT symmetric elliptic operator of order ≥ 2 with smooth coefficients on
a compact manifold which satisfies the conditions (

ptla.2
19.3.2), (

ptla.3
19.3.3), (

ptla.4
19.3.4),

the large eigenvalues distribute according to Weyl’s law in sectors with lim-
iting directions that satisfy a weak non-degeneracy condition.
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Proof of Theorem
ptla1
19.3.1. As already mentioned, the theorem is a variant

of Theorem
levint1
18.1.1 (cf. Theorem 1.1 in

BoSj09
[18]). The difference is just that we

now use real random variables in the perturbation q0
ω in order to assure the

PT -symmetry and use Theorem
ptscl1
19.2.2 instead of Theorem

levint1
18.1.1. 2

The proof of Theorem
ptla2
19.3.2 is a modification as in the proof of Theorem

levint2
18.1.2.

19.4 PT -symmetric potential wells
ptwell

In this section we discuss some recent results about real and non-real eigen-
values of PT -symmetric deterministic perturbations of a P-symmetric self-
adjoint Schrödinger operator in the semi-classical limit. Let X be either Rn

or a compact smooth Riemannian manifold of dimension n. As the unper-
turbed operator, we take

P0 = −h2∆ + V0(x) (19.4.1) ptwell.1

on X, where ∆ is the Laplace-Beltrami operator, V0 ∈ C∞(X; R). Assume
that

V0 ◦ ι = V0, (19.4.2) ptwell.2

where ι : X → X is an isometry with

ι2 = id 6= ι. (19.4.3) ptwell.3

We are interested in the spectrum of PT -symmetric perturbations of P0 near
some fixed real energy E0. To assure that the spectrum is discrete near E0

when X = Rn, we assume in that case that

α := lim inf
x→∞

V0(x) > E0. (19.4.4) ptwell.4

The perturbed operator is

Pδ = −h2∆ + Vδ(x), (19.4.5) ptwell.5

where
Vδ(x) = V0(x) + iδW (x), (19.4.6) ptwell.6

δ ∈ R, |δ| � 1 and W ∈ C∞(X; R) is bounded and odd with respect to ι,

W ◦ ι = −W. (19.4.7) ptwell.6.5

(We will also allow W to be unbounded in one of the results below.) We
define P0 as a self-adjoint operator by taking the Friedrichs extension of
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(
ptwell.1
19.4.1) from C∞0 (X). Then σess(P0) ⊂ [α,+∞[ and σ(Pδ) is contained in

R+D(0, δ‖W‖L∞) and is purely discrete in a fixed neighborhood of E0 when
|δ|, h� 1.

In the self-adjoint case (δ = 0) very detailed informations about the
eigenvalues can be obtained from “tunneling analysis”: Assume that

V −1
0 (]−∞, 0]) =

⋃
j∈J

Uj, #J <∞, (19.4.8) ptwell.7

where the potential wells Uj are closed (and hence compact by (
ptwell.4
19.4.4)) and

mutually disjoint;
Uj ∩ Uk = ∅, j 6= k. (19.4.9) ptwell.8

We refer to
HeSj84
[61] where further references can be found. An important in-

gredient here is the Lithner-Agmon metric V0(x)+dx
2 where dx2 denotes the

Riemannian metric on X and as usual a+ = max(a, 0) for a ∈ R. The
corresponding distance d(x, y) ≥ 0 is symmetric and satisfies the triangle
inequality but may be degenerate in the sense that

d(x, y) 6⇒ x = y.

We assume that Uj are “connected” in the sense that

diamd(Uj) = 0, j ∈ J. (19.4.10) ptwell.8.5

19.4.1 Simple well in one dimension

We describe a recent result by N. Boussekkine and N. Mecherout
BoMe15
[21] which

says very roughly that when X = R, ι(x) = −x, J = {0} and V0 and W are
real analytic near U0, then for |δ|, h small enough, the spectrum of Pδ in a
fixed complex neighborhood of E0 is purely real. See also O. Rouby

Rou15
[116] for

a more general result. We give a more detailed formulation.
Let V0 ∈ C∞(R; R) be smooth and satisfy (

ptwell.2
19.4.2)–(

ptwell.4
19.4.4), with ι(x) =

−x. Assume

(H1) ∃m0 ≥ 0 such that ∀α ∈ N, ∃Cα > 0 such that

|∂αxV0| ≤ Cα〈x〉m0−α, on R.

When m0 > 0 we strengthen (
ptwell.4
19.4.4) by assuming that

V0(x) ≥ 1

C0

|x|m0 for |x| ≥ C0,

form some positive constant C0,
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(H2) V0 − E0 has exactly one potential well, more precisely,

V −1
0 (]−∞, E0]) = [α0

0, β
0
0 ] =: U0,

V −1
0 (]−∞, E0[) =]α0

0, β
0
0 [,

where −∞ < α0
0 < β0

0 <∞. Moreover,

V ′0(α0
0) < 0, V ′0(β0

0) > 0.

(H3) V0 is analytic near U0.

As before, Vδ(x) = V0(x) + δW (x), where we assume

(H4) W ∈ C∞(R; R) is odd, W (−x) = −W (x),

(H5) W satisfies the first part of (H1) with the same m0,

(H6) W is analytic near U0.

Let V0, W also denote holomorphic extensions to a complex neighborhood of
U0. Then for E, δ ∈ C with |E − E0| and |δ| small enough, we have unique
solutions α0(E, δ), β0(E, δ) in complex neighborhoods of α0

0, β0
0 respectively,

of the equations

Vδ(α0(E, δ)) = z, Vδ(β0(E, δ)) = z,

and α0, β0 are holomorphic functions of (z, δ).
For (E, δ) ∈ neigh ((E0, 0),C2), we put

I0(E, δ) = 2

∫ β0(E,δ)

α0(E,δ)

(E − Vδ(x))
1
2dx, (19.4.11) ptwell.9

where we integrate along the straight line segment from α0(E, δ) to β0(E, δ)
and choose the branch of the square root which has argument close to 0.
(When E is real and δ = 0, this is a real integral with a positive integrand.)
It is easy to check that I0(E, δ) is a holomorphic function of (E, δ).

We define Pδ = −h2∆ + Vδ as the unbounded closed operator L2(R) →
L2(R) with domain,

D(Pδ) = {u ∈ L2; u′, u′′, 〈x〉m0u ∈ L2},

and again the spectrum of Pδ is purely discrete in a fixed complex neighbor-
hood of E0, when |δ|, h are small enough.
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ptwell1 Theorem 19.4.1 (Boussekkine, Mecherout
BoMe15
[21]) Let V0, W ∈ C∞(R; R) be

even and odd respectively and satisfy (
ptwell.2
19.4.2)–(

ptwell.4
19.4.4), (H1)–(H6). Define

I0(E, δ) as above, where Vδ(x) = V0(x)+iδW (x) and (E, δ) ∈ neigh ((E0, 0),C2).
There exists a function I(E, δ;h) on neigh ((E0, 0, 0),C×C×R), holomor-
phic in (E, δ) such that

I(E, δ;h) ∼ I0(E, δ) + hI1(E, δ) + ... (19.4.12) ptwell.10

in the space of holomorphic functions defined near (E0, 0), such that I(E, δ;h)
real when E, δ are real and such that for δ ∈] − δ0, δ0[ with 0 < δ0 � 1, the
eigenvalues E in neigh (E0,C) are given by the Bohr-Sommerfeld condition

I(E, δ;h) = 2π(k + 1/2)h, k ∈ Z. (19.4.13) ptwell.11

These eigenvalues are real.

Outline of the proof. This is an application of the complex WKB method,
explained in Chapter

cwkb
7. Let A > sup suppU0, so that −A < inf suppU0

by parity and assume that A i small enough so that V0, W are analytic
near [−A,A]. We can then consider the Dirichlet realization PD

δ of Pδ on
L2([−A,A]). Then, as explained at the end of Section

sc
7.2, the eigenvalues of

PD
δ near E0 are given by a Bohr-Sommerfeld condition

ID(E, δ;h) = 2π(k + 1/2)h, k ∈ Z,

where ID, denoted by Ĩ(E;h) in (
sc.38
7.2.50), has the general properties of I

in the theorem. Keeping track of the PT -symmetry, it is easy to show that
ID(e, δ;h) is real when E, δ are real, and we get the conclusion of the theorem
for PD

δ .
To get the theorem, we need to complete the complew WKB methods

with a study of the exponential asymptotics of null solutions of Pδ −E that
are of class L2 near +∞ or near −∞. This can be done by applying the
fundamental idea of the complex WKB-method, as explained in Section

esti
7.1

and it is here that we use (H1), (H5). This extension is indicated in
BoMe15
[21]

and carried out in detail in the work
MeBoRaSj15
[100] and allows to make an asymptotic

study of the Wronskian of two null solutions of P − δ − E that are L2 near
−∞ and +∞ respectively. 2

The analyticity assumptions about V0,W are essential, as can be seen
by applying Theorem

ptscl1
19.2.22 to −h2∆ + V0 + iδ0(W + δqω), where δ0 > 0 is

small and fixed and δqω is a random perturbation. (When extending Theorem

2We here neglect the fact that Theorem
ptscl1
19.2.2 was established for operators on compact

manifolds and not on Rn

393



ptscl1
19.2.2 to the case of Rn a suitable cutoff function has to be inserted in the
random perturbation and we refer to

Sj08a
[131].)

On the other hand, if V , W are merely smooth but satisfy the other
assumptions in Theorem

ptwell1
19.4.1, then it seems clear that the conclusion there

remains valid for |δ| ≤ O(1)h ln(1/h).

19.4.2 Double wells in arbitrary dimension

We consider the general situation described in the beginning of this section,
in particular in (

ptwell.1
19.4.1)–(

ptwell.8.5
19.4.10). Also assume that V0 has a double-well

structure at energy E0 = 0, and that the two wells are exchanged by ι. More
precisely, J = {−1, 1}, U±1 6= ∅, and

ι(U−1) = U1. (19.4.14) ptwell.12

To describe the spectrum of P0, we introduce two self-adjoint reference
operators. Let χ±1 ∈ C∞0 (X; [0, 1]) satisfy:

χj = 1 near Uj, (19.4.15) ptwell.13

suppχj ⊂ B(Uj, ρ) =: Uρ
j (19.4.16) ptwell.14

where ρ > 0 is small. Here

B(Uj, ρ) = {x ∈ X; d(Uj, x) < ρ}.

Put
P̃j = P̃0,j = P0 + λχ−j, j = ±1, (19.4.17) ptwell.15

where λ > 0 is a constant, large enough so that

{x ∈ X; V0(x) + λχ−j(x) ≤ 0} = Uj.

If we define
Pu = u ◦ ι, u ∈ L2(X), (19.4.18) ptwell.16

then P is unitary on L2(X) with P 6= 1 = P2 and we have

P ◦ P0 = P0 ◦ P , (19.4.19) ptwell.17

P ◦ P̃j = P̃−j ◦ P , j = ±1. (19.4.20) ptwell.18

The last relation implies that P̃−1 and P̃1 have the same spectrum.
Assume that

µ̃(h) = o(h) (19.4.21) ptwell.19
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is a simple eigenvalue of P̃1 (and hence of P̃−1), and that there exist C0, N0 >
0 such that

σ(P̃±1) ∩ ]µ̃(h)− hN0/C0, µ̃(h) + hN0/C0[= {µ̃(h)}. (19.4.22)

For h > 0 small enough, P0 has exactly two eigenvalues in the interval

]µ̃(h)− hN0/(2C0), µ̃(h) + hN0/(2C0)[,

namely the eigenvalues µ(h)± |t(h)| of the interaction matrix,(
µ(h) t(h)

t(h) µ(h)

)
,

where µ(h) ∈ R, t(h) ∈ C satisfy,

µ(h) = µ̃(h) +Oρ(e(ε(ρ)−2S0)/h), ε(ρ)→ 0, ρ→ 0,

∀α > 0, t(h) = Oα(e(α−S0)/h).

Here,
S0 = d(U1, U−1) (19.4.23) ptwell.20

is the Lithner-Agmon distance between the two wells U±1. Quite often we
also have a lower bound on |t(h)|:

∀α > 0, |t(h)|−1 = Oα(e(α+S0)/h).

See for example
Si84
[124],

HeSj84
[61] or the review paper

Sj84
[127] and the references

therein.
Concerning the perturbation W , we assume (

ptwell.6.5
19.4.7).

The result of A. Benbernou, N. Boussekinne, N. Mecherout, T. Ramond
and J. Sjöstrand

BeBoMeRaSj15
[9] is the following:

ptwell2 Theorem 19.4.2 (
BeBoMeRaSj15
[9]) Under the above assumptions, the operator Pδ has ex-

actly two eigenvalues (counted with their algebraic multiplicity) in D(µ̃, hN0/C)
for C � 0 and for δ real such that |δ| � hN0. These eigenvalues are equal
to the eigenvalues of the matrix

Xδ =

(
a(δ) b(δ)

b(δ) a(δ),

)
and hence of the form

λ± = <a±
√
|b|2 − (=a)2.
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Here a(δ) = a(δ;h), b(δ) = b(δ;h) satisfy,

a(0;h) = µ(h), b(0;h) = t(h),

∂δa = i

∫
W (x)|ẽ1(x)|2dx+O(δh−N0) +Oδ(e(ε(δ)−2S0)/h),

∂δb = Oδe(ε(δ)−S0)/h,

for all δ > 0, where ε(δ) → 0, δ → 0. Further, ẽ1 is the normalized eigen-

function with (P̃1 − µ̃(h))ẽ1 = 0.
If W > 0 on U1, then ∫

W (x)|ẽ1(x)|2dx � 1, (19.4.24) ptwell.21

and if we assume that (
ptwell.21
19.4.24) holds, then there exists δ+ ≥ 0 with the

asymptotics,

δ+ = (1 +Oδ(e(ε(δ)−S0)/h))
|t(h)|∫

W (x)|ẽ1(x)|2dx
, ε(δ)→ 0, δ → 0,

such that

• The two eigenvalues are real and distinct for |δ| < δ+.

• They are double and real when |δ| = δ+.

• They are non-real and complex conjugate, when δ+ < |δ| � hN0.

Outline of the proof. The proof is a straight forward application of the
analysis of multiwell Hamiltonians in

HeSj84
[61] (cf

DiSj99
[40]) that we extend slightly to

non-self-adjoint operators, keeping track of the PT -symmetry.
Let ẽj = ẽj(h) be normalized eigenfunctions of P̃j corresponding to the

eigenvalue µ(h):

(P̃j − µ̃)ẽj = 0. (19.4.25) ptwell.22

We choose ẽj so that
P ẽj = ẽ−j. (19.4.26) ptwell.23

Using exponential decay estimates, one can prove that

(ẽ1|ẽ−1) = Ô(e−S0/h), (19.4.27) ptwell.24

where Ô(e−S0/h) denotes a quantity which is O(e(δ̃−S0)/h) for every δ̃ > 0.
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We know that for h small enough, the spectrum of P0 in

]µ̃− hN0

2C0

, µ̃+
hN0

2C0

[ (19.4.28) ptwell.25

consists of two simple or one double double eigenvalue. Let E0(h) ⊂ L2(M) be
the corresponding 2-dimensional spectral subspace and let Π0(h) : L2(M)→
L2(M) be the associated spectral projection. Since P0 is self-adjoint, Π0 is
orthogonal, Π0 = Π∗0.

The functions Π0ẽj, j = ±1 form a basis in E0(h) and Π0ẽj − ẽj is expo-
nentially small with a geometrically determined decay rate that we shall not
descibe in this outline. Consequently Π0ẽj form an almost orthonormal basis
in E0(h) (see

BeBoMeRaSj15
[9],

DiSj99
[40] for more details) and this basis can be orthonomalized

by using the square root of the Gram matrix (which is very close to the
identity), in order to produce an orthonormal basis e1, e−1 such that ej − ẽj
is exponentially small. The matrix of P0|E0(h)

with respect to this basis is(
µ(h) t(h)

t(h) µ(h)

)
, (19.4.29) ptwell.26

where
µ(h) = µ̃(h) + Õ(e−2S0/h) (19.4.30) ptwell.27

is real and the tunneling coefficient fulfills

t(h) = Õ(e−S0/h). (19.4.31) ptwell.28

See Theorem 6.10 in
DiSj99
[40]. Here Õ(e−2S0/h) denotes a quantity which is

O(e(ε(ρ)−2S0)/h, where ε(ρ)→ 0, ρ→ 0.
The two eigenvalues of P0(h) in the interval (

ptwell.25
19.4.28) are the ones of the

matrix (
ptwell.26
19.4.29):

µ±1(h) = µ(h)± |t(h)|. (19.4.32) ptwell.29

We now turn to the perturbed operator Pδ, and we assume for simplicity,
that ‖W‖L∞ ≤ 1. As for δ, we require that

|δ| � hN0 . (19.4.33) ptwell.30

We know that the spectrum of Pδ is discrete in some fixed (h-independent)
neighborhood of 0 when h and |δ| are small enough. From the assumption
(
ptwell.30
19.4.33), it follows that Pδ has precisely two eigenvalues, counted with their

(algebraic) multiplicity, in the disc D(µ̃, hN0/(2C)) and these eigenvalues
belong to the smaller disc D(µ(h), |t(h)|+δ). Let Eδ(h) be the corresponding
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2-dimensional spectral subspace and let Πδ(h) : L2(M) → Eδ(h) be the
spectral projection, where we recall the Riesz formula

Πδ =
1

2πi

∫
γ

(z − Pδ)−1dz, γ = ∂D

(
µ̃,
hN0

2C

)
. (19.4.34) ptwell.31

Using the Riesz formula (cf.
DiSj99
[40, p.62]) we obtain

‖Πδ − Π0‖ = O(δh−N0)� 1. (19.4.35) ptwell.32

Thus, introducing
eδj = Πδej, (19.4.36) ptwell.33

we see that eδ1, eδ−1 form a basis for Eδ(h) which is close to be orthonormal.
Differentiating in (

ptwell.31
19.4.34), we see that

∂δΠδ = O(h−N0), (19.4.37) ptwell.34

which also implies (
ptwell.32
19.4.35).

The functions eδj , j = ±1, form an orthonormal basis for Eδ(h) when
δ = 0 but not necessarily when δ 6= 0. Recalling that P ∗δ = P−δ, we let
f δ1 , f

δ
−1 ∈ E−δ(h) be the dual basis to eδ1, δ

δ
−1 ∈ Eδ(h):

(f δj |eδk) = δj,k, j, k ∈ {−1, 1}. (19.4.38) ptwell.35

Let Mδ = (mδ
j,k) denote the matrix of Pδ = Eδ(h) → Eδ(h) with respect

to the basis eδ1, e
δ
−1. Then

mδ
j,k = (Pδe

δ
k|f δj ) = (eδk|P−δf δj ). (19.4.39) ptwell.36

Note that f 0
j = e0

j since e0
1, e

0
−1 is an orthonormal basis, and that M0 is the

matrix in (
ptwell.26
19.4.29).

The PT -symmetry of Pδ induces a corresponding symmetry for Mδ. The
general form of Mδ is

Mδ =

(
a(δ) b(δ)

b(δ) a(δ)

)
. (19.4.40) ptwell.37

Using tunneling analysis we can show that

a(δ) = µ(h) + iδ

∫
W (x)|e0

j(x)|2dx+O(δ2h−N0) + δÕ(e−2S0/h), (19.4.41) ptwell.38

∂δb, ∂δ|b| = Õ(e−S0/h), (19.4.42) ptwell.39

b(δ) = t(h) + δÕ(e−S0/h), (19.4.43) ptwell.40
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and that (
ptwell.38
19.4.41) can be formally differentiated with respect to δ.

The eigenvalues of Pδ |Eδ(h)
are equal to the ones of Mδ (cf. (

ptwell.37
19.4.40)):

λ± = <a±
√
|b|2 − (=a)2. (19.4.44) ptwell.41

Assume now that
W > 0 on U1 (19.4.45) ptwell.42

and hence also on a fixed neighborhood of that set. Since e0
1 is exponentially

concentrated to a neighborhood of U1, we conclude that∫
W (x)|e0

1(x)|2dx � 1, 3 (19.4.46) ptwell.43

and differentiation of (
ptwell.38
19.4.41) (which is allowed) shows that

∂δ=a =

∫
W |e0

1|2dx+O(δh−N0) + Õ(e−2S0/h) � 1. (19.4.47) ptwell.44

We can now discuss when the two eigenvalues (cf. (
ptwell.41
19.4.44)) are real or

complex. Since we are dealing with a PT symmetric operator, we know
that they are either real or form complex conjugate pairs. This means that
P−δ = P ∗δ and Pδ have the same spectrum. Consequently, we can restrict
the attention to the region 0 ≤ δ � hN0 . The reality or not of our two
eigenvalues is determined by the sign of

|b| − (=a)2 = (|b|+ =a)(|b| − =a). (19.4.48) ptwell.45

Recall that =a vanishes when δ = 0 and is a strictly increasing function of
δ whose derivative is � 1, while b(δ) and its derivative with respect to δ are
exponentially small. Thus, if we first consider the case when t(h) = 0, we see
that both factors in (

ptwell.45
19.4.48) vanish for δ = 0 (corresponding to a double real

eigenvalue of P0) and for δ > 0 the first factor is positive while the second
one is negative, so the two eigenvalues in (

ptwell.41
19.4.44) are non-real and complex

conjugate for δ > 0.
Let now t(h) 6= 0 (but still exponentially small as we recalled in (

ptwell.28
19.4.31)).

Then the first factor in (
ptwell.45
19.4.48) is strictly positive for 0 ≤ δ � hN0 . Denote

the second factor by f(δ) = |b| − =a. Then f(0) = |t(h)| > 0 and

f ′(δ) = −
∫
W (x)|e0

j |2dx+O(δh−N0) + Õ(e−S0/h) � −1. (19.4.49) ptwell.46

3This also follows from the more general assumption (
ptwell.21
19.4.24).
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Hence there exists a point δ+(h) > 0 such that f(δ) > 0 for 0 ≤ δ <
δ+, f(δ+) = 0, f(δ) < 0 for e+ < δ � hN0 . In the first region we have
two real and distinct eigenvalues, at the point δ+ we have a real double
eigenvalue, while in the last region we have a pair of complex conjugate
non-real eigenvalues.

In view of (
ptwell.28
19.4.31) and (

ptwell.46
19.4.49) we know that δ+(h) = Ô(e−S0/h) and

if we restrict the attention to the exponentially small interval [0, 2δ+] we can
sharpen (

ptwell.46
19.4.49) to

f ′(δ) = −
∫
W (x)|e0

j(x)|2dx+ Õ(e−S0/h),

which implies that

δ+ = (1 + Õ(e−S0/h))
|t(h)|∫

W (x)|e0
1(x)|2dx

, (19.4.50) ptwell.47

and this finishes the outline of the proof. 2
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Chapter 20

Numerical illustrations

num

by

Agnès E. Sjöstrand1 and Johannes Sjöstrand

In this chapter we give some numerical illustrations to the results about
the asymptotic distribution of eigenvalues. Such calculations have already
been given by many people, Trefethen

Tr97
[147], Trefethen–Embree

TrEm05
[148], Davies

Da99, Da00
[31, 33], Davies–Hager

DaHa09
[37], Zworski

Zw01, Zw02
[156, 157] and many others. Numerical

calculations with special attention to Weyl asymptotics have been given by
Hager

Ha06a, Ha06b
[53, 54], Bordeaux Montrieux

Bo08
[15], Vogel

Vo14, Vo14b
[149, 150]. Many of the

illustrations below are therefore well-known and even though we have done
our own Matlab programs, we have clearly benefitted from the influence from
the preceding works.

20.1 Jordan block
jonum

The easiest case is that of a large Jordan block. Figure
JordanPsSp
20.1 illustrates the

very fast growth of the resolvent of a Jordan block J , denoted A0 in (
sp.d.1
2.4.1),

of size N , already for N = 20.
Let Jδ = J + δQ, where Q is an N × N -matrix whose entries are real

independent Gaussian random variables ∼ N (0, 1). In Figure
JordanPsSp
20.1 we let

N = 20 and trace 31 level curves for the norm of the resolvent, corresponding
to the levels ek, k = 0, 1, ..., 30. We see that the norm of the resolvent grows
very fast towards the center of the unit disc. In Figure

Jdd20PsSp
20.2 we add a small

random perturbation and observe a dramatic improvement. Here N = 20.
It is probably a general result, that the presence of a random perturbation

improves the resolvent norm in the spectral region. This appears quite clearly

1agnes.sjo@gmail.com
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in the proofs of Weyl asymptotics, and an explicit result in this direction in
the 1-dimensional case can be found in

Bo08
[15]. For this reason we can be quite

confident that numerical calculations of spectra of perturbed operators are
accurate while the corresponding calculations for the unperturbed operators
can give strange results deep into the pseudospectrum.

Naturally, the reduction of a differential operator to a large matrix can
be a source of errors as well.

In Figures
Jdd100dd1e-3
20.3,

Jdd100dd1e-4
20.4,

Jdd100dd1e-5
20.5 we give a series of computations for larger

Jordan blocks (N = 100). The calculation of corresponding pseudospectral
level curves becomes time consuming and is given in only in the last figure.

In accordance with the results of Chapter
pj
13, most of the eigenvalues are

cery close to a circle with radius close to 1. The radius of this circle decreases
slightly when we decrease δ. This can be viewed as a result on Weyl asymp-
totics, with J = 1]0,N ]∩Ze

iD, on `2([1, .., N ]) ' CN , with h = 2π/N . The
semiclassical symbol of J is now eiξ whose range is equal to S1. In addition
to the eigenvalues close to a circle there is a “uniformly bounded” number
of eigenvalues inside. The expected density of those interior eigenvalues has
been determined in

SjVo14
[140].

The results and corresponding simulations can be generalized to bidiag-
onal operators of the form P = 1]0,N ]∩Z(aeiD + be−iD). The symbol is now
aeiξ + be−iξ whose range is an ellipse. See Sjöstrand–Vogel

SjVo15, SjVo16
[141, 142].

20.2 Hager’s operator
hanum

We consider Hager’s operator hD+g(x) on S1 (cf. Chapter
1dm
3). We will study

two choices of g.

20.2.1 The case when g(x) = i cosx.

Then,
P = hDx + i cosx. (20.2.1) num.1

As we saw in the beginning of Chapter
1dm
3, the spectrum of P is an arithmetic

progression of real eigenvalues (since the mean value of =g is zero). As a
numerical approximation we restrict the operator to the space HN = {u =∑N
−N ûke

ikx} and then project to the same space. In other words, we study
the spectrum of ΠNP : HN → HN . In Figure

HUnpert_h2e-1_N20
20.6, we have plotted the

eigenvalues of P or rather ΠNP in the case whenN is small = 20. By choosing
h with Nh = 2 we can arrange so that the real parts of the eigenvalues
are situated in [−2, 2]. We notice that the real eigenvalues in the middle
(roughly the ones with real part between −0.7 and 0.7) try to mimic the true
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eigenvalues of (
num.1
20.2.1), while the ones on the diagonal segments are influenced

by the fact that we do numerics with a projected “Toeplitz” operator. (The
ones to the left are reminiscent of the eigenvalues of (hD)2 + i cos(x), that
we study in the next Section. An even better model, within reach of semi-
classical analysis would be 1R+(hD)(hD + i cosx).)

In the same figure (
HUnpert_h2e-1_N20
20.6) have also plotted pseudospectral curves, more

precisely the level curves ‖(z − P )−1‖ = ek, for 0 ≤ k ≤ K, with K = 20.
Naturally each eigenvalue is encercled by 21 such curves, but in order to
save computing time, we have chosen a rather low resolution, so these fine
details are not visible. What is important though and clearly visible is the
very strong pseudospectral effect in the interior of the rectangle [−2, 2] +
i[−1, 1]. Near the middle the norm of the resolvent is of the order at least
e20 = 4.8517× 108. Hence there is a corresponding spectral instability under
perturbations. For even stronger effects we expect Matlab to have difficulties
and to make numerical errors.

When adding a random perturbation, the resolvent becomes reasonable
in the new spectral region, as can be seen in Figure

HCos_h2e-1_N20_dd5e-2
20.7. Here we consider

Pδ = P + δQ, (20.2.2) num.2

where

Qu(x) =
N∑
−N

(2π)−1qj,k(ω)(u|eik(·))eijx (20.2.3) num.3

and qj,k are independent complex random variables ∼ NC(0, 1). (Again the
numerical computations concern ΠNPδ.) In Figure

HCos_h2e-1_N20_dd5e-2
20.7 we still take N = 20,

h = 0.1. The parameter δ is equal to 0.05. The norm of the particular
random perturbation Q is 12.3104. This norm varies very little from one
simulation to another. As we see, the eigenvalues now wander around in to
the range of the symbol and the resolvent norm no longer attains extremely
large values (except right near the eigenvalues, though not visible because of
the limited resolution).

In Figures
HCos_h2e-1_N50_dd0
20.8,

HCos_h2e-1_N50_dd1e-4
20.9 we do analogous simulations forN = 50 and h = 0.04

(still with hN = 2). The pseudospectral effect is now much stronger and
Matlab gives several warning messages about the extreme size of the resolvent
norm, when calculating the pseudospectral curves. There are hardly no real
numerical eigenvalues in the unperturbed case. One possible explanation is
mathematical: This may be the case already for the exact operator ΠNP .
We rather think that it is a pseudospectral effect. The spectral instability is
so extreme that we are far from the true eigenvalues in the interior region.
In the perturbed case, the pseudospectral effect is moderate and we are
confident that we get the true eigenvalues of ΠNPδ, and perhaps even those
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of Pδ when restricting the real part of the spectral parameter to an interval
]− 2 + 1/O(1), 2− 1/O(1)[.

We also did some simulations with N = 500, h = 0.004. The pseudospec-
tral effect now becomes very strong even close to the boundary of the range
of the symbol, and we did not try to draw pseudospectral curves. In Figure
HCos_N500_dd0
20.10 we have plotted the numerical eigenvalues when δ = 0. Apparently, the
numerical instability sets in already for dist (=z), {−1, 1}) ≈ 0.15, and only
the eigenvalues stretching in from the corners are likely to be true eigenvalues
of ΠNP0. (One might be able to justify them semi-classically by comparing
them with the eigenvalues of 1R+(hD)(hD + i cos(x)).)

In figures
HCos_N500_dd1e-2
20.11–

HCos_N500_dd1e-12
20.16 we have plotted the eigenvalues of the perturbed

operator with δ ranging from 10−2 down to 10−12. When δ = 10−2 the eigen-
values fill up the range [−2, 2]+ i[−1, 1] quite well and some are even slightly
outside. (For larger perturbations the random part becomes dominant and
we get a cloud of eigenvalues around this rectangle. We are then in the
theory of random matrices which has less to do with Weyl asymptotics for
differential operators.)

In accordance with Weyl asymptotics, we see that the eigenvalues are dis-
tributed more densely near the upper and lower boundaries of the rectangle.
For smaller values of δ they are no longer able to fill up the whole rectangle
and consequenly the Weyl law will no longer hold right near the upper and
lower boundaries. One can say that some eigenvalues try to obey the Weyl
law up to the boundary, get stuck by the weakness of the perturbation and
accumulate quite densely on a curve. Inside the region formed by the two
curves we have Weyl asymptotics (apparently). The precise shape of the
accumulation has been studied by M. Vogel

Vo14
[149] in terms of the expected

eigenvalue density. He also verified the Weyl law by letting Matlab count the
eigenvalues in different rectangles.

In the figures
redblue_N500_dd1e-2
20.17–

redblue_N500_dd1e-12
20.22 we plotted the perturbed eigenvalues together

with the unperturbed ones (dd stands for δ).

20.2.2 The case g(x) = eix

The unperturbed operator is now

P = hDx + eix. (20.2.4) num.4

We define the corresponding perturbed operators Pδ = P + δQ as before. In
Figure

SpectHExpdd1-2
20.23 we have plotted the eigenvalues of ΠNPδ when N = 500 and

δ = 10−2. In the middle it is similar to the case of the potential i cosx,
but there are two obvious differences: The spectrum now fills up a stadion
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shaped domain with two discs at the ends, where the eigenvalue density is
lower. This is not a numerical artefact but rather a new case of the Weyl
law, and there is a difference between ΠNPδ and Pδ in the two discs.

The reason becomes clear if we plot the range of the symbol ξ + eix

restricted to x ∈ S1, −2 ≤ ξ ≤ 2. In Figure
range
20.24 we have plotted the values

of the symbol ξ + ieix, by letting first x take values in a grid in S1 of step
“Big” and letting ξ go through a denser grid in [−2, 2], then reversing the
procedure, letting ξ go through the points −2 + kBig ∈ [−2, 2] and for each
such ξ, letting x go through a denser grid in S1. Each point in the middle
region has two preimages, and in the discs near the ends there is only one
preimage per point.

We then plotted the eigenvalues (in blue) against the range for δ = 10−k,
k = 2, 4, 6, 8, 10, 12, see Figures

expix_N500_dd1e-2
20.25–

expix_N500_dd1e-12
20.30.

20.3 (hD)2 + i cosx
hD2i

The operator
P = (hD)2 + i cos(x), x ∈ S1, (20.3.5) num.5

appears naturally as a model when applying the secular method to certain
non-self-adjoint perturbations of completely integrable quantum Hamilto-
nians in 2 dimensions (Hitrik-Sjöstrand

HiSj15
[73]). The range of the symbol

p = ξ2 + i cos(x) is equal to [0; +∞[+i[−1, 1]. The lower corner of this image
corresponds to (x, ξ) = (π, 0) and the harmonic approximation of P near that
point is equal to −i plus the non-self-adjoint oscillator (hD)2 + ix2/2. Near
the point (0, 0) the harmonic approximation is equal to i plus (hD)2− ix2/2.

The random perturbation is now Pδ = P + δQ, where

Qu(x) = q(x)u(x), q(x) =
N∑
−N

q̂ke
ikx, (20.3.6) num.6

and q̂k are independent complex random variables ∼ NC(0, 1) The numerical
calculations concern the matrix ΠNPδ : HN → HN , with ΠN , HN as defined
in the preceding section.

In figure
D2cosN50dd0
20.31, we plot the spectrum in the unperturbed case, when

N = 50, h = 0.04. Except for the branching to the right, the eigenvalues
behave as one could expect. To the left we have approximations of the
eigenvalues of the two harmonic oscillators and it has been proved by Hitrik
Hi04
[69] that the exact eigenvalues of P do have that behaviour here. Further
inside this is only an expectation, which should be possible to verify, using
the complex WKB-method. We have also traced 21 pseudospectral curves in
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a subregion, where the first one happened to fall outside the figure. Already
for N = 50, there is a strong spectral instability.

In Figure
D2cosN100dd0
20.32, we consider the unperturbed case with N = 100, h = 0.02

and trace the same numer of pseudospectral curves. It seems to us that the
“eigenvalues” in the middle are non-real because of very strong numerical
instability.

Figure
D2cosN100dd1e-4
20.33 we see that the pseudospectral behaviour improves and we

can have confidence in the computed eigenvalues, at least as eigenvalues of
ΠNPδ. In the remaining figures

D2cosN500dd0
20.34–

D2cosN500dd1e-12
20.40, we take N = 500, h = 0.004. In

Figure
D2cosN500dd0
20.34 we consider the unperturbed case. Then in Figures

D2cosN500dd1e-2
20.35–

D2cosN500dd1e-12
20.40

we consider the perturbed cases with δ decreasing from 0.01 to 10−12. When
δ = 0.01 the perturbation is so strong that many eigenvalues fall outside the
range of the symbol and we can hardly say that Weyl asymptotics holds in
that case. When δ = 10−4 there is a tendency towards the Weyl law with a
higher density of eigenvalues near <z = 0 and near =z = ±1 mimicing the
growth of the density of the direct image of the symplectic volume dxdξ under
the symbol map. In the other figures this is still true to some extent, but the
weakness of the perturbation keeps the eigenvalues away from =z = ±1.

20.4 Second order differential operators on

S1

In the case of Hager’s operator and of (hD)2 + i cos the critical values of the
symbol belong to the boundary of the range. They are folds except the two
corner points in the range of ξ2 +i cos(x), where the differential of the symbol
vanishes at the preimages.

In this section and the next one we give examples where the symbol has
critical points inside its range so that the Weyl law will predict an accumu-
lation of eigenvalues near such points in the interior of the spectral region.

In this section we consider elliptic operators on S1 of the form

P = hD ◦ (1 + aeix + ame
−ix + be2ix + bme

−2ix) ◦ hD+ ceix + cme
−ix (20.4.7) num.7

Here the subscript “m” stands for “minus”, easier to handle in the program-
ming. We then looked for suitable values of the coefficient, leading to nice
critical values in the interior of the range of the symbol

p = (1 + aeix + ame
−ix + be2ix + bme

−2ix)y2 + ceix + cme
−ix, (20.4.8) num.8

where for programming reasons the dual variable is called “y” rather than
“ξ”. Possibly one could do without the terms be2ix and bme

−2ix, but having
found some interesting choices with b and bm 6= 0, we decided to keep them.
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We computed the range as before, letting x belong to a grid in ]0, 2π]
of step “Big”, then for each such x, plotting the image curve by letting
y ∈ [0, yM] go through a finer grid. Then we reversed the order of the
operations, for each y in a grid of step Big in [0, yM], we draw the image
curve by letting x go through a finer grid. We choose yM suitably in order
to capture the critical values.

When the coefficients in (
num.7
20.4.7), (

num.8
20.4.8) are real, the operator P is

PT -symetric with the parity x → −x. Correspondingly, the range of p is
symmetric around the real axis.

As in Section
hD2i
20.3, we consider random perturbations of the form Pδ =

P + δQ, where Qu = q(x)u(x), q(x) =
∑∞
∞ qk(ω)eikx and qk are indepent

random variables ∼ N (0, 1). In the PT -symmetric case we take qk real-
valued and otherwise complex-valued, so that Q is PT -symmetric in the
first case. Then as in the preceding sections we approximate Pδ with ΠNPδ :
HN → HN , where ΠN , HN are introduced in Section

hanum
20.2.

20.4.1 A PT -symmetric case

A suitable choice of parameters turned out to be:

(a, am, b, bm, c, cm, Big, yM) = (0.4, 0.1, 0.1, 0.01, 1, 0.5, 0.08976, 2.3562).

Big = π/35, yM = 3π/4. Figure
Symbol2ndOrdPT
20.41 shows the range.

We distinguish clearly some folds inside the range and two stronger sin-
gular values.

The figures
SOS1/PT/2,5e-3
20.42–

SOS1/PT/2,5e-9
20.46 show the (numerical) spectrum of Pδ for N =

1500 with the range of p in the background, for δ =“dd” ranging from 2.5×
10−3 down to 2.5× 10−9. Weyl asymptotics seems to hold in the sense that
the density of eigenvalues is stronger where the range is denser. Apparently,
there is more spectral stability near the folds and caustic points, and many
eigenvalues can’t make it up to these points, when δ becomes smaller. The
choice of yM was made to have some approximate fitting with the spectrum.
Of course, near the right end of the picture, the plotted eigenvalues seem
to represent only a fraction of the true eigenvalues, since the truncation ΠN

here cuts away some eigenvalues (that would be visible with a larger value
of N).

20.4.2 A non-PT -symmetric case

Here we chose the parameters

(a, am, b, bm, c, cm, Big, yM) = (0.5, 0+0.08i, 0, 0, 1, 0.5, 0.08976, 2.7826),
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then did the same calculations as in PT -symmetric case with N = 1500. See
the figures

Symbol2ndOrdNonPT
20.47,

SOS1NonPT2,5e-3
20.48–

SOS1NonPT2,5e-9
20.52

20.5 Finite difference operators on S1

Here, we replace hD, y with sin(hD), sin(y) in (
num.7
20.4.7), (

num.8
20.4.8):

P = sin(hD) ◦ (1 + aeix + ame
−ix + be2ix + bme

−2ix) ◦ sin(hD) + ceix + cme
−ix,

(20.5.9) num.9

p = (1 + aeix + ame
−ix + be2ix + bme

−2ix)(sin y)2 + ceix + cme
−ix. (20.5.10) num.10

This operator acts on `2(hZ). For a given N ∈ N\{0}, we choose h = 2π/N ,
so that h > 0 is the smallest positive number with Nh = 2π. Then P acts
on the N - dimensional space `2(S1

N), S1
N = hZ/2πZ. It is wellknown that

functions u on S1
N have Fourier sum expansions of the form

u =
∑

k∈Z/NZ

ûke
ikx (20.5.11) num.11

and
sin(hD)u =

∑ ∑
k∈Z/NZ

sin(hk)ûke
ikx.

It is therefore simple to write down the matrix of P in terms of the Fourier
coefficients in (

num.11
20.5.12). Contrary to the case of differential operators, this is

an exact reduction to a finite matrix and no projection operator is necessary.
It is also well-known that the phase space associated to our operators above
is S1

x × S1
y and p in (

num.10
20.5.10) is naturally a function on that space.

The random perturbation is again multiplicative of the form

q =
∑

k∈Z/NZ

qk(ω)eikx, (20.5.12) num.11

where qk are independent N (0, 1) random variables.
As before, we can represent graphically the range of by discretizing in x

and y, and then study the eigenvalues of the N × N -matrix of P . Again
we choose values of the coefficients that give rise to interesting folds and
focal points in the range. Below we present the results in two cases, one
with PT -symmetry and one without. In both cases we took the random
perturbation real (contrary to the non-PT symmetric case for differential
operators). Recall however that the main results on Weyl asymptotics are
the same for real and complex random perturbations (cf. Remark

res2
15.3.3).
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20.5.1 A PT -symmetric case

To find suitable parameters took much less effort, maybe because the com-
pactness of the phase space. We made the following choice:

(a, am, b, bm, c, cm) = (0.4, 0.1, 0.1, 0.02, 0.5, 0.25)

The range is given in Figure
rangePTfin_diff
20.53. In Figures

PTfin_diff_2,5e-04
20.54–

PTfin_diff_2,5e-09
20.57, we give the

spectrum for δ(“dd”) ranging from 2.5× 10−4 down to 2.5× 10−9

20.5.2 A non-PT -symmetric case

We did the same computations with N = 3000 and

(a, am, b, bm, c, cm = 0.4 + 0.2i, 0.1, 0, 0, 0.5, 0.25).

See Figure
rangeNonPTFinDiff
20.58 for the range and Figures

FinDiffNPT2,5e-3
20.59–

FinDiffNPT2,5e-9
20.64 for the spectrum.

20.6 PT -symmetric double well

Let Z = x + h∂x be the annihilation operator and Z∗ = x − h∂x the cre-
ation operator acting on functions of one real variable. If e0, e1, e2, ... is
the standard orthonormal basis of semi-classical Hermite functions in L2(R)
(obtained by the scaling x̃ = h1/2x from the usual Hermite functions),
then we know that Zek =

√
2khek−1 (= 0 by definition when k = 0),

Z∗ek =
√

2(k + 1)ek+1. Thus, the infinite matrices of Z and Z∗ are easy
to write down explicitly. We can then write down the infinite matrices for
the multiplication operator x = (Z + Z∗)/2 and the semi-classical differen-
tiation, h∂x = (Z − Z∗)/2 For numerical purposes, we restrict the atten-
tion to the N -dimensional space HN , spanned by e0, e1, .., eN−1 and corre-
spondingly we replace x with xN := ΠN ◦ x : HN → HN and h∂x with
(h∂)N := ΠNh∂ : HN → HN . In other words we replace the infinite matrices
of x and h∂x by the N × N -matrices obtained by restricting the row and
column indices to {0, ..., N1}. Thus to treat spectrally the non-self-adjoint
harmonic operator, we can replace it by −(h∂)2

N + ix2
N and this gives the

correct spectrum near 0. Here, we give a numerical illustration of Theorems
ptwell1
19.4.1 and

ptwell2
19.4.2 by considering

Pε = −(h∂x)
2 + x4 − x2 + iεx, (20.6.13) num.12

for ε > 0 small. When ε = 0 this is a self-adjoint Schrödinger operator
with an even double well potential. The height of the separating barrier
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is 0 and we know (in the limit h → 0) that the eigenvalues in any region
]−∞,−1/O(1)] form pairs of values such that the distance between the two
elements in the same pair is exponentially small while the distance between a
pair and the next higher one is of the order of h. In any region [1/O(1),O(1)[
the eigenvalues are simple with a distance � h from any such value to the
next higher neighbor. We made a series of computations to find a value of
ε for which there are two complex conjugate eigenvalues, very close to be a
double real eigenvalue. See Figure

PT2well
20.65. We see a number of eigenvalues with

small real part, that have split off the real line. The remaining eigenvalues
are real except the ones fairly far to the right. The non reality to the right
is certainly due to errors introduced by the spectral truncation. The real
eigenvalue up to roughly 0.7 seem to be regularly spaced and to obey the
Bohr-Sommerfeld rule. However a careful look at the picture shows that the
12th real eigenvalue from the left with real part between 0.34 and 0.35 is
actually constituted by two eigenvalues very close to each other. On the pdf
version we only see that the blue dot is sligtly widened horizontally. On the
.fig-file this is seen more clearly after several enlargements. Again we think
that this is due to the spectral truncation.

We therefore improved the program to get first the matrix of P in a range
1 ≤ j, k ≤ Ñ with Ñ > N and truncating this matrix down to one of size
N × N . Then, we get ΠNPδ with only one spectral truncation. The result
with the new program is given in Figure

PT2wellRefined
20.66. The anomaly near 0.34 has

now dissappeared but there is a new close to double real eigenvalue ≈ 0.6.
We then plotted both sets of eigenvalues in Figure

Comparison
20.67, marking the original

ones with a dot and the “improved” ones with a “×”. The coincidence in
the region <z < 0.34 is remarkable and forgetting about the the anomaly
near 0.34 for the originally computed ones, we have a nice coincidence up to
<z ≈ 0.6. The second more refined computation gives apparently a slightly
better overall result, but the improvement mainly concerns relatively few
eigenvalues situated to the right where the spectral truncation plays a rule.
Since the coincidence is so great up to about 0.6, we conclude (boldly) that
Matlab computes the eigenvalues of the differential operator up to that level
with quite a good accuracy. In particular, this is the case for the ones with
real part . 0.3, and in particular the splitting of eigenvalues out into the
complex is nicely illustrated.

20.7 The figures
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norm((J−z)
−1

)=e
k
, for N=20, k=0,...,30
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1
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Figure 20.1: The level curves ‖(J − z)−1‖ = ek, for k = 0, ..., 30, N = 20. JordanPsSp

norm((Jdd−z)
−1

)=e
k
, for N=20, dd=0.01, k=0,...,30
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Figure 20.2: The level curves ‖(Jδ − z)−1‖ = ek, for k = 0, ..., 30, δ = 0.01,
N = 20. Jdd20PsSp
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Spectrum of Jdelta, N=100, delta=0.001

Figure 20.3: Spectrum of Jδ, N = 100, δ = 0.001. Jdd100dd1e-3
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Figure 20.4: Spectrum of Jδ, N = 100, δ = 10−4. Jdd100dd1e-4
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Spectrum and pseudosp of Jdelta, N=100, delta=1e−05

Figure 20.5: Spectrum of Jδ, N = 100, δ = 10−5 and pseudospectral level
curves as in Fig.

Jdd20PsSp
20.2. Jdd100dd1e-5
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Hagicos, N=20, h=0.1, dd=0, norm(Q)=12.1712, K=20

Figure 20.6: Numerical eigenvalues and pseudospectral curves ‖(P −z)−1‖ =
ek, k = 0, 1, ..., K, for (

num.1
20.2.1), h = 10−1, N = 20, K = 20. HUnpert_h2e-1_N20
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Figure 20.7: Numerical eigenvalues and K + 1 = 21 pseudospectral curves
for (

num.2
20.2.2), h = 10−1, N = 20, δ = 0.05. HCos_h2e-1_N20_dd5e-2
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Hagicos, N=50, h=0.04, dd=0, norm(Q)=19.5917, K=20
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Figure 20.8: Numerical eigenvalues and pseudospectral curves for (
num.1
20.2.1),

h = 0.04, N = 50 (δ = 0). HCos_h2e-1_N50_dd0
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Figure 20.9: Numerical eigenvalues and pseudospectral curves for (
num.2
20.2.2),

h = 0.04, N = 50, δ = 10−4. HCos_h2e-1_N50_dd1e-4
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Figure 20.10: Numerical eigenvalues for (
num.2
20.2.2), h = 0.004, N = 500, δ = 0. HCos_N500_dd0
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Figure 20.11: Numerical eigenvalues for (
num.2
20.2.2), h = 0.004, N = 500, δ =

10−2. HCos_N500_dd1e-2
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Figure 20.12: Numerical eigenvalues for (
num.2
20.2.2), h = 0.004, N = 500, δ =

10−4. HCos_N500_dd1e-4
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Figure 20.13: Numerical eigenvalues for (
num.2
20.2.2), h = 0.004, N = 500, δ =

10−6. HCos_N500_dd1e-6
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Figure 20.14: Numerical eigenvalues for (
num.2
20.2.2), h = 0.004, N = 500, δ =

10−8. HCos_N500_dd1e-8
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Figure 20.15: Numerical eigenvalues for (
num.2
20.2.2), h = 0.004, N = 500, δ =

10−10. HCos_N509_dd1e-10

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

Hagicos, N=500, h=0.004, dd=1e−12, norm(Q)=63.011

Figure 20.16: Numerical eigenvalues for (
num.2
20.2.2), h = 0.004, N = 500, δ =

10−12. HCos_N500_dd1e-12
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Figure 20.17: Numerical eigenvalues for (
num.2
20.2.2), h = 0.004, N = 500, δ =

10−2 (blue) and δ = 0 (red). redblue_N500_dd1e-2
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Figure 20.18: Numerical eigenvalues for (
num.2
20.2.2), h = 0.004, N = 500, δ =

10−4 (blue) and δ = 0 (red). redblue_N500_dd1e-4

422



−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

Hager operator, N=500, h=0.004, dd=1e−06, kappa=0, norm Q=63.0679

Figure 20.19: Numerical eigenvalues for (
num.2
20.2.2), h = 0.004, N = 500, δ =

10−6 (blue) and δ = 0 (red). redblue_N500_dd1e-6
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Figure 20.20: Numerical eigenvalues for (
num.2
20.2.2), h = 0.004, N = 500, δ =

10−8 (blue) and δ = 0 (red). redblue_N500_dd1e-8
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Figure 20.21: Numerical eigenvalues for (
num.2
20.2.2), h = 0.004, N = 500, δ =

10−10 (blue) and δ = 0 (red). redblue_N500_dd1e-10
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Figure 20.22: Numerical eigenvalues for (
num.2
20.2.2), h = 0.004, N = 500, δ =

10−12 (blue) and δ = 0 (red). redblue_N500_dd1e-12
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Figure 20.23: Numerical eigenvalues for (
num.4
20.2.4), h = 0.004, N = 500, δ =

10−2 SpectHExpdd1-2

−3 −2 −1 0 1 2 3

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 20.24: Range of ξ + iex restricted to S1
x × [−2, 2]. range
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Figure 20.25: Numerical eigenvalues of Pδ = P + δQ for N = 500, h = 0.004,
δ = 10−2. expix_N500_dd1e-2
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Figure 20.26: Numerical eigenvalues of Pδ = P + δQ for N = 500, h = 0.004,
δ = 10−4. expix_N500_dd1e-4
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Figure 20.27: Numerical eigenvalues of Pδ = P + δQ for N = 500, h = 0.004,
δ = 10−6. expix_N500_dd1e-6
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Figure 20.28: Numerical eigenvalues of Pδ = P + δQ for N = 500, h = 0.004,
δ = 10−8. expix_N500_dd1e-8

429



−3 −2 −1 0 1 2 3

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Hager exp(iX), N=500, h=0.004, dd=1e−10, norm(Q)=62.8754

Figure 20.29: Numerical eigenvalues of Pδ = P + δQ for N = 500, h = 0.004,
δ = 10−10. expix_N500_dd1e-10
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Figure 20.30: Numerical eigenvalues of Pδ = P + δQ for N = 500, h = 0.004,
δ = 10−12. expix_N500_dd1e-12
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Figure 20.31: (hD)2 + i cosx: unperturbed case N = 50, h = 0.04, (δ = 0). D2cosN50dd0
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Figure 20.32: (hD)2 + i cosx: unperturbed case N = 100, h = 0.02, (δ = 0). D2cosN100dd0
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Figure 20.33: Perturbed case N = 100, h = 0.02, δ = 10−4. D2cosN100dd1e-4
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Figure 20.34: Unperturbed case N = 500, h = 0.004 (δ = 0). D2cosN500dd0
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Figure 20.35: Perturbed case N = 500, h = 0.004, δ = 0.01. D2cosN500dd1e-2
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Figure 20.36: Perturbed case N = 500, h = 0.004, δ = 10−4. D2cosN500dd1e-4
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Figure 20.37: Perturbed case N = 500, h = 0.004, δ = 10−6. D2cosN500dd1e-6

0 0.5 1 1.5 2 2.5 3 3.5 4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
(hD)

2
+icos, h=0.004, N=500, dd=1e−08, norm(Q)=75.9588

Figure 20.38: Perturbed case N = 500, h = 0.004, δ = 10−8. D2cosN500dd1e-8
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Figure 20.39: Perturbed case N = 500, h = 0.004, δ = 10−10. D2cosN500dd1e-10
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Figure 20.40: Perturbed case N = 500, h = 0.004, δ = 10−12. D2cosN500dd1e-12
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Figure 20.41: Range of p in (
num.8
20.4.8), (a, am, b, bm, c, cm,Big, yM) =

(−0.4, 0.1, 0.1, 0.01, 1,−0.5, 0.08976, 2.3562). Symbol2ndOrdPT
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Figure 20.42: Eigenvalues of Pδ = P + δQ as in (
num.7
20.4.7), h = 0.00175,

δ = 2.5× 10−3. SOS1/PT/2,5e-3
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Figure 20.43: Eigenvalues of Pδ = P + δQ as in (
num.7
20.4.7), h = 0.00175,

δ = 2.5× 10−4. SOS1/PT/2,5e-4
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Figure 20.44: Eigenvalues of Pδ = P + δQ as in (
num.7
20.4.7), h = 0.00175,

δ = 2.5× 10−5. SOS1/PT/2,5e-5
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Figure 20.45: Eigenvalues of Pδ = P + δQ as in (
num.7
20.4.7), h = 0.00175,

δ = 2.5× 10−7. SOS1/PT/2,5e-7
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Figure 20.46: Eigenvalues of Pδ = P + δQ as in (
num.7
20.4.7), h = 0.00175,

δ = 2.5× 10−9. SOS1/PT/2,5e-9
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Figure 20.47: Range of p in (
num.8
20.4.8), (a, am, b, bm, c, cm,Big, yM) =

(−0.5, 0.08i, 0, 0, 1,−0.5, 0.08976, 2.7826). Symbol2ndOrdNonPT
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Figure 20.48: Eigenvalues of Pδ = P + δQ as in (
num.7
20.4.7), h = 0.00175,

δ = 2.5× 10−3. SOS1NonPT2,5e-3
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Figure 20.49: Eigenvalues of Pδ = P + δQ as in (
num.7
20.4.7), h = 0.00175,

δ = 2.5× 10−4. SOS1NonPT2,5e-4
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Figure 20.50: Eigenvalues of Pδ = P + δQ as in (
num.7
20.4.7), h = 0.00175,

δ = 2.5× 10−5. SOS1NonPT2,5e-5
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Figure 20.51: Eigenvalues of Pδ = P + δQ as in (
num.7
20.4.7), h = 0.00175,

δ = 2.5× 10−7. SOS1NonPT2,5e-7
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Figure 20.52: Eigenvalues of Pδ = P + δQ as in (
num.7
20.4.7), h = 0.00175,

δ = 2.5× 10−9. SOS1NonPT2,5e-9
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Figure 20.53: Range of p in (
num.10
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(−0.4, 0.1, 0.1, 0.02, 0.5, 0.25). rangePTfin_diff
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Figure 20.54: Eigenvalues of Pδ = P + δQ as in (
num.9
20.5.9) ff., h = 0.00175,

δ = 2.5× 10−4. PTfin_diff_2,5e-04
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Figure 20.55: Eigenvalues of Pδ = P + δQ as in (
num.9
20.5.9) ff., h = 0.00175,

δ = 2.5× 10−5. PTfin_diff_2,5e-05
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Figure 20.56: Eigenvalues of Pδ = P + δQ as in (
num.9
20.5.9) ff., h = 0.00175,

δ = 2.5× 10−7. PTfin_diff_2,5e-07
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Figure 20.57: Eigenvalues of Pδ = P + δQ as in (
num.9
20.5.9) ff., h = 0.00175,

δ = 2.5× 10−9. PTfin_diff_2,5e-09
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Figure 20.58: Range of p in (
num.10
20.5.10), (a, am, b, bm, c, cm) = (−0.4 +

0.2i, 0.1, 0, 0, 0.5, 0.25). rangeNonPTFinDiff
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Figure 20.59: Eigenvalues of Pδ = P + δQ as in (
num.9
20.5.9) ff., h = 0.00175,

δ = 2.5× 10−3. FinDiffNPT2,5e-3
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Figure 20.60: Eigenvalues of Pδ = P + δQ as in (
num.9
20.5.9) ff., h = 0.00175,

δ = 2.5× 10−4. FinDiffNPT2,5e-4
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Figure 20.61: Eigenvalues of Pδ = P + δQ as in (
num.9
20.5.9) ff., h = 0.00175,

δ = 2.5× 10−5. FinDiffNPT2,5e-5
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Figure 20.62: Eigenvalues of Pδ = P + δQ as in (
num.9
20.5.9) ff., h = 0.00175,

δ = 2.5× 10−6. FinDiffNPT2,5e-6

457



−1 −0.5 0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
nonPT, N=3000, h=0.0020944, dd=2.5e−07, norm(Q)=146.0593

Figure 20.63: Eigenvalues of Pδ = P + δQ as in (
num.9
20.5.9) ff., h = 0.00175,

δ = 2.5× 10−7. FinDiffNPT2,5e-7
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Figure 20.64: Eigenvalues of Pδ = P + δQ as in (
num.9
20.5.9) ff., h = 0.00175,

δ = 2.5× 10−9. FinDiffNPT2,5e-9
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Figure 20.65: Spectrum of Pε in (
num.12
20.6.13) with truncations of x and of h∂.

h = 0.02, ε = 0.016926. PT2well

460



−0.5 0 0.5 1 1.5 2 2.5
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025
With only one truncation h=0.02, N=50, eps=0.016926

Figure 20.66: Spectrum of Pε in (
num.12
20.6.13) with one global truncation. h =

0.02, ε = 0.016926. PT2wellRefined
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Figure 20.67: Superposition of the eigenvalues in Fig.
PT2well
20.65 and in (

PT2wellRefined
20.66).

The former are marked with dots and the latter with “×”. Comparison
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non-autoadjoints. I. Un modèle, Ann. Fac. Sci. Toulouse
Math. (6)15(2)(2006), 243–280.
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[66] F. Hérau, F. Nier, Isotropic hypoellipticity and trend to equilibrium for
the Fokker-Planck equation with a high-degree potential, Arch. Ration.
Mech. Anal. 171 (2004), no. 2, 151–218.
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[79] L. Hörmander, Differential operators of principal type, Math. Ann.
140(1960), 124–146.
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